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Classification of Clinical Records

• Medical NLP Challenge (Computational Medicine Centre)
– Classify anonymized real clinical records into International Clinical 

Codes (ICD-9-CM)
– 44 research institutes participated

• Sample 
– Record:

# Clinical History
This is a patient with meningomyelocele and neurogenic bladder.
# Impression
Normal renal ultrasound in a patient with neurogenic bladder.

– Correct codes (possibly multiple codes):
• 596.54 (Neurogenic bladder NOS)

• 741.90 (Without mention of hydrocephalus)
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DocumentDocument
Predicted codesPredicted codes

(multi(multi --topics)topics)

CorrectCorrect
codescodes

Top 5Top 5
CandidatesCandidates

Significance Significance 
of each of each 
feature feature 

©2008 Yutaka Sasaki, University of Manchester



4

Evaluation results
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Introduction
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Introduction

• Text Classification is the task:
– to classify documents into predefined classes

• Text Classification is also called
– Text Categorization
– Document Classification
– Document Categorization

• Two approaches
– manual classification and automatic classification
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Relevant technologies
• Text Clustering

– Create clusters of documents without any external information
• Information Retrieval (IR)

– Retrieve a set of documents relevant to a query
• Information Filtering

– Filter out irrelevant documents through interactions
• Information Extraction (IE)

– Extract fragments of information, e.g., person names, dates, and 
places, in documents

• Text Classification
– No query, interactions, external information
– Decide topics of documents
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Examples of relevant technologies
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Example of clustering

web documents
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Examples of information retrieval

x

web documents

©2008 Yutaka Sasaki, University of Manchester



11

Examples of information filtering

web documents
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Examples of information extraction

web documents 
about accidents

Date: 04/12/03
Place: London
Type: traffic
Casualty: 5

Key information on accidents
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Examples of text classification

web documents
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Text Classification Applications

• E-mail spam filtering
• Categorize newspaper articles and newswires into 

topics
• Organize Web pages into hierarchical categories
• Sort journals and abstracts by subject categories 

(e.g., MEDLINE, etc.)
• Assigning international clinical codes to patient 

clinical records 
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Simple text classification example

• You want to classify documents into 4 classes:
economics, sports, science, life.

• There are two approaches that you can take:
– rule-based approach

• write a set of rules that classify documents

– machine learning-based approach
• using a set of sample documents that are classified into 

the classes (training data), automatically create classifiers 
based on the training data
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Comparison of Two Approaches (1)
Rule-based classification

Pros:
– very accurate when rules are written by experts
– classification criteria can be easily controlled when the 

number of rules are small.
Cons:
– sometimes, rules conflicts each other

• maintenance  of rules becomes more difficult as the number of 
rules increases

– the rules have to be reconstructed when a target domain 
changes

– low coverage because of a wide variety of expressions
©2008 Yutaka Sasaki, University of Manchester
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Comparison of Two Approaches (2)

Machine Learning-based approach
Pros:
– domain independent
– high predictive performance

Cons:
– not accountable for classification results
– training data required
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Formal Definition

• Given:
– A set of documents D = {d1, d2,…, dm}
– A fixed set of topics T = {t1, t2,…, tn}

• Determine:
– The topic of d: t(d) � T, where t(x) is a 

classification  function whose domain is D and 
whose range is T.
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Rule-based approach
Example: Classify documents into sports

“ball” must be a word that is frequently used in sports
� Rule 1: “ball” � d  Æ t(d) =  sports

©2008 Yutaka Sasaki, University of Manchester

But there are other meanings of “ball”
Def.2-1 : a large formal gathering for social dancing 
(WEBSTER)

� Rule 2: “ball”� d  & “dance”� d Æ t(d) =  sports
Def.2-2 : a very pleasant experience : a good time (WEBSTER)

� Rule 3: “ball”� d  & “dance”� d & “game” � d &
“play” � d   Æ t(d) =  sports

Natural language has a rich variety of expressions:
e.g., “Many people have a ball when they play a bingo game.”
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Machine Learning Approach
1.Prepare a set of training data
• Attach topic information to the documents in a target domain.

2.Create a classifier (model) 
• Apply a Machine Learning tool to the data

• Support Vector Machine (SVM), Maximum Entropy Models (MEM)

3.Classify new documents by the classifier

sports

science
life

classifier

sports

science

lifeclassifier

…

life

sports

Training data
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Closer look at
Machine Learning-based approach

f1

f2

f3

f4

game

play

ball

dance
Classifier c(·|·)

c(sports|x)

document d

c(science|x)

c(economics|x)
c(y|x)

x=(f1, f2, f3, f4)

features

feature extraction

feature vector
(input vector) c(life|x)

Select the best 
classification result
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Rule-based  vs. Machine Learning-based
[Creecy et al., 1992]

• Data: US Census Bureau Decennial Census 1990
– 22 million natural language responses
– 232 industry categories and 504 occupation categories
– It costs about $15 million if fully done by hand

• Define classification rules manually:
– Expert System AIOCS
– Development time: 192 person-months (2 people, 8 years)
– Accuracy = 57%(industry), 37%(occupation)

• Learn classification function
– Machine Learning-based System PACE
– Development time: 4 person-months
– Accuracy = 63%(industry), 57%(occupation)
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Evaluation
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Common Evaluation Metrics

• Accuracy
• Precision
• Recall
• F-measure

– harmonic mean of recall and precision
– micro-average F1

• global calculation of F1 regardless of topics
– macro-average F1:

• average on F1 scores of all the topics
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Accuracy

• The rate of correctly predicted topics
system’s predictioncorrect answer

true
positive

false positive
(Type I error,
false alarm)

false negative
(Type II error,

missed alarm)

(TP) (FP)(FN)

Accuracy = TP + TN 
TP + FP + FN + TN 

true negative
(TN)
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Accuracy
• Example: classify docs into spam or not spam

Accuracy =                                      =               = 0.4 TP+TN 
TP+FP+FN+TN

d1

d2

d3

Y

Y

N

system’s prediction     correct answer

N

Y

Y

TP FP FN TN

1      

1

1

1

1

d4 N

1+1 
1+2+1+1

N

d5 NY
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Issue in Accuracy
• When a certain topic (e.g., not-spam) is a majority, the 

accuracy easily reaches a high percentage.

Accuracy =                                      =               = 0.99 TP+TN 
TP+FP+FN+TN

d1
…

N

N

system’s prediction     correct answer

Y

Y

TP FP FN  TN

1

1

990d11-
d1000

990 
1000

N
…
N

d10

… … … …

N
…
N
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Precision (PPV)

• The rate of correctly predicted topics
system’s predictioncorrect answer

true
positive

false positive
(Type I error,
false alarm)

false negative
(Type II error,

missed alarm)

(TP) (FP)(FN)

Precision = TP
TP + FP

true negative
(TN)
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Precision
• Example: classify docs into spam or not spam

Precision =                                      =              = 0.333TP
TP+FP

d1

d2

d3

Y

Y

N

system’s prediction     correct answer

N

Y

Y

TP FP FN TN

1      

1

1

1

1

d4 N

1
1+2

N

d5 NY
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Issue in Precision
• When a system outputs only confident topics, the 

precision easily reaches a high percentage.

Precision =                                      =              = 1 TP
TP+FP

d1
…

N

N

system’s prediction     correct answer

Y

N

TP FP FN  TN

1

1

1

1
1

Y

d999

… …(Y or N)… … …

Yd1000
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Recall (sensitivity)

• The rate of correctly predicted topics
system’s predictioncorrect answer

true
positive

false positive
(Type I error,
false alarm)

false negative
(Type II error,

missed alarm)

(TP) (FP)(FN)

Recall   = TP
TP + FN

true negative
(TN)
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Recall
• Example: classify docs into spam or not spam

Recall       =                                      =           = 0.5 TP
TP+FN

d1

d2

d3

Y

Y

N

system’s prediction     correct answer

N

Y

Y

TP FP FN TN

1      

1

1

1

1

d4 N

1
1+1

N

d5 NY
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Issue in Recall
• When a system outputs loosely, the recall easily 

reaches a high percentage.

Recall  =                                      =                = 1 TP
TP+FN

d1
…

Y

Y

system’s prediction     correct answer

Y

N

TP FP FN  TN

1

1

1

n
n

Y

d999

… …(Y or N)… … …

Yd1000
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F-measure

• Harmonic mean of recall and precision

– Since there is a trade-off between recall and 
precision, F-measure is widely used to evaluate 
text classification system.

• Micro-average F1: Global calculation of F1 
regardless of topics

• Macro-average F1: Average on F1 scores of all 
topics

2 · Precision · Recall

Precision + Recall
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F-measure
• Example: classify docs into spam or not spam

F =                                      =                      = 0.42·Recall·Precision
Recall+Precision

d1

d2

d3

Y

Y

N

system’s prediction     correct answer

N

Y

Y

TP FP FN TN

1      

1

1

1

1

d4 N

2·1/3·1/2
1/3 + 1/2

N

d5 NY
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Summary: Evaluation Metrics
• Accuracy 
• Precision

• Recall

• F-measure

• Micro F1: Global average of F1 regardless of topics
• Macro F1: Average on F1 scores of all topics
• Cost-Sensitive Accuracy Measure (*)
• Multi-Topic Accuracy (*)

TP (# system's correct predictions)
TP+FP (# system’s outputs)

TP (# system's correct predictions)
TP+FN (# correct answers)

2 * Recall * Precision
Recall + Precision
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Feature Extraction: from Text to Data
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Basic Approach (1)

• Bag-of-Word approach
– a document is regarded as a set of words 

regardless of the word order and grammar.

The brown fox jumps over 
the lazy dog. brownfox

jumps

over

the 
lazy

dogThe 
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Basic Approach (2)

• Bi-grams, tri-grams, n-grams
– Extract all of two, three, or n words in a row in 

the text

The brown fox jumps over 
the lazy dog.

Bi-grams:
the brown,
brown fox,

fox jumps,
jumps over,
the lazy,
lazy dog

Tri-grams:
the brown fox,
brown fox jumps,

fox jumps over,
jumps over the,
the lazy dog

©2008 Yutaka Sasaki, University of Manchester
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Basic Approach (3)

• Normalization
Convert words into a normalized forms
– down-case, e.g, The Æ the, NF-kappa B Æ nf-kappa b
– lemmatization:  to basic forms, e.g., jumps Æ jump
– stemming: mechanically remove/change suffixes

• e.g., yÆi, sÆ ,  “the brown fox jump over the lazi dog.”
• the Porter’s Stemmer is widely used.

• Stop-word removal
– ignore predefined common words, e.g., the, a, to, with, that …
– the SMART Stop List is widely used

©2008 Yutaka Sasaki, University of Manchester
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From Symbols to Numeric
• Term occurrence: occur (1) or not-occur (0)
• Term Frequency

– tfi = the number of times where word/n-gram wi
appears  in a document.

• Inverse document frequency
– the inverted rate of documents that contain word/n-

gram wi against a whole set of documents
idfi =  | D |  / | {d | wi� d � D }|.

• tf-idf
– tf-idfi = tfi · idfi
– frequent words that appear only in a small number of 

documents achieve high value.
©2008 Yutaka Sasaki, University of Manchester
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Create Feature Vectors

a  an   …brown,..       dog  … fox         jump       lazi      over the

( 0, 0,…,0,  1,   ,0,…,0,  1,0,…,0,  1,0,…,0,1, 0,…,0,1,0,…,0,1,  2, 0, ..)

1. enumerate all word/n-grams in a whole set of documents
2. remove duplications and sort the words/n-grams
3. convert each word into its value, e.g., tf, idf, or tf-idf.
4. create a vector whose i-th value is the value of i-th term

The brown fox jumps over 
the lazy dog.

Generally, feature vectors are very sparse, i.e., most of the values are 0.

feature vector with tf weights:
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Multi-Topic Text Classification
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Multi-topic Text Classification

<TOPICS>ship</TOPICS>
The Panama Canal 
Commission, a U.S. 
government agency, said 
in its daily operations 
report that there was a 
backlog of 39 ships waiting 
to enter the canal early 
today.

<TOPICS>crude</TOPICS>
Diamond Shamrock Corp 
said that effective today it 
had cut its contract prices 
for crude oil by 1.50 dlrs a 
barrel.

<TOPICS>crude:ship</TOPICS>
The port of Philadelphia was 
closed when a Cypriot oil tanker, 
Seapride II, ran aground after 
hitting a 200-foot tower supporting 
power lines across the
river, a Coast Guard spokesman 
said.

(Excerpt from Ruters-21578)

• One single document belongs to multiple topics
• An interesting and important research theme that is not nicely 

solved yet.

Topic A&B is not always a mixture of A and B
©2008 Yutaka Sasaki, University of Manchester
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A View on Multi-topic Text Classification

• Open Topic Assumption (OTA) (conventional view)
– A document has  multiple topics 
– The topics other than the given topics are neutral. 

• Closed Topic Assumption (CTA) 
– A document has multiple topics 
– The other topics are considered to be explicitly excluded.  
– E.g., if there exist three topics  A,B,C and a text d is given the 

topic A, then this  assignment is regarded that d belongs to A 
but does not belong to B and C.

B

A

C

A A but neither B nor C

CTAOTA

A
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Case Studies
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Experiments
• Objective

– compare the performance of approaches based on Closed Topic 
Assumption and Open Topic Assumption.

• Data 1 (Clinical records)
– Training: about 986 documents
– Test: 984 documents

• Data 2 (Reuters newswires)
– Training: 9,603 documents
– Test: 3,299 documents

• Machine Learning methods
– SVM: Support Vector Machines
– MEM: Maximum Entropy Models

• Approaches
– BC: Binary Class Classification
– MC: Multi Class Classification

MCMEM 
(CTA)

MCSVM
(CTA)

MC

BCMEM 
(CTA/OTA)

BCSVM
(CTA/OTA)

BC

MEMSVM
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Evaluation Metrics
• AC: multi-labelling accuracy 
• Cost-Sensitive Accuracy Measure (for  clinical data)
• Precision

• Recall

• F1

• Micro F1: Global calculation of F1 regardless of topics
• Macro F1: Average on F1 scores of all topics

# system correct labeling
# system output

# system correct labeling
# correct labeling

2 * Precison * Recall
Precision + Recall
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Classification Experiments on Clinical Records
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Experimental Results on Clinical Records (cont.)
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Experimental Results on Reuters

CTA

OTA

CTA

OTA
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Multi-topic accuracy (Reuters)
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Micro-average F1 (Reuters)

(Excerpt from Ruters-21578)
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0.87

0.88

0.89

0.9

0.91

0 2500 5000 7500 10000

# Training Data

MCSL MEM/CTA
(micro-F1)

BCSL MEM/CTA
(micro-F1)

BCSL MEM
(micro-F1)

MCSL SVM/CTA
(micro-F1)

BCSL SVM/CTA
(micro-F1)

BCSL SVM
(micro-F1)

©2008 Yutaka Sasaki, University of Manchester



55

Macro-average F1 (Reuters)
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Thank you
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