
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 14

Tuples, Sets, and Dictionaries

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

The No Fly List is a list, created and maintained by

the United States government's Terrorist Screening

Center, of people who are not permitted to board a

commercial aircraft for travel in or out of the

United States. Suppose we need to write a program

that checks whether a person is in the No Fly List.

You can use a Python list to store the persons in the

No Fly List. However, a more efficient data

structure for this application is a set.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Objectives

To use tuples as immutable lists (§14.2).

To use sets for storing and fast accessing non-

duplicate elements (§14.3).

To understand the performance differences

between sets and lists (§14.4).

To store key/value pairs in a dictionary and

access value using the key (§14.5).

To use dictionaries to develop applications

(§14.6).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Tuples

Tuples are like lists except they are immutable.

Once they are created, their contents cannot be

changed.

If the contents of a list in your application do not

change, you should use a tuple to prevent data from

being modified accidentally. Furthermore, tuples are

more efficient than lists.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Creating Tuples

t1 = () # Create an empty tuple

t2 = (1, 3, 5) # Create a set with three elements

Create a tuple from a list

t3 = tuple([2 * x for x in range(1, 5)])

Create a tuple from a string

t4 = tuple("abac") # t4 is ['a', 'b', 'a', 'c']

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Tuples

Tuples can be used like lists except they are

immutable.

TupleDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Sets

Sets are like lists to store a collection of items.

Unlike lists, the elements in a set are unique and

are not placed in any particular ordered. If your

application does not care about the order of the

elements, using a set to store elements is more

efficient than using lists. The syntax for sets is

braces {}.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Creating Sets

s1 = set() # Create an empty set

s2 = {1, 3, 5} # Create a set with three elements

s3 = set([1, 3, 5]) # Create a set from a tuple

Create a set from a list

s4 = set([x * 2 for x in range(1, 10)])

Create a set from a string

s5 = set("abac") # s5 is {'a', 'b', 'c'}

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Manipulating and Accessing Sets
>>> s1 = {1, 2, 4}

>>> s1.add(6)

>>> s1

{1, 2, 4, 6}

>>> len(s1)

4

>>> max(s1)

6

>>> min(s1)

1

>>> sum(s1)

13

>>> 3 in s1

False

>>> s1.remove(4)

>>> s1

{1, 2, 6}

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Subset and Superset

>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 5, 2, 6}

>>> s1.issubset(s2) # s1 is a subset of s2

True

>>>

>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 5, 2, 6}

>>> s2.issuperset(s1) # s2 is a superset of

s1

True

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Equality Test

>>> s1 = {1, 2, 4}

>>> s2 = {1, 4, 2}

>>> s1 == s2

True

>>> s1 != s2

False

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Comparison Operators

Note that it makes no sense to compare the sets using the

conventional comparison operators (>, >=, <=, <), because

the elements in a set are not ordered. However, these

operators have special meaning when used for sets.

s1 > s2 returns true is s1 is a proper superset of s2.

s1 >= s2 returns true is s1 is a superset of s2.

s1 < s2 returns true is s1 is a proper subset of s2.

s1 <= s2 returns true is s1 is a subset of s2.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Set Operations (union, |)

>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.union(s2)

{1, 2, 3, 4, 5}

>>>

>>> s1 | s2

{1, 2, 3, 4, 5}

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Set Operations (intersection, &)

>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.intersection(s2)

{1}

>>>

>>> s1 & s2

{1}

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Set Operations (difference, -)

>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.difference(s2)

{2, 4}

>>>

>>> s1 - s2

{2, 4}

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Set Operations

(symetric_difference, ^)

>>> s1 = {1, 2, 4}

>>> s2 = {1, 3, 5}

>>> s1.symmetric_difference(s2)

{2, 3, 4, 5}

>>>

>>> s1 ^ s2

{2, 3, 4, 5}

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Sets

SetDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Comparing Performance of Sets and

Lists

SetListPerformanceTest Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Dictionary

Why dictionary?

Suppose your program stores a million students

and frequently searches for a student using the

social security number. An efficient data

structure for this task is the dictionary. A

dictionary is a collection that stores the elements

along with the keys. The keys are like an

indexer.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Key/value pairs

 Search keys

Corresponding element values

…

.

.

Entry

A dictionary

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Creating a Dictionary

dictionary = {} # Create an empty dictionary

dictionary = {"john":40, "peter":45} # Create a dictionary

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Adding/Modifying Entries

To add an entry to a dictionary, use

dictionary[key] = value

For example,

dictionary["susan"] = 50

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Deleting Entries

To delete an entry from a dictionary, use

del dictionary[key]

For example,

del dictionary["susan"]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Looping Entries

for key in dictionary:

print(key + ":" + str(dictionary[key]))

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

The len and in operators

len(dictionary) returns the number of the elements

in the dictionary.

>>> dictionary = {"john":40, "peter":45}

>>> "john" in dictionary

True

>>> "johnson" in dictionary

False

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

The Dictionary Methods

dict

keys(): tuple

values(): tuple

items(): tuple

clear(): void

get(key): value

pop(key): value

popitem(): tuple

Returns a sequence of keys.

Returns a sequence of values.

Returns a sequence of tuples (key, value).

Deletes all entries.

Returns the value for the key.

Removes the entry for the key and returns its value.

Returns a randomly-selected key/value pair as a tuple and

removes the selected entry.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Case Studies: Occurrences of Words

Run

This case study writes a program that counts the

occurrences of words in a text file and displays the words

and their occurrences in alphabetical order of words. The

program uses a dictionary to store an entry consisting of a

word and its count. For each word, check whether it is

already a key in the dictionary. If not, add to the dictionary

an entry with the word as the key and value 1. Otherwise,

increase the value for the word (key) by 1 in the dictionary.

CountOccurrenceOfWords

