Programming Assignment \#3

QUESTION I:

Write a program that reads integers, finds the largest of them, and counts its occurrences. Assume that the input ends with number 0 . Suppose that you entered 3525550 ; the program finds that the largest number is 5 and the occurrence count for 5 is 4 . (Hint: Maintain two variables, max and count. The variable max stores the current maximum number, and count stores its occurrences. Initially, assign the first number to max and 1 to count. Compare each subsequent number with max. If the number is greater than max, assign it to max and reset count to 1 . If the number is equal to max, increment count by 1 .)

```
Enter a number (0: for end of input): 3 - Enter
Enter a number (0: for end of input): 5 -Enter
Enter a number (0: for end of input): 2 - -tmer
Enter a number (0: for end of input): 5 - -nter
Enter a number (0: for end of input): 5 - -nter
Enter a number (0: for end of input): 5 -五ter
Enter a number (0: for end of input): 0 AEnter
The largest number is 5
The occurrence count of the largest number is 4
```


QUESTION II:

Write a function that displays an n-by-n matrix using the following header:
def printMatrix(n):
Each element is 0 or 1 , which is generated randomly. Write a test program that prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

```
Enter n: 3 --mer
0 1 0
0 0
111
```


QUESTION III:

An emirp (prime spelled backward) is a nonpalindromic prime number whose reversal is also a prime. For example, both 17 and 71 are prime numbers, so 17 and 71 are emirps. Write a program that displays the first 100 emirps. Display 10 numbers per line and align the numbers properly, as follows:

13	17	31	37	71	73	79	97	107	113
149	157	167	179	199	311	337	347	359	389

QUESTION IV:

A prime number is called a Mersenne prime if it can be written in the form for some positive integer p. Write a program that finds all Mersenne primes with and displays the output as follows:

p	$2 \wedge p-1$
2	3
3	7
5	31

QUESTION V:

Write a program in PYTHON that displays a menu as shown in the sample run and asks user to two numbers. You can enter 1, 2, 3, or 4 for choosing an addition, subtraction, multiplication, or division. Depending operation type, you will evaluate the result of an operation. For a division operation such as number1 / number2, you should check number2 so that it is not zero. Your program should be inside of a loop and exit loop whenever you enter 5.
<Output>
Select Operation:
1: Addition
2: Subtraction
3: Multiplication
4: Division
5: Exit
Enter a choice: 3 <enter>
Please, enter the first number: 20 <enter>
Please, enter the second number: 10 <enter>
Result of $20 * 10=30$

Select Operation:
1: Addition
2: Subtraction
3: Multiplication
4: Division
5: Exit
Enter a choice: 1 <enter>
Please, enter the first number: 21 <enter>
Please, enter the second number: 11 <enter>
Result of $21+11=32$
<End Output>

PROGRAMMING AND SUBMISSION FORMAT

Put all of you code into the same PYHTON file according to file name conventions given in http://www.akyokus.com/fall2019/ip/assignments.html. Programming assignment solutions should be submitted in the following format:

File Name: COE-64160099-KAYA-A1.py

```
#########################################################################################
# Name: Ali Cokcal\imathşur
# Student ID: 6321211
# Department: Computer Engineering
#
# Assignment ID: A1
#########################################################################################
##########################################################################################
# QUESTION I
# Description:
# Body mass index (BMI) is a measure of health # based on weight. It can be calculated by
# taking your weight in kilograms and # dividing it by the square of your height in meters.
# Write a program that prompts # the user to enter a weight in pounds and height in inches
# and displays the BMI. Note that one pound is 0.45359237 kilograms and one inch is
# 0.0254 meters.
#
# Sources:
# Give references for the sources that you used in your program if there are any
#
##########################################################################################
print("\n")
print("SOLUTION OF QUESTION I:")
print("*************************************************************************************)
# Prompt the user to enter weight in pounds
weight = eval(input("Enter weight in pounds: "))
# Prompt the user to enter height in inches
height = eval(input("Enter height in inches: "))
KILOGRAMS_PER_POUND = 0.45359237 # Constant
METERS_PE\overline{R}_INC}H=0.0254 # Constan
# Compute BMI
weightInKilograms = weight * KILOGRAMS_PER_POUND
heightInMeters = height * METERS_PER_INTCH
bmi = weightInKilograms / (heightInMeters * heightInMeters)
# Display result
print("BMI is", format(bmi, ".2f"))
if bmi < 18.5:
    print("Underweight")
elif bmi < 25:
    print("Normal")
elif bmi < 30:
    print("Overweight")
else:
    print("Obese")
```


import math

$x 1, y 1, x 2, y 2, x 3, y 3=$ eval(input("Enter six coordinates of three points \backslash separated by commas like $x 1, y 1, x 2, y 2, x 3, y 3: ~ "))$
$a=$ math.sqrt $\left((x 2-x 3){ }^{*}(x 2-x 3)+(y 2-y 3) *(y 2-y 3)\right)$
$b=$ math.sqrt $((x 1-x 3) *(x 1-x 3)+(y 1-y 3) *(y 1-y 3))$
$c=$ math. sqrt $((x 1-x 2) *(x 1-x 2)+(y 1-y 2) *(y 1-y 2))$
$\mathrm{A}=$ math. degrees (math. $\operatorname{acos}((\mathrm{a} * \mathrm{a}-\mathrm{b} * \mathrm{~b}-\mathrm{c} * \mathrm{c}) /(-2 * \mathrm{~b} * \mathrm{c})))$
$B=$ math. degrees (math. $\left.\operatorname{acos}\left(\left(b^{*} b-a * a-c * c\right) /(-2 * a * c)\right)\right)$
$C=$ math. degrees (math. $\left.\operatorname{acos}\left(\left(c^{*} c-b * b-a * a\right) /(-2 * a * b)\right)\right)$
print("The three angles are ", round $(A * 100) / 100.0$, round $(B * 100) / 100.0$, round $(C * 100) / 100.0)$

\#

- QUESTION III

Description:
\# Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
\# ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
\# reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

* Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est Laborum
\# Sources
\# Give references for the sources that you used in your program if there are any
\#
\#
print("\n")
print("SOLUTION OF QUESTION III:")
print("**")

Submit your programming assignment through the Google classroom IntProg-Fall2019 (https://classroom.google.com/c/NDMyNjgzODE5MjNa). If you do not have medipol e-mail, then submit it to medipolprog@gmail.com.

