
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads &

Concurrency

4.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads

Overview

Multicore Programming

Multithreading Models

Thread Libraries

Implicit Threading

Threading Issues

Operating System Examples

4.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

Identify the basic components of a thread, and contrast threads

and processes

Describe the benefits and challenges of designng

multithreaded applications

Illustrate different approaches to implicit threading including

thread pools, fork-join, and Grand Central Dispatch

Describe how the Windows and Linux operating systems

represent threads

Design multithreaded applications using the Pthreads, Java,

and Windows threading APIs

4.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Motivation

Most modern applications are multithreaded

Threads run within application

Multiple tasks with the application can be implemented by

separate threads

Update display

Fetch data

Spell checking

Answer a network request

Process creation is heavy-weight while thread creation is

light-weight

Can simplify code, increase efficiency

Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single and Multithreaded Processes

4.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Server Architecture

4.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits

Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

Resource Sharing – threads share resources of process, easier

than shared memory or message passing

Economy – cheaper than process creation, thread switching

lower overhead than context switching

Scalability – process can take advantage of multicore

architectures

4.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

Dividing activities

Balance

Data splitting

Data dependency

Testing and debugging

Parallelism implies a system can perform more than one task

simultaneously

Concurrency supports more than one task making progress

Single processor / core, scheduler providing concurrency

4.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Concurrency vs. Parallelism

Concurrent execution on single-core system:

Parallelism on a multi-core system:

4.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

Types of parallelism

Data parallelism – distributes subsets of the same data
across multiple cores, same operation on each

- Consider, for example, summing the contents of an array of
size N. On a dual-core system, thread A, running on core 0,
could sum the elements [0] . . . [N/2 − 1] while thread B,
running on core 1, could sum the elements [N/2] . . . [N − 1].
The two threads would be running in parallel on separate
computing cores.

Task parallelism – distributing threads across cores, each
thread performing unique operation

- an example of task parallelism might involve two threads,
each performing a unique statistical operation on the array of
elements. (stdev, ave)

4.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Data and Task Parallelism

4.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

Identifies performance gains from adding additional cores to an

application that has both serial and parallel components

S is serial portion

N processing cores

That is, if application is 75% parallel / 25% serial, moving from 1 to 2

cores results in speedup of 1.6 times

As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

But does the law take into account contemporary multicore systems?

4.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

4.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User Threads and Kernel Threads

Support for threads may be provided either at the user level, for user
threads, or by the kernel, for kernel threads.

User threads - management done by user-level threads library

Three primary thread libraries:

POSIX Pthreads

Windows threads

Java threads

Kernel threads - Supported by the Kernel

Examples – virtually all general purpose operating systems, including:

Windows

Linux

Mac OS X

iOS

Android

4.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User and Kernel Threads

4.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models

Many-to-One

One-to-One

Many-to-Many

4.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-One

Many user-level threads mapped to single kernel thread

One thread blocking causes all to block

Multiple threads may not run in parallel on muticore system because only

one may be in kernel at a time

Few systems currently use this model

Examples:

Solaris Green Threads

GNU Portable Threads

4.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

One-to-One

Each user-level thread maps to kernel thread

Creating a user-level thread creates a kernel thread

More concurrency than many-to-one (It provides more concurrency than

the many-to-one model by allowing another thread to run when a thread

makes a blocking system call.)

The only drawback to this model is that creating a user thread requires

creating the corresponding kernel thread.

Therefore, number of threads per process sometimes restricted due to

overhead

Examples

Windows

Linux

4.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-Many Model

Allows many user level threads to be mapped to many kernel threads

Allows the operating system to create a sufficient number of kernel threads

Windows with the ThreadFiber package

Otherwise not very common

4.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-level Model

Similar to M:M, except that it allows a user thread to be

bound to kernel thread

4.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Libraries

Thread library provides programmer with API for creating

and managing threads

Two primary ways of implementing

Library entirely in user space

Kernel-level library supported by the OS

Three main thread libraries are in use today: POSIX

Pthreads, Windows, and Java.

4.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

Specification, not implementation

API specifies behavior of the thread library, implementation is

up to development of the library

Common in UNIX operating systems (Linux & Mac OS X)

Numerous systems implement the Pthreads specification; most

are UNIX-type systems, including Linux, Mac OS X, and Solaris.

Although Windows doesn’t support Pthreads natively, some

third party implementations for Windows are available.

4.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example

4.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example (cont)

4.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Code for Joining 10 Threads

4.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program

4.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program (Cont.)

4.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Threads

Java threads are managed by the JVM

Typically implemented using the threads model provided by

underlying OS

Java threads may be created by:

Extending Thread class

Implementing the Runnable interface

Standard practice is to implement Runnable interface

4.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Threads

Implementing Runnable interface:

Creating a thread:

Waiting on a thread:

4.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Executor Framework

Rather than explicitly creating threads, Java also allows thread creation

around the Executor interface:

The Executor is used as follows:

4.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Executor Framework

4.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Executor Framework (cont)

4.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implicit Threading

Growing in popularity as numbers of threads increase,

program correctness more difficult with explicit threads

Creation and management of threads done by compilers and

run-time libraries rather than programmers

Five methods explored

Thread Pools

Fork-Join

OpenMP

Grand Central Dispatch

Intel Threading Building Blocks

4.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Pools

Create a number of threads in a pool where they await work

Advantages:

Usually slightly faster to service a request with an existing

thread than create a new thread

Allows the number of threads in the application(s) to be

bound to the size of the pool

Separating task to be performed from mechanics of

creating task allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

Windows API supports thread pools:

4.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Thread Pools

Three factory methods for creating thread pools in Executors class:

4.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Java Thread Pools (cont)

4.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

Multiple threads (tasks) are forked, and then joined.

4.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

General algorithm for fork-join strategy:

4.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

4.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism in Java

4.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism in Java

4.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism in Java

The ForkJoinTask is an abstract base class

RecursiveTask and RecursiveAction classes extend ForkJoinTask

RecursiveTask returns a result (via the return value from the compute()

method)

RecursiveAction does not return a result

4.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OpenMP

Set of compiler directives and an

API for C, C++, FORTRAN

Provides support for parallel

programming in shared-memory

environments

Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there are

cores

4.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Run the for loop in parallel

4.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

Apple technology for macOS and iOS operating systems

Extensions to C, C++ and Objective-C languages, API, and run-

time library

Allows identification of parallel sections

Manages most of the details of threading

Block is in “^{ }” :

ˆ{ printf("I am a block"); }

Blocks placed in dispatch queue

Assigned to available thread in thread pool when removed

from queue

4.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

Two types of dispatch queues:

serial – blocks removed in FIFO order, queue is per process,

called main queue

 Programmers can create additional serial queues within

program

concurrent – removed in FIFO order but several may be

removed at a time

 Four system wide queues divided by quality of service:

o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

4.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

For the Swift language a task is defined as a closure – similar to a block,

minus the caret

Closures are submitted to the queue using the dispatch_async()

function:

4.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel Threading Building Blocks (TBB)

Template library for designing parallel C++ programs

A serial version of a simple for loop

The same for loop written using TBB with parallel_for statement:

4.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threading Issues

Semantics of fork() and exec() system calls

Signal handling

Synchronous and asynchronous

Thread cancellation of target thread

Asynchronous or deferred

Thread-local storage

Scheduler Activations

4.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semantics of fork() and exec()

Does fork()duplicate only the calling thread or all

threads?

Some UNIXes have two versions of fork

exec() usually works as normal – replace the running

process including all threads

4.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling

n Signals are used in UNIX systems to notify a process that a

particular event has occurred.

n A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

n Every signal has default handler that kernel runs when

handling signal

l User-defined signal handler can override default

l For single-threaded, signal delivered to process

4.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

l Deliver the signal to the thread to which the signal

applies

l Deliver the signal to every thread in the process

l Deliver the signal to certain threads in the process

l Assign a specific thread to receive all signals for the

process

4.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation

Terminating a thread before it has finished

Thread to be canceled is target thread

Two general approaches:

Asynchronous cancellation terminates the target thread

immediately

Deferred cancellation allows the target thread to periodically

check if it should be cancelled

Pthread code to create and cancel a thread:

4.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation (Cont.)

Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

If thread has cancellation disabled, cancellation remains pending

until thread enables it

Default type is deferred

Cancellation only occurs when thread reaches cancellation

point

 I.e. pthread_testcancel()

 Then cleanup handler is invoked

On Linux systems, thread cancellation is handled through signals

4.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation in Java

Deferred cancellation uses the interrupt() method, which sets the

interrupted status of a thread.

A thread can then check to see if it has been interrupted:

4.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread-Local Storage

Thread-local storage (TLS) allows each thread to have its

own copy of data

Useful when you do not have control over the thread creation

process (i.e., when using a thread pool)

Different from local variables

Local variables visible only during single function

invocation

TLS visible across function invocations

Similar to static data

TLS is unique to each thread

4.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduler Activations

Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

Appears to be a virtual processor on which

process can schedule user thread to run

Each LWP attached to kernel thread

How many LWPs to create?

Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

This communication allows an application to

maintain the correct number kernel threads

4.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

Windows Threads

Linux Threads

4.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Threads

Windows API – primary API for Windows applications

Implements the one-to-one mapping, kernel-level

Each thread contains

A thread id

Register set representing state of processor

Separate user and kernel stacks for when thread runs in

user mode or kernel mode

Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)

The register set, stacks, and private storage area are known as

the context of the thread

4.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Threads (Cont.)

The primary data structures of a thread include:

ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in

kernel space

KTHREAD (kernel thread block) – scheduling and

synchronization info, kernel-mode stack, pointer to TEB, in

kernel space

TEB (thread environment block) – thread id, user-mode

stack, thread-local storage, in user space

4.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Threads Data Structures

4.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Threads

Linux refers to them as tasks rather than threads

Thread creation is done through clone() system call

clone() allows a child task to share the address space of the

parent task (process)

Flags control behavior

struct task_struct points to process data structures

(shared or unique)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 4

