Chapter 4. Threads &
Cconcurrency

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

o Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries
Implicit Threading
Threading Issues

O O O o O o 04

Operating System Examples

Operating System Concepts — 10t Edition 4.2 Silberschatz, Galvin and Gagne ©2018

)‘)
v

f,

O Identify the basic components of a thread, and contrast threads
and processes

0 Describe the benefits and challenges of designng
multithreaded applications

O lllustrate different approaches to implicit threading including
thread pools, fork-join, and Grand Central Dispatch

0 Describe how the Windows and Linux operating systems
represent threads

0 Design multithreaded applications using the Pthreads, Java,
and Windows threading APIs

4 ~l ‘\.‘ ‘
.w_,./'/‘ /.S; \\!
154 "‘v\}

U 29X

Operating System Concepts — 10t Edition 4.3 Silberschatz, Galvin and Gagne ©2018

O Most modern applications are multithreaded
0 Threads run within application

O Multiple tasks with the application can be implemented by
separate threads

0 Update display

0 Fetch data

0 Spell checking

0 Answer a network request

O Process creation is heavy-weight while thread creation is
light-weight

0 Can simplify code, increase efficiency
0 Kernels are generally multithreaded

S
€2 ‘i;_M
U 29X

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.4

-

N

=~ s

Single and Multithreaded Processes

code

data

files

registers

PC

stack

thread—— ;

code data files
registers| | |registers| | [registers
stack stack stack
PC PC PC
(_

— thread

single-threaded process

Operating System Concepts — 10t Edition

multithreaded process

SN

b

Silberschatz, Galvin and Gagne ©2018

%7 Multithreaded Server Architecture
(2) create new
(1) request thread to service
the request
client > server » thread

_

(3) resume listening
for additional
client requests

ST
SERY
.o

A
A AN

Operating System Concepts — 10t Edition 4.6 Silberschatz, Galvin and Gagne ©2018

G Benefits

0 Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

0 Resource Sharing — threads share resources of process, easier
than shared memory or message passing

0 Economy — cheaper than process creation, thread switching
lower overhead than context switching

0 Scalability — process can take advantage of multicore
architectures

Operating System Concepts — 10t Edition 4.7 Silberschatz, Galvin and Gagne ©2018

.

T Multicore Programming

& 7

0 Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

0 Dividing activities

0 Balance

0 Data splitting

0 Data dependency

0 Testing and debugging

0 Parallelism implies a system can perform more than one task
simultaneously

0 Concurrency supports more than one task making progress
0 Single processor / core, scheduler providing concurrency

e —

T\ " " \
£ V‘»f; |
y o
/ (4
« ‘E P

Operating System Concepts — 10t Edition 4.8 Silberschatz, Galvin and Gagne ©2018

&0 '
2 Concurrency vs. Parallelism

0 Concurrent execution on single-core system:

single core | T, T, Ts T, | T4 T, T, T, T,
time R
0 Parallelism on a multi-core system:
core 1 T1 T3 T1 T3 T1
core 2 T2 T 4 T‘2 T 4 T2
time

Y

Operating System Concepts — 10t Edition 4.9 Silberschatz, Galvin and Gagne ©2018

A‘)
w

< : '
g5 Multicore Programming

0 Types of parallelism

0 Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

- Consider, for example, summing the contents of an array of
size N. On a dual-core system, thread A, running on core 0,
could sum the elements [0] . . . [N/2 — 1] while thread B,
running on core 1, could sum the elements [N/2] . .. [N - 1].
The two threads would be running in parallel on separate
computing cores.

0 Task parallelism — distributing threads across cores, each
thread performing unique operation

- an example of task parallelism might involve two threads,
each performing a unique statistical operation on the array of
elements. (stdev, ave)

e
.
/54 ”‘v\}

A

Operating System Concepts — 10t Edition 4.10 Silberschatz, Galvin and Gagne ©2018

y

Py |
r & Data and Task Parallelism

data
data l l l l
parallelism
core 0 core 1 core 2 core 3
data
task
parallelism
core 0 core 1 core 7) core 3

Operating System Concepts — 10t Edition 4.11 Silberschatz, Galvin and Gagne ©2018

55 Amdahl’s Law

0 Identifies performance gains from adding additional cores to an
application that has both serial and parallel components

0 S is serial portion
O N processing cores

1

speedup < ———=
s+

0 Thatis, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

O As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

0 But does the law take into account contemporary multicore systems?
< V“ \
eSS

A

Operating System Concepts — 10t Edition 4.12 Silberschatz, Galvin and Gagne ©2018

va}/ y
. Amdahl’s Law

Speedup

Silberschatz, Galvin and Gagne ©2018

4.13

Operating System Concepts — 10t Edition

4
#

=$»/ User Threads and Kernel Threads

O Support for threads may be provided either at the user level, for user
threads, or by the kernel, for kernel threads.

User threads - management done by user-level threads library
Three primary thread libraries:
0 POSIX Pthreads
0 Windows threads
0 Java threads
Kernel threads - Supported by the Kernel
Examples — virtually all general purpose operating systems, including:
0 Windows
Linux
Mac OS X
I0S

0
0
0
0 Android

Operating System Concepts — 10t Edition 4.14 Silberschatz, Galvin and Gagne ©2018

User and Kernel Threads

:

user threads

$ S

:

:

S

kernel threads

Operating System Concepts — 10t Edition

4.15

user
space

kernel
space

<

b

Silberschatz, Galvin and Gagne ©2018

B k]
S \}’
A48

-2 Multithreading Models

Q

L & N

O Many-to-One

O One-to-One

0 Many-to-Many

Operating System Concepts — 10t Edition 416 Silberschatz, Galvin and Gagne ©2018

g Many-to-One

O Many user-level threads mapped to single kernel thread
O One thread blocking causes all to block

O Multiple threads may not run in parallel on muticore system because only
one may be in kernel at a time

0 Few systems currently use this model
0 Examples:

0 Solaris Green Threads

0 GNU Portable Threads

user threads
user
space

; kernel
space

kernel threads

Operating System Concepts — 10t Edition 4.17 Silberschatz, Galvin and Gagne ©2018

7 One-to-One

0 Each user-level thread maps to kernel thread
O Creating a user-level thread creates a kernel thread

O More concurrency than many-to-one (It provides more concurrency than
the many-to-one model by allowing another thread to run when a thread
makes a blocking system call.)

0 The only drawback to this model is that creating a user thread requires
creating the corresponding kernel thread.

0 Therefore, number of threads per process sometimes restricted due to

overhead user threads
O Examples ; ; g ; user
0 Windows i
0 Linux I I I I
; ; ; ; kernel
space
kernel threads P K«T\
/—5" 1

‘l(,

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.18

¥
1,

55 Many-to-Many Model

Allows many user level threads to be mapped to many kernel threads
Allows the operating system to create a sufficient number of kernel threads
Windows with the ThreadFiber package

O O O 0O

Otherwise not very common

user threads

S S S e
S T A =

kernel threads

Operating System Concepts — 10t Edition 4.19 Silberschatz, Galvin and Gagne ©2018

T Two-level Model

0 Similar to M:M, except that it allows a user thread to be
bound to kernel thread

user threads

S S S S S e
e
o

kernel threads

N\
; ,\v\.\”}u
SRS

a

“ A%

Operating System Concepts — 10t Edition 4.20 Silberschatz, Galvin and Gagne ©2018

g5 Thread Libraries

0 Thread library provides programmer with API for creating
and managing threads

O Two primary ways of implementing
0 Library entirely in user space
0 Kernel-level library supported by the OS

0 Three main thread libraries are in use today: POSIX
Pthreads, Windows, and Java.

e —

\®
A
> 2 e\
P x o\
7 \«\\\\
FQ 5
“ P

Operating System Concepts — 10t Edition 4.21 Silberschatz, Galvin and Gagne ©2018

o Pthreads

O May be provided either as user-level or kernel-level

0 A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

0 Specification, not implementation

O API specifies behavior of the thread library, implementation is
up to development of the library

O Common in UNIX operating systems (Linux & Mac OS X)

0 Numerous systems implement the Pthreads specification; most
are UNIX-type systems, including Linux, Mac OS X, and Solaris.
Although Windows doesn’t support Pthreads natively, some
third party implementations for Windows are available.

- /"3,; S
7

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.22

G5 Pthreads Example

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{
pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */
/* set the default attributes of the thread */
pthread attr_init(&attr) ;
/* create the thread */
pthread create(&tid, &attr, runner, argv[1]);
/* wait for the thread to exit */
pthread_join(tid,NULL) ;
printf ("sum = %d\n",sum);

}

Operating System Concepts — 10t Edition 4.23 Silberschatz, Galvin and Gagne ©2018

o Pthreads Example (cont)

/* The thread will execute in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = O;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit(0) ;
}

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.24

y
Y,

| .
“4»/ Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS] ;

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers([i], NULL);

Operating System Concepts — 10t Edition 4.25 Silberschatz, Galvin and Gagne ©2018

«§%7 Windows Multithreaded C Program

#include <windows.h>
#include <stdio.h>
DWORD Sum; /* data is shared by the thread(s) */

/* The thread will execute in this function */
DWORD WINAPI Summation(LPVOID Param)
{
DWORD Upper = *(DWORD*)Param;
for (DWORD i = 1; i <= Upper; i++)
Sum += i;
return 0;

}

Operating System Concepts — 10t Edition 4.26 Silberschatz, Galvin and Gagne ©2018

N

) mmj] .
=%’ Windows Multithreaded C Program (Cont.)

L

int main(int argc, char *argv[])
{

DWORD ThreadId;

HANDLE ThreadHandle;

int Param;

Param = atoi(argv[1]);
/* create the thread */
ThreadHandle = CreateThread (
NULL, /* default security attributes */
0, /* default stack size */
Summation, /* thread function */
&Param, /* parameter to thread function */
0, /* default creation flags */
&ThreadlId); /* returns the thread identifier */

/* now wait for the thread to finish */
WaitForSingleObject(ThreadHandle, INFINITE) ;

/* close the thread handle */
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum) ;
}

Operating System Concepts — 10t Edition 4.27 Silberschatz, Galvin and Gagne ©2018

e Java Threads

0 Java threads are managed by the JVM

0 Typically implemented using the threads model provided by
underlying OS

0 Java threads may be created by:
0 Extending Thread class
0 Implementing the Runnable interface

public interface Runnable

{
}

public abstract void runf();

0 Standard practice is to implement Runnable interface

Operating System Concepts — 10t Edition 4.28 Silberschatz, Galvin and Gagne ©2018

o Java Threads

Implementing Runnable interface:

class Task implements Runnable

{

public void run() {
System.out.println("I am a thread.");
}

}

Creating a thread:

Thread worker = new Thread(new Task());
worker.start() ;

Waiting on a thread:

try {
worker.join() ;
}

catch (InterruptedException ie) { }

Operating System Concepts — 10t Edition 4.29 Silberschatz, Galvin and Gagne ©2018

o
Y,

f‘m‘\
“$¥/ Java Executor Framework

0 Rather than explicitly creating threads, Java also allows thread creation
around the Executor interface:

public interface Executor

{

void execute(Runnable command) ;

}

0 The Executor is used as follows:

Executor service = new Executor;
service.execute (new Task());

AN
Operating System Concepts — 10t Edition 4.30 Silberschatz, Galvin and Gagne ©2018

g7 Java Executor Framework

import java.util.concurrent.x*;

class Summation implements Callable<Integer>

{

private int upper;

public Summation(int upper) {
this.upper = upper;

}

/* The thread will execute in this method */
public Integer call() {
int sum = 0;
for (int i = 1; i <= upper; i++)
sum += 1i;

return new Integer(sum) ;

}
}

Operating System Concepts — 10t Edition 4.31 Silberschatz, Galvin and Gagne ©2018

=

«.J
~$77 Java Executor Framework (cont)

A\,

public class Driver
{
public static void main(Stringl[] args) {
int upper = Integer.parselnt(args[0]);

ExecutorService pool = Executors.newSingleThreadExecutor() ;
Future<Integer> result = pool.submit(new Summation(upper)) ;

try {
System.out.println("sum = " + result.get());

} catch (InterruptedException | ExecutionException ie) { }

}
}

Operating System Concepts — 10t Edition 4.32 Silberschatz, Galvin and Gagne ©2018

=

X
,ﬁ.m.‘\
o

,»_3\ -/

& 7

Implicit Threading

O Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

0 Creation and management of threads done by compilers and
run-time libraries rather than programmers

O Five methods explored

O

O
O
O
O

Thread Pools

Fork-Join

OpenMP

Grand Central Dispatch

Intel Threading Building Blocks

e —

X\ .. " \
V‘»f; S
a:
A 2957

Operating System Concepts — 10t Edition 4.33 Silberschatz, Galvin and Gagne ©2018

-
D

57 Thread Pools

0 Create a number of threads in a pool where they await work
0 Advantages:

0 Usually slightly faster to service a request with an existing
thread than create a new thread

0 Allows the number of threads in the application(s) to be
bound to the size of the pool

0 Separating task to be performed from mechanics of
creating task allows different strategies for running task

» l.e.Tasks could be scheduled to run periodically
O Windows API supports thread pools:

DWORD WINAPI PoolFunction (AVOID Param)
/*
* this function runs as a separate thread.

*/

4 ~l ‘\.‘ ‘
.w_,./'/‘ /.S; \\!
15 4 "‘v\}

U -d.’.)

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.34

el
> Java Thread Pools

O Three factory methods for creating thread pools in Executors class:

® static ExecutorService newSingleThreadExecutor()
e static ExecutorService newFixedThreadPool(int size)

e static ExecutorService newCachedThreadPool()

Operating System Concepts — 10t Edition 4.35 Silberschatz, Galvin and Gagne ©2018

wr & Java Thread Pools (cont)

import java.util.concurrent.x*;

public class ThreadPoolExample

{

public static void main(String[] args) {
int numTasks = Integer.parselnt(args[0].trim());

/* Create the thread pool */
ExecutorService pool = Executors.newCachedThreadPool();

/* Run each task using a thread in the pool */
for (int i = 0; i < numTasks; i++)
pool.execute(new Task());

/* Shut down the pool once all threads have completed */
pool.shutdown();

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.36

o Fork-Join Parallelism

O Multiple threads (tasks) are forked, and then joined.

o ¥ task |- _ /;Oif?

main thread -7 S A main thread
—> - >
; o~ X -
o~ ~al task |.- %

Operating System Concepts — 10t Edition 4.37 Silberschatz, Galvin and Gagne ©2018

ot Fork-Join Parallelism

0 General algorithm for fork-join strategy:

Task (problem)
if problem is small enough
solve the problem directly
else
subtaskl = fork(new Task(subset of problem)
subtask2 = fork(new Task(subset of problem)

resultl = join(subtaskl)
result2 = join(subtask2)

return combined results

Operating System Concepts — 10t Edition 4.38 Silberschatz, Galvin and Gagne ©2018

Fork-Join Parallelism

.

. "?- \.‘;\/,
bR

A A9
Operating System Concepts — 10t Edition 4.39 Silberschatz, Galvin and Gagne ©2018

SO

"‘%{,’ Fork-Join Parallelism in Java

ForkJoinPool pool = new ForkJoinPool();
// array contains the integers to be summed
int[] array = new int[SIZE];

SumTask task = new SumTask(0, SIZE - 1, array);
int sum = pool.invoke(task);

Operating System Concepts — 10t Edition 4.40 Silberschatz, Galvin and Gagne ©2018

“$77 Fork-Join Parallelism in Java

import java.util.concurrent.*;

public class SumTask extends RecursiveTask<Integer>

{

static final int THRESHOLD = 1000;

private int begin;
private int end;
private int[] array;

public SumTask(int begin, int end, int[] array) {
this.begin = begin;
this.end = end;
this.array = array;

}

protected Integer compute() {
if (end - begin < THRESHOLD) {
int sum = O;
for (int i = begin; i <= end; i++)
sum += array[i];

return sum;

}

else {
int mid = (begin + end) / 2;

SumTask leftTask = new SumTask(begin, mid, array);
SumTask rightTask = new SumTask(mid + 1, end, array);

leftTask.fork() ;
rightTask.fork() ;

return rightTask.join() + leftTask.join();

} YA

} A A
Operating System Concepts — 10t eaition 4.41 onuurounwZ, Galvin and Gagne ©2018

“!c

*‘”}r,’ Fork-Join Parallelism in Java

0 The ForkJoinTask IS an abstract base class
0 RecursiveTask and RecursiveAction classes extend ForkJoinTask

0 RecursiveTask returns a result (via the return value from the compute ()
method)

0 RecursiveAction does not return a result

ForkdoinTask <V>
<abstract>
RecursiveTask <V> RecursiveAction
<abstract> <abstract>
V compute() void compute()

Operating System Concepts — 10t Edition 4.42 Silberschatz, Galvin and Gagne ©2018

g OpenMP

0 Set of compiler directives and an
API for C, C++, FORTRAN

0 Provides support for parallel
programming in shared-memory
environments

0 Identifies parallel regions —
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

Operating System Concepts — 10t Edition

4.43

#include <omp.h>
#include <stdio.h>

int main(int argc, char *argv([])

{

/* sequential code */

#pragma omp parallel

{

printf ("I am a parallel region.");

}

/* sequential code */

return 0;

Silberschatz, Galvin and Gagne ©2018

0 Run the for loop in parallel

#pragma omp parallel for
for (1 = 0; i < N; i++) {
c[i] = a[i] + b[i];

}

‘ <
A s A

Operating System Concepts — 10t Edition 4.44 Silberschatz, Galvin and Gagne ©2018

:\%
M,&

“GF7 Grand Central Dispatch

0 Apple technology for macOS and iOS operating systems

0 Extensions to C, C++ and Objective-C languages, API, and run-
time library

0 Allows identification of parallel sections
O Manages most of the details of threading
O Blockisin “A}":

“{ printf ("I am a block"); }

O Blocks placed in dispatch queue

0 Assigned to available thread in thread pool when removed
from queue

e —

< .\‘\."'.
& VJT‘\V'(/
U 29X

Operating System Concepts — 10t Edition 4.45 Silberschatz, Galvin and Gagne ©2018

=

- ﬁm.‘\

S Grand Central Dispatch

0 Two types of dispatch queues:

0 serial — blocks removed in FIFO order, queue is per process,
called main queue

» Programmers can create additional serial queues within
program

0 concurrent — removed in FIFO order but several may be
removed at a time

» Four system wide queues divided by quality of service:
o QOS CLASS USER INTERACTIVE

o QOS CLASS USER INITIATED
o QOS CLASS USER UTILITY
o QOS CLASS USER BACKGROUND

Operating System Concepts — 10t Edition 4.46 Silberschatz, Galvin and Gagne ©2018

o Grand Central Dispatch

O For the Swift language a task is defined as a closure — similar to a block,
minus the caret

0 Closures are submitted to the queue using the dispatch async ()
function:

let queue = dispatch get_global_queue
(QOS_CLASS_USER_INITIATED, O0)

dispatch_async(queue,{ print("I am a closure.") })

A
Operating System Concepts — 10t Edition 4.47 Silberschatz, Galvin and Gagne ©2018

“#ntel Threading Building Blocks (TBB)

O Template library for designing parallel C++ programs
O A serial version of a simple for loop

for (int i = 0; i < n; i++) {
apply(v([il);

0 The same for loop written using TBB with parallel for statement:

parallel for (size t(0), n, [=](size_t i) {apply(v[il);});

Operating System Concepts — 10t Edition 4.48 Silberschatz, Galvin and Gagne ©2018

4
Y,

Threading Issues

0 Semantics of fork() and exec() system calls
0 Signal handling
0 Synchronous and asynchronous
0 Thread cancellation of target thread
0 Asynchronous or deferred
O Thread-local storage
0 Scheduler Activations

Operating System Concepts — 10t Edition 4.49 Silberschatz, Galvin and Gagne ©2018

4
Y,

v;;:ﬁ Semantics of fork() and exec()

0 Does fork () duplicate only the calling thread or all
threads?

0 Some UNIXes have two versions of fork

0 exec () usually works as normal — replace the running
process including all threads

Operating System Concepts — 10t Edition 4.50 Silberschatz, Galvin and Gagne ©2018

> Signal Handling

n Signals are used in UNIX systems to notify a process that a
particular event has occurred.

n A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

n Every signal has default handler that kernel runs when
handling signal

| User-defined signal handler can override default
| For single-threaded, signal delivered to process

Operating System Concepts — 10t Edition 4.51 Silberschatz, Galvin and Gagne ©2018

- Signal Handling (Cont.)

n Where should a signal be delivered for multi-threaded?

| Deliver the signal to the thread to which the signal
applies

| Deliver the signal to every thread in the process
| Deliver the signal to certain threads in the process

| Assign a specific thread to receive all signals for the
process

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.52

) :
o Thread Cancellation

v

0 Terminating a thread before it has finished
0 Thread to be canceled is target thread
0 Two general approaches:

0 Asynchronous cancellation terminates the target thread
immediately

0 Deferred cancellation allows the target thread to periodically
check if it should be cancelled

O Pthread code to create and cancel a thread:
pthread t tid;

/* create the thread */
pthread create(&tid, 0, worker, NULL);

/* cancel the thread */
pthread cancel (tid) ;

/* wait for the thread to terminate */
pthread join(tid,NULL);

Operating System Concepts — 10t Edition 4.53 Silberschatz, Galvin and Gagne ©2018

g Thread Cancellation (Cont.)

O Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

| Mode | State | Type |
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

O If thread has cancellation disabled, cancellation remains pending
until thread enables it

0 Default type is deferred

0 Cancellation only occurs when thread reaches cancellation
point

» l.e. pthread testcancel ()
» Then cleanup handler is invoked
O On Linux systems, thread cancellation is handled through signals

Operating System Concepts — 10t Edition 454 Silberschatz, Galvin and Gagne ©2018

“$7/ Thread Cancellation in Java

0 Deferred cancellation uses the interrupt () method, which sets the
interrupted status of a thread.

Thread worker;

/* set the interruption status of the thread */
worker .interrupt()

O A thread can then check to see if it has been interrupted:

while (!Thread.currentThread() .isInterrupted()) {

}

A
Operating System Concepts — 10t Edition 4.55 Silberschatz, Galvin and Gagne ©2018

)
“GF7 Thread-Local Storage

0 Thread-local storage (TLS) allows each thread to have its
own copy of data

0 Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

O Different from local variables

0 Local variables visible only during single function
invocation

0 TLS visible across function invocations
0 Similar to static data

0 TLS is unique to each thread

Operating System Concepts — 10t Edition 4.56 Silberschatz, Galvin and Gagne ©2018

-
D

(o

S Scheduler Activations

0 Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

O Typically use an intermediate data structure

between user and kernel threads — lightweight

process (LWP)

0 Appears to be a virtual processor on which
process can schedule user thread to run

0 Each LWP attached to kernel thread
0 How many LWPs to create?

0 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

0 This communication allows an application to
maintain the correct number kernel threads

Operating System Concepts — 10t Edition 4.57

g <« user thread

LWP | <—— lightweight process

g <« kernel thread

- /S{x \\l
15 4 "‘v\}
A 29X

Silberschatz, Galvin and Gagne ©2018

r =
«% Operating System Examples

\ i
A\,

O Windows Threads
O Linux Threads

o
<

A
Ve

Operating System Concepts — 10t Edition 4.58 Silberschatz, Galvin and Gagne ©2018

=

-

(oo

Windows Threads

O Windows API — primary API for Windows applications

0 Implements the one-to-one mapping, kernel-level

0 Each thread contains

d
g
O

A thread id
Register set representing state of processor

Separate user and kernel stacks for when thread runs in
user mode or kernel mode

Private data storage area used by run-time libraries and
dynamic link libraries (DLLS)

O The register set, stacks, and private storage area are known as
the context of the thread

S
£ ‘i;_M
U 29X

Operating System Concepts — 10t Edition 4.59 Silberschatz, Galvin and Gagne ©2018

«% Windows Threads (Cont.)

0 The primary data structures of a thread include:

0 ETHREAD (executive thread block) — includes pointer to
process to which thread belongs and to KTHREAD, in
kernel space

0 KTHREAD (kernel thread block) — scheduling and
synchronization info, kernel-mode stack, pointer to TEB, in
kernel space

0 TEB (thread environment block) — thread id, user-mode
stack, thread-local storage, in user space

e —

X\ ."'.
a:
U 29X

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.60

%’ Windows Threads Data Structures

ETHREAD
thread start
address
pointer to
parent process KTHREAD
. scheduling
~ and
synchronization
. information
. kernel TEB
stack
> thread identifier
. user
. stack
thread-local
storage
kernel space user space

A
Operating System Concepts — 10t Edition 4.61 Silberschatz, Galvin and Gagne ©2018

u;;::* Linux Threads

0 Linux refers to them as tasks rather than threads
0 Thread creation is done through clone () system call

0 clone() allows a child task to share the address space of the
parent task (process)

0 Flags control behavior

flag meaning
CLONE_FS File-system information is shared.
CLONE_VM The same memory space is shared.
CLONE_SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.

0 struct task_struct points to process data structures
(shared or unique)

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.62

End of Chapter 4

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

