
Chapter 3

Process Description

and Control
Ninth Edition

By William Stallings

Operating

Systems:

Internals

and Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ A computer platform
consists of a collection
of hardware resources

◼ Computer applications
are developed to
perform some task

◼ It is inefficient for
applications to be
written directly for a
given hardware platform

◼ The OS was developed to

provide a convenient,

feature-rich, secure, and

consistent interface for

applications to use

◼ We can think of the OS as

providing a uniform,

abstract representation of

resources that can be

requested and accessed by

applications

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

OS Management of
Application Execution

◼Resources are made available to multiple
applications

◼The processor is switched among multiple
applications so all will appear to be
progressing

◼The processor and I/O devices can be
used efficiently

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Elements

◼ Two essential elements of a process are:

◼ when the processor begins to execute the program code, we refer to

this executing entity as a process

Program code

◼ which may be shared with other processes that are executing
the same program

A set of data associated with that code

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ While the program is executing, this process can be uniquely
characterized by a number of elements, including:

Identifier

State Priority
Program
counter

Memory
pointers

Context
data

I/O status
information

Accounting
information

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Control

Block

▪Contains the process elements

▪It is possible to interrupt a running

process and later resume execution as

if the interruption had not occurred

▪Created and managed by the

operating system

▪Key tool that allows support for

multiple processes

Identifier

Figure 3.1 Simplified Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status

information

Accounting

information

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process States

Trace

The behavior of an
individual process

by listing the
sequence of

instructions that
execute for that

process

The behavior of the
processor can be

characterized by showing
how the traces of the various

processes are interleaved

Dispatcher

Small program
that switches
the processor

from one
process to
another

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process
Execution

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)

at Instruction Cycle 13

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

8000

8001

8002

8003

12000

12001

12002

12003

12004

12005

12006

12007

12008

12009

12010

12011

 (a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A

8000 = Starting address of program of Process B

12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1 5000

2 5001

3 5002

4 5003

5 5004

6 5005

-------------------- Timeout

7 100

8 101

9 102

10 103

11 104

12 105

13 8000

14 8001

15 8002

16 8003

----------------I/O Request

17 100

18 101

19 102

20 103

21 104

22 105

23 12000

24 12001

25 12002

26 12003

27 12004

28 12005

-------------------- Timeout

29 100

30 101

31 102

32 103

33 104

34 105

35 5006

36 5007

37 5008

38 5009

39 5010

40 5011

-------------------- Timeout

41 100

42 101

43 102

44 103

45 104

46 105

47 12006

48 12007

49 12008

50 12009

51 12010

52 12011

-------------------- Timeout

 100 = Starting address of dispatcher program

 Shaded areas indicate execution of dispatcher process;
 first and third columns count instruction cycles;

 second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Dispatcher

Two-State Process Model

Not

Running Running

Figure 3.5 Two-State Process Model

Dispatch

Dispatch

Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The simplest possible model by observing that, at any time, a process is

either being executed by a processor or not

Not

Running Running

Figure 3.5 Two-State Process Model

Dispatch

Dispatch

Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

New batch job: The OS is provided with a batch job control stream,

usually on tape or disk. When the OS is prepared to take

on new work, it will read the next sequence of job

control commands.

Interactive logon: A user at a terminal logs on to the system.

Created by OS to provide a service: The OS can create a process to perform a function on

behalf of a user program, without the user having to wait

(e.g., a process to control printing).

Spawned by existing process: For purposes of modularity or to exploit parallelism, a

user program can dictate the creation of a number of

processes.

Table 3.1 Reasons for Process

Creation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Creation

Process spawning

• When the OS
creates a
process at the
explicit request
of another
process. (Print
server or file
server may
generate a new
process for
each request
that it handles)

Parent process

• Is the original,
creating,
process

Child process

• Is the new
process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Termination

◼ There must be a means for a process to indicate its

completion

◼ A batch job should include a HALT instruction or an

explicit OS service call for termination

◼ For an interactive application, the action of the user will

indicate when the process is completed (e.g. log off,

quitting an application)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.2

Reasons for

Process

Termination

Normal completion The process executes an OS service call to indicate that it has completed

running.

Time limit exceeded The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include total

elapsed time ("wall clock time"), amount of time spent executing, and, in the
case of an interactive process, the amount of time since the user last provided

any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to use,

or it tries to use it in an improper fashion, such as writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries to
store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event to

occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure to

read or write after a specified maximum number of tries (when, for example, a
defective area is encountered on a tape), or invalid operation (such as reading

from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the process
(e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate all

of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

(Table is located on page 111

in the textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Five-State Process Model

New Ready

Blocked

Running Exit

Figure 3.6 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event

Wait

Event

Occurs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Running: The process that is currently being executed. For this

chapter, we will assume a computer with a single processor, so at most

one process at a time can be in this state.

• Ready: A process that is prepared to execute when given the

opportunity.

• Blocked/Waiting: A process that cannot execute until some event

occurs, such as the completion of an I/O operation.

• New: A process that has just been created but has not yet been

admitted to the pool of executable processes by the OS. Typically, a

new process has not yet been loaded into main memory, although its

process control block has been

created.

• Exit: A process that has been released from the pool of executable

processes by the OS, either because it halted or because it aborted for

some reason.

Dispatcher

= Running = Ready

Figure 3.7 Process States for Trace of Figure 3.4

= Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event

Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch

ReleaseReady Queue
Admit

Processor

Timeout

Event 1 Queue

Event 1

Occurs

Event 2

Occurs

Event n

Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

a queuing discipline

might be implemented with two

queues:

a Ready queue and a Blocked

queue.

This latter arrangement means

that, when an event occurs, the

OS must scan

the entire blocked queue,

searching for those processes

waiting on that event. In a

large OS, there could be

hundreds or even thousands of

processes in that queue.

Therefore, it would be more

efficient to have a number of

queues, one for each

event.

◼ Swapping

◼ Involves moving part of all of a process from main memory to disk

◼ When none of the processes in main memory is in the Ready state, the
OS swaps one of the blocked processes out on to disk into a suspend
queue

◼ This is a queue of existing processes that have been temporarily
kicked out of main memory, or suspended

◼ The OS then brings in another process from the suspend queue or it
honors a new-process request

◼ Execution then continues with the newly arrived process

◼ Swapping, however, is an I/O operation and therefore there is the
potential for making the problem worse, not better. Because disk I/O is
generally the fastest I/O on a system (e.g., compared to tape or printer
I/O), swapping will usually enhance performance

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

E
v

en
t

O
cc

u
rs

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9 Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend

E
v

en
t

O
cc

u
rs

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9 Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Blocked/Suspend: The

process is in secondary

memory and awaiting an

event.

• Ready/Suspend: The

process is in secondary

memory but is available for

execution as soon as it is

loaded into main memory.

E
v

en
t

O
cc

u
r
s

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9 Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v

e
n

t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t
E

v
en

t

O
cc

u
r
s

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ The process may or may

not be waiting on an

event

◼ The process may not be

removed from this state

until the agent explicitly

orders the removal

◼ The process is not

immediately available

for execution

◼ The process was placed

in a suspended state by

an agent: either itself, a

parent process, or the

OS, for the purpose of

preventing its execution

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.3 Reasons for Process Suspension

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor I/O I/O

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

I/O
Main

Memory

Computer

Resources

Virtual

Memory

P1 P2 Pn

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

In the figure, process P 1 is running; at

least part of the process is in main

memory, and it has control of two I/O

devices. Process P 2 is also in main

memory but is blocked waiting for an I/O

device allocated to P 1 . Process P n has

been swapped out and is

therefore suspended.

The OS controls events within the

computer system. It schedules and

dispatches processes for execution by the

processor, allocates resources to

processes, and responds to requests by

user processes for basic services.

Fundamentally, we can think of the OS as

that entity that manages the use of system

resources by processes.

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process

Image

Process

1

Process

Image

Process

n

I/O Tables

File Tables

Figure 3.11 General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

If the OS is to manage

processes and resources, it

must have information

about the current status of

each process and esource.

The universal approach to

providing this information is

straightforward: The OS

constructs and maintains

tables of information about

each entity that it is

managing.

◼ Used to keep track of both

main (real) and secondary

(virtual) memory

◼ Processes are maintained

on secondary memory

using some sort of virtual

memory or simple

swapping mechanism

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Used by the OS to manage

the I/O devices and

channels of the computer

system

◼ At any given time, an I/O

device may be available or

assigned to a particular

process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Information may be maintained and used by a file management system

◼ In which case the OS has little or no knowledge of files

◼ In other operating systems, much of the detail of file management is

managed by the OS itself

• Existence of files

• Location on secondary memory

• Current status

• Other attributes

These tables provide information
about:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Must be maintained to manage processes

◼ There must be some reference to memory,

I/O, and files, directly or indirectly

◼ The tables themselves must be accessible by

the OS and therefore are subject to memory

management

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Where the
process is
located

• The attributes of
the process that
are necessary for
its management

To manage
and

control a
process the
OS must

know:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Location

◼ A process must include a

program or set of programs to be

executed

◼ A process will consist of at least

sufficient memory to hold the

programs and data of that

process

◼ The execution of a program

typically involves a stack that is

used to keep track of procedure

calls and parameter passing

between procedures

Process Attributes

◼ Each process has associated with

it a number of attributes that are

used by the OS for process

control

◼ The collection of program, data,

stack, and attributes is referred to

as the process image

◼ Process image location will

depend on the memory

management scheme being used

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.4

Typical Elements of a Process Image

User Data

 The modifiable part of the user space. May include program data, a user stack area, and

programs that may be modified.

User Program

 The program to be executed.

Stack

 Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is

used to store parameters and calling addresses for procedure and system calls.

Process Control Block

 Data needed by the OS to control the process (see Table 3.5).

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.5

Typical

Elements

of a

Process

Control

Block

(page 1 of 2)

Process Identification

Identifiers
 Numeric identifiers that may be stored with the process control block include

 •Identifier of this process

 •Identifier of the process that created this process (parent process)
 •User identifier

Processor State Information

User-Visible Registers

 A user-visible register is one that may be referenced by means of the machine language that the

processor executes while in user mode. Typically, there are from 8 to 32 of these registers, although
some RISC implementations have over 100.

Control and Status Registers
 These are a variety of processor registers that are employed to control the operation of the processor.

These include

 •Program counter: Contains the address of the next instruction to be fetched

 •Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,
equal, overflow)

 •Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers

 Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used

to store parameters and calling addresses for procedure and system calls. The stack pointer points to
the top of the stack.

(Table is located

on page 125 in the

textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.5

Typical

Elements of a

Process

Control Block

(page 2 of 2)

Process Control Information

Scheduling and State Information
 This is information that is needed by the operating system to perform its scheduling function. Typical

items of information:

 •Process state: Defines the readiness of the process to be scheduled for execution (e.g., running,
ready, waiting, halted).

 •Priority: One or more fields may be used to describe the scheduling priority of the process. In

some systems, several values are required (e.g., default, current, highest-allowable)

 •Scheduling-related information: This will depend on the scheduling algorithm used. Examples
are the amount of time that the process has been waiting and the amount of time that the process

executed the last time it was running.

 •Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring

 A process may be linked to other process in a queue, ring, or some other structure. For example, all
processes in a waiting state for a particular priority level may be linked in a queue. A process may

exhibit a parent-child (creator-created) relationship with another process. The process control block

may contain pointers to other processes to support these structures.

Interprocess Communication

 Various flags, signals, and messages may be associated with communication between two

independent processes. Some or all of this information may be maintained in the process control
block.

Process Privileges
 Processes are granted privileges in terms of the memory that may be accessed and the types of

instructions that may be executed. In addition, privileges may apply to the use of system utilities and

services.

Memory Management

 This section may include pointers to segment and/or page tables that describe the virtual memory

assigned to this process.

Resource Ownership and Utilization

 Resources controlled by the process may be indicated, such as opened files. A history of utilization of
the processor or other resources may also be included; this information may be needed by the

scheduler.

(Table is located

on page 125 in the textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Each process is assigned a

unique numeric identifier

◼ Otherwise there must be a

mapping that allows the OS

to locate the appropriate

tables based on the process

identifier

◼ Many of the tables controlled by

the OS may use process

identifiers to cross-reference

process tables

◼ Memory tables may be
organized to provide a map of
main memory with an indication
of which process is assigned to
each region

◼ Similar references will appear
in I/O and file tables

◼ When processes communicate
with one another, the process
identifier informs the OS of the
destination of a particular
communication

◼ When processes are allowed to
create other processes,
identifiers indicate the parent
and descendents of each
process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Contains
condition codes
plus other status
information

• EFLAGS register
is an example of a
PSW used by any
OS running on an
x86 processor

Program
status
word

(PSW)

• User-visible
registers

• Control and
status
registers

• Stack
pointers

Consists
of the

contents
of

processor
registers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 3.12 x86 EFLAGS Register

X ID = Identification flag

X VIP = Virtual interrupt pending

X VIF = Virtual interrupt flag

X AC = Alignment check

X VM = Virtual 8086 mode

X RF = Resume flag

X NT = Nested task flag

X IOPL = I/O privilege level

S OF = Overflow flag

C DF = Direction flag

X IF = Interrupt enable flag

X TF = Trap flag

S SF = Sign flag

S ZF = Zero flag

S AF = Auxiliary carry flag

S PF = Parity flag

S CF = Carry flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0
I

D

V

I

P

V

I

F

A

C

V

M

R

F
0

N

T

I

O

P

L

O

F

D

F

I

F

T

F

S

F

Z

F
0

A

F
0

P

F
1

C

F

0

S Indicates a Status Flag

C Indicates a Control Flag

X Indicates a System Flag

Shaded bits are reserved

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.6

x86

EFLAGS

Register

Bits

Status Flags (condition codes)
AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the

AL register.

CF (Carry flag)

Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation. Also
modified by some of the shift and rotate operations.

OF (Overflow flag)

Indicates an arithmetic overflow after an addition or subtraction.
PF (Parity flag)

Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)

Indicates that the result of an arithmetic or logic operation is 0.

Control Flag

DF (Direction flag)

Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and
DI (for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

System Flags (should not be modified by application programs)

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)

If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
information about the vendor, family, and model.

RF (Resume flag)

Allows the programmer to disable debug exceptions so that the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/O privilege level)

When set, causes the processor to generate an exception on all accesses to I/O devices during protected

mode operation.
IF (Interrupt enable flag)

When set, the processor will recognize external interrupts.

TF (Trap flag)
When set, causes an interrupt after the execution of each instruction. This is used for debugging.

NT (Nested task flag)

Indicates that the current task is nested within another task in protected mode operation.
VM (Virtual 8086 mode)

Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor

runs as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)

Used in virtual 8086 mode instead of IF.
(Table is located on page 127 in the textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ The additional information

needed by the OS to control

and coordinate the various

active processes (The last part of Table 3.5

indicates the scope of this information)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process

Identification
Process

Control

Block

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Process

Identification

Process 1 Process 2 Process n

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Process

Identification

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Figure 3.13 User Processes in Virtual Memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Running

Ready

Blocked

Process

Control Block

Figure 3.14 Process List Structures

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

As indicated in Table 3.5 , the process control

block may contain structuring information,

including pointers that allow the linking of

process control blocks. Thus, the queues that

were described in the preceding section could

be implemented as linked lists of process control

blocks

◼ The most important data structure in an OS

◼ Contains all of the information about a process that is needed by the OS

◼ Blocks are read and/or modified by virtually every module in the OS

◼ Defines the state of the OS

◼ Difficulty is not access, but protection

◼ A bug in a single routine could damage process control blocks, which

could destroy the system’s ability to manage the affected processes

◼ A design change in the structure or semantics of the process control block

could affect a number of modules in the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User Mode

◼ Less-privileged mode

◼ User programs

typically execute in

this mode

System Mode

◼ More-privileged mode

◼ Also referred to as

control mode or

kernel mode

◼ Kernel of the

operating system

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.7

Typical

Functions

of an

Operating

System

Kernel

Process Management

 •Process creation and termination

 •Process scheduling and dispatching

 •Process switching

 •Process synchronization and support for interprocess communication
 •Management of process control blocks

Memory Management

 •Allocation of address space to processes

 •Swapping

 •Page and segment management

I/O Management

 •Buffer management

 •Allocation of I/O channels and devices to processes

Support Functions

 •Interrupt handling

 •Accounting

 •Monitoring

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Once the OS decides to create a new process it:

Assigns a unique process
identifier to the new process

Allocates space for the process

Initializes the process control
block

Sets the appropriate linkages

Creates or expands other data
structures

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.8

Mechanisms for Interrupting the Execution of a Process (the

possible events that may give control to the OS.)

Mechanism Cause Use

Interrupt External to the execution of the

current instruction

Reaction to an asynchronous

external event

Trap Associated with the execution of
the current instruction

Handling of an error or an
exception condition

Supervisor call Explicit request Call to an operating system

function

 © 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

System Interrupts

Interrupt

◼ Due to some sort of event
that is external to and
independent of the currently
running process

◼ Clock interrupt

◼ I/O interrupt

◼ Memory fault

◼ Time slice

◼ The maximum amount of
time that a process can
execute before being
interrupted

Trap

◼ An error or exception

condition (such as an illegal file

access attempt) generated

within the currently running

process

◼ OS determines if the condition

is fatal

◼ Moved to the Exit state and

a process switch occurs

◼ Action will depend on the

nature of the error the

design of the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

If no interrupts are
pending the processor:

Proceeds to the fetch stage and fetches the
next instruction of the current program in

the current process

If an interrupt is
pending the processor:

Sets the program counter to the starting
address of an interrupt handler program.

(Processor state information must be saved)

Switches from user mode to kernel mode
so that the interrupt processing code may

include privileged instructions

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mode switch vs Process Switch

◼ It is clear, then, that the mode switch is a concept distinct

from that of the process switch.

◼ A mode switch may occur without changing the state of

the process that is currently in the Running state. In that

case, the context saving and subsequent restoral involve

little overhead.

◼ However, if the currently running process is to be moved

to another state (Ready, Blocked, etc.), then the OS must

make substantial changes in its environment.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

◼ The steps in
a full process
switch are:

Save the context of
the processor

Update the
process control

block of the
process currently
in the Running

state

Move the process
control block of

this process to the
appropriate queue

Select another
process for
execution

Update the process
control block of

the process
selected

Update memory
management data

structures

Restore the context
of the processor to
that which existed

at the time the
selected process was

last switched out

If the currently running process is to be moved to
another state (Ready, Blocked, etc.), then the OS must
make substantial changes in its environment

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Execution

of the

Operating

System

with Design

Approaches

P1 P2 Pn

Kernel

(a) Separate kernel

P1 P2 Pn OS1 OSk

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating

System and User Processes

OS

Func-

tions

OS

Func-

tions

OS

Func-

tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Execution
Within
User

Processes (b)

Process

Identification

Process Control

Block
Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Kernel Stack

Shared Address

Space

Figure 3.16 Process Image: Operating System

Executes Within User Space

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Unix SVR4

◼ Uses the model where most of the OS executes within the

environment of a user process

◼ System processes run in kernel mode

◼ Executes operating system code to perform administrative and

housekeeping functions

◼ User Processes

◼ Operate in user mode to execute user programs and utilities

◼ Operate in kernel mode to execute instructions that belong to the kernel

◼ Enter kernel mode by issuing a system call, when an exception is

generated, or when an interrupt occurs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.9 UNIX Process States

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Created

Sleep,

Swapped

Ready to Run

In Memory

Ready to Run

Swapped

Asleep in

Memory
Zombie

Kernel

Running

User

Running

Preempted

fork

not enough memory

(swapping system only)
enough

memory

swap in

swap out

swap out

wakeupwakeupsleep

return

preempt

return

to user

system call,

interrupt

exit

reschedule

process

interrupt,

interrupt return

Figure 3.17 UNIX Process State Transition Diagram

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table

3.10

UNIX

Process

Image

User-Level Context

Process text Executable machine instructions of the program
Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions

executing in user mode

Shared memory Memory shared with other processes, used for interprocess

communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or

user memory space of this process

Processor status register Contains the hardware status at the time of preemption; contents

and format are hardware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode

of operation at the time or preemption

General-purpose registers Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to

the operating system
U (user) area Process control information that needs to be accessed only in the

context of the process

Per process region table Defines the mapping from virtual to physical addresses; also

contains a permission field that indicates the type of access

allowed the process: read-only, read-write, or read-execute

Kernel stack Contains the stack frame of kernel procedures as the process

executes in kernel mode

(Table is located on

page 140 in the

textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.11

UNIX

Process

Table

Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate

the process.

User identifiers The real user ID identifies the user who is responsible for the

running process. The effective user ID may be used by a process

to gain temporary privileges associated with a particular program;

while that program is being executed as part of the process, the

process operates with the effective user ID.

Process identifiers ID of this process; ID of parent process. These are set up when the

process enters the Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs,

the process is transferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and

user-set timer used to send alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready
to execute).

Memory status Indicates whether process image is in main memory or swapped

out. If it is in memory, this field also indicates whether it may be

swapped out or is temporarily locked into main memory.

(Table is located on page 141 in the

textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.12

UNIX

U (User)

Area

(Table is located on page 142 in the

textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Process

creation is by

means of the

kernel system
call, fork()

◼ When a

process issues a

fork request,

the OS

performs the

following

functions:

1
• Allocates a slot in the process table for the new process

2
• Assigns a unique process ID to the child process

3

• Makes a copy of the process image of the parent, with the
exception of any shared memory

4

• Increments counters for any files owned by the parent, to
reflect that an additional process now also owns those files

5
• Assigns the child process to the Ready to Run state

6

• Returns the ID number of the child to the parent process,
and a 0 value to the child process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ After creating the process the Kernel can do one of the

following, as part of the dispatcher routine:

◼ Stay in the parent process. Control returns to user mode at the

point of the fork call of the parent.

◼ Transfer control to the child process. The child process begins

executing at the same point in the code as the parent, namely at

the return from the fork call.

◼ Transfer control to another process. Both parent and child are

left in the Ready to Run state.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary

◼ What is a process?

◼ Background

◼ Processes and process control
blocks

◼ Process states

◼ Two-state process model

◼ Creation and termination

◼ Five-state model

◼ Suspended processes

◼ Process description

◼ Operating system control structures

◼ Process control structures

◼ Process control

◼ Modes of execution

◼ Process creation

◼ Process switching

◼ Execution of the operating system

◼ Nonprocess kernel

◼ Execution within user processes

◼ Process-based operating system

◼ UNIX SVR4 process management

◼ Process states

◼ Process description

◼ Process control

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

