
Chapter 4

Threads
Ninth Edition

By William Stallings

Operating

Systems:

Internals

and Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process characteristics

Resource Ownership

Process includes a

virtual address space

to hold the process

image

◼ The OS performs a

protection function to

prevent unwanted

interference between

processes with respect to

resources

Scheduling/Execution

Follows an execution path

that may be interleaved

with other processes

◼ A process has an execution

state (Running, Ready, etc.)

and a dispatching priority, and

is the entity that is scheduled

and dispatched by the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processes and Threads

◼ The unit of dispatching is referred to as a thread or

lightweight process

◼ The unit of resource ownership is referred to as a

process or task

◼ Multithreading - The ability of an OS to support

multiple, concurrent paths of execution within a

single process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single Threaded Approaches

◼ A single thread of
execution per
process, in which
the concept of a
thread is not
recognized, is
referred to as a
single-threaded
approach

◼ MS-DOS is an
example Figure 4.1 Threads and Processes

one process

one thread

one process

multiple threads

multiple processes

one thread per process

= instruction trace

multiple processes

multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreaded Approaches

◼ The right half of

Figure 4.1 depicts

multithreaded

approaches

◼ A Java run-time

environment is an

example of a

system of one

process with

multiple threads
Figure 4.1 Threads and Processes

one process

one thread

one process

multiple threads

multiple processes

one thread per process

= instruction trace

multiple processes

multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process

▪Defined in a multithreaded environment as “the unit

of resource allocation and a unit of protection”

▪Associated with processes:

▪A virtual address space that holds the process image

▪ Protected access to:

▪ Processors

▪ Other processes (for interprocess communication)

▪ Files

▪ I/O resources (devices and channels)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

One or More Threads
in a Process

• An execution state (Running, Ready, etc.)

• A saved thread context when not running

• An execution stack

• Some per-thread static storage for local
variables

• Access to the memory and resources of its
processes, shared with all other threads in
that process

Each thread has:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single-Threaded

Process Model

Process

Control

Block

User

Address

Space

User

Stack

Kernel

Stack

Multithreaded

Process Model

Process

Control

Block

User

Address

Space

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

Thread

Control

Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread

Control

Block

Thread

Control

Block

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Key Benefits of Threads

Takes less
time to

create a new
thread than a

process

Less time to
terminate a

thread than a
process

Switching
between two

threads takes less
time than

switching between
processes

Threads enhance
efficiency in

communication
between programs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread Use in a
Single-User System

◼ Foreground and background work (one thread
could display menus and read user input, while
another thread executes user commands)

◼ Asynchronous processing (e.g. periodic backup)

◼ Speed of execution (multiple threads from the
same process may be able to execute
simultaneously)

◼ Modular program structure (Programs that
involve a variety of activities or a variety of
sources and destinations of input and output may
be easier to design and implement using threads.)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ In an OS that supports threads, scheduling and dispatching
is done on a thread basis

◼ Most of the state information dealing with execution is
maintained in thread-level data structures

◼ There are, however, several actions that affect all of the
threads in a process and that the OS must manage at the
process level

▪Suspending a process involves suspending all threads of the
process

▪Termination of a process terminates all threads within the process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The key states for a

thread are:

◼ Running

◼ Ready

◼ Blocked

Thread operations

associated with a

change in thread

state are:

◼ Spawn

◼ Block

◼ Unblock

◼ Finish

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.3 Remote Procedure Call (RPC) Using Threads

(a) RPC Using Single Thread

(b) RPC Using One Thread per Server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server

Server

Server

Server

RPC

Request

RPC

Request

RPC

Request

RPC

Request

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Time

Blocked

I/O

request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4 Multithreading Example on a Uniprocessor

Ready Running

Request

complete

Time quantum

expires

Time quantum

expires

Process

created

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread Synchronization

◼ It is necessary to synchronize the activities of

the various threads

◼ All threads of a process share the same address

space and other resources

◼ Any alteration of a resource by one thread

affects the other threads in the same process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Types of Threads

User Level
Thread (ULT)

Kernel level
Thread (KLT)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User-Level Threads (ULTs)

◼ All thread

management is

done by the

application

◼ The kernel is not

aware of the

existence of threads

Figure 4.5 User-Level and Kernel-Level Threads

P P

User

Space
Threads

Library

Kernel

Space

P

P

User

Space

Kernel

Space

P

User

Space
Threads

Library

Kernel

Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(b)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready

Figure 4.6 Examples of the Relationships Between User -Level Thread States and Process States

Running

Colored state

is current state

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The kernel is unaware of thread activities and continues to schedule the process as a

unit and assigns a single execution state (Ready, Running, Blocked, etc.) to that

process.

Thread switching does not
require kernel mode
privileges

Scheduling can be
application specific

ULTs
can run
on any
OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantages of ULTs

◼ In a typical OS many system calls are blocking
▪ As a result, when a ULT executes a system call, not

only is that thread blocked, but all of the threads within
the process are blocked as well

◼ In a pure ULT strategy, a multithreaded
application cannot take advantage of
multiprocessing
▪ A kernel assigns one process to only one processor at a

time, therefore, only a single thread within a process
can execute at a time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Overcoming ULT
Disadvantages

Jacketing

• Purpose is to convert a blocking
system call into a non-blocking
system call

Writing an application as
multiple processes rather than
multiple threads

• However, this approach eliminates
the main advantage of threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Kernel-Level Threads (KLTs)

▪ Thread management is

done by the kernel

▪ There is no thread

management code in the

application level, simply

an application

programming interface

(API) to the kernel

thread facility

▪ Windows is an example

of this approach

Figure 4.5 User-Level and Kernel-Level Threads

P P

User

Space
Threads

Library

Kernel

Space

P

P

User

Space

Kernel

Space

P

User

Space
Threads

Library

Kernel

Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Advantages of KLTs

◼ The kernel can simultaneously schedule multiple

threads from the same process on multiple

processors

◼ If one thread in a process is blocked, the kernel

can schedule another thread of the same process

◼ Kernel routines themselves can be

multithreaded

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantage of KLTs
The transfer of control from one thread to another

within the same process requires a mode switch to

the kernel

Operation User-Level Threads
Kernel-Level

Threads Processes

Null Fork 34 948 11,300

Signal Wait 37 441 1,840

Table 4.1

Thread and Process Operation Latencies (s)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The principal disadvantage of the KLT approach compared to the ULT approach is that the transfer of control from one thread

to another within the same process requires a mode switch to the kernel. To illustrate the differences, Table 4.1 shows the

results of measurements taken on a uniprocessor VAX computer running a UNIX-like OS. The two benchmarks are as

follows: Null Fork, the time to create, schedule, execute, and complete a process/thread that invokes the null procedure (i.e.,

the overhead of forking a process/thread); and Signal-Wait, the time for a process/thread to signal a waiting process/thread

and then wait on a condition (i.e., the overhead of synchronizing two processes/threads together). We see that there is an

order of magnitude or more of difference between ULTs and KLTs and similarly between KLTs and processes.

Combined Approaches

◼ Thread creation is done

completely in the user

space, as is the bulk of

the scheduling and

synchronization of

threads within an

application

◼ Solaris is a good

example

Figure 4.5 User-Level and Kernel-Level Threads

P P

User

Space
Threads

Library

Kernel

Space

P

P

User

Space

Kernel

Space

P

User

Space
Threads

Library

Kernel

Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Threads:Processes Description Example Systems

1:1 Each thread of execution is a

unique process with its own

address space and resources.

Traditional UNIX

implementations

M:1 A process defines an address

space and dynamic resource
ownership. Multiple threads

may be created and executed

within that process.

Windows NT, Solaris, Linux,

OS/2, OS/390, MACH

1:M A thread may migrate from

one process environment to

another. This allows a thread

to be easily moved among
distinct systems.

Ra (Clouds), Emerald

M:N Combines attributes of M:1

and 1:M cases.

TRIX

Table 4.2

Relationship between Threads and Processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Amdahl’s law

• The potential performance benefits of a multicore
organization depend on the ability to effectively exploit the
parallel resources available to the application.

• Let us focus first on a single application running on a
multicore system. Amdahl’s law (see Appendix E) states
that:

• Speedup = time to execute program on a single processor /
time to execute program on N parallel processors

= 1 / (1 - f) + f /N
• The law assumes a program in which a fraction (1 - f) of the

execution time involves code that is inherently serial and a
fraction f that involves code that is infinitely parallelizable
with no scheduling overhead.

© 2017 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

Figure 4.7 Performance Effect of Multiple Cores

re
la

ti
v

e
sp

ee
d

u
p

re
la

ti
v

e
sp

ee
d

u
p

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%

5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.7 Performance Effect of Multiple Cores

re
la

ti
v

e
sp

ee
d

u
p

re
la

ti
v

e
sp

ee
d

u
p

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%

5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Even a small amount of serial code has

a noticeable impact. If only 10% of the

code is inherently serial (f = 0.9) ,

running the program on a multicore

system with eight processors yields a

performance gain of only a factor of

4.7.

In addition, software typically incurs overhead as

a result of communication and distribution of

work to multiple processors and cache

coherence overhead. This results in a curve

where performance peaks and then begins to

degrade because of the increased burden of the

overhead of using multiple processors. Figure

4.7b , from [MCDO07], is a representative

example.

Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32

number of CPUs

sc
al

in
g

48 64

per
fec

t s
ca

lin
g

Oracle DSS 4-way join

TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

However, software engineers have been addressing this problem and there are numerous applications in

which it is possible to effectively exploit a multicore system. [MCDO07] reports on a set of database

applications, in which great attention was paid to reducing the serial fraction within hardware

architectures, operating systems, middleware, and the database application software. Figure 4.8 shows

the result. As this example shows, database management systems and database applications are one

area in which multicore systems can be used effectively. Many kinds of servers can also effectively use

the parallel multicore organization, because servers typically handle numerous relatively independent

transactions in parallel.

Applications That Benefit

▪ Multithreaded native applications
▪ Characterized by having a small number of highly threaded

processes

▪ Multiprocess applications

◼ Characterized by the presence of many single-threaded processes
(Examples of multiprocess applica- tions include the Oracle database, SAP, and
PeopleSoft)

▪ Java applications

▪ All applications that use a Java 2 Platform, Enterprise Edition
application server can immediately benefit from multicore
technology

▪ Multi-instance applications
▪ Multiple instances of the application in parallel

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Application Example:
Valve Game Software

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• Valve is an entertainment and technology company that has developed a number

of popular games, as well as the Source engine, one of the most widely played

game engines available. Source is an animation engine used by Valve for its

games and licensed for other game developers.

• In recent years, Valve has reprogrammed the Source engine software to use

multithreading to exploit the power of multicore processor chips from Intel and

AMD [REIM06].

• The revised Source engine code provides more powerful support for Valve games

such as Half Life 2.

Valve Game Software
Render

Skybox Main View

Scene List

For each object

Particles

Sim and Draw

Bone Setup

Draw

Character

Etc.

Monitor Etc.

Figure 4.9 Hybrid Threading for Rendering Module

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.9 illustrates the thread structure for the rendering module. In this

hierarchical structure, higher-level threads spawn lower-level threads as

needed. The rendering module relies on a critical part of the Source engine,

the world list, which is a database representation of the visual elements in the

game’s world.

Windows Process and
Thread Management

◼ An application consists of one

or more processes

◼ Each process provides the

resources needed to execute a

program

◼ A thread is the entity within a

process that can be scheduled for

execution

◼ A job object allows groups of

process to be managed as a unit

◼ A thread pool is a collection of

worker threads that efficiently

execute asynchronous callbacks

on behalf of the application

◼ A fiber is a unit of execution

that must be manually scheduled

by the application

◼ User-mode scheduling (UMS) is

a lightweight mechanism that

applications can use to schedule

their own threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Beginning with Windows 8, and carrying through to Windows 10,
developers are responsible for managing the state of their individual
applications

◼ Previous versions of Windows always give the user full control of the
lifetime of a process

◼ In the new Metro interface Windows takes over the process lifecycle of
an application

◼ A limited number of applications can run alongside the main app in the
Metro UI using the SnapView functionality

◼ Only one Store application can run at one time

◼ Live Tiles give the appearance of applications constantly running on
the system

◼ In reality they receive push notifications and do not use system resources
to display the dynamic content offered

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Foreground application in the Metro interface has access
to all of the processor, network, and disk resources
available to the user
◼ All other apps are suspended and have no access to these

resources

◼ When an app enters a suspended mode, an event should
be triggered to store the state of the user’s information
◼ This is the responsibility of the application developer

◼ Windows may terminate a background app
◼ You need to save your app’s state when it’s suspended, in case

Windows terminates it so that you can restore its state later

◼ When the app returns to the foreground another event is
triggered to obtain the user state from memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Important characteristics of Windows
processes are:

• Windows processes are implemented as objects

• A process can be created as a new process or a
copy of an existing process

• An executable process may contain one or more
threads

• Both process and thread objects have built-in
synchronization capabilities

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process

object

Access

token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available

objects

Figure 4.10 A Windows Process and Its Resources

Handle Table

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process and Thread
Objects

Processes

• An entity
corresponding
to a user job or
application that
owns resources

Threads

• A dispatchable
unit of work
that executes
sequentially and
is interruptible

Windows makes use of two types of
process-related objects:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process ID A unique value that identifies the process to the operating system.

Security descriptor Describes who created an object, who can gain access to or use the

object, and who is denied access to the object.

Base priority A baseline execution priority for the process's threads.

Default processor affinity The default set of processors on which the process's threads can
run.

Quota limits The maximum amount of paged and nonpaged system memory,

paging file space, and processor time a user's processes can use.

Execution time The total amount of time all threads in the process have executed.

I/O counters Variables that record the number and type of I/O operations that

the process's threads have performed.

VM operation counters Variables that record the number and types of virtual memory

operations that the process's threads have performed.

Exception/debugging ports Interprocess communication channels to which the process
manager sends a message when one of the process's threads causes

an exception. Normally, these are connected to environment

subsystem and debugger processes, respectively.

Exit status The reason for a process's termination.

Table 4.3

Windows

Process

Object

Attributes

(Table is on

page 171 in

textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 4.4

Windows

Thread

Object

Attributes

Thread ID A unique value that identifies a thread when it calls a server.

Thread context The set of register values and other volatile data that defines the

execution state of a thread.

Dynamic priority The thread's execution priority at any given moment.

Base priority The lower limit of the thread's dynamic priority.

Thread processor affinity The set of processors on which the thread can run, which is a

subset or all of the processor affinity of the thread's process.

Thread execution time The cumulative amount of time a thread has executed in user mode

and in kernel mode.

Alert status A flag that indicates whether a waiting thread may execute an

asynchronous procedure call.

Suspension count The number of times the thread's execution has been suspended

without being resumed.

Impersonation token A temporary access token allowing a thread to perform operations
on behalf of another process (used by subsystems).

Termination port An interprocess communication channel to which the process

manager sends a message when the thread terminates (used by

subsystems).

Thread exit status The reason for a thread's termination.

(Table is on page

171 in textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreading

Achieves concurrency
without the overhead of
using multiple processes

Threads within the same
process can exchange

information through their
common address space and

have access to the shared
resources of the process

Threads in different
processes can exchange

information through shared
memory that has been set

up between the two
processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.11 Windows Thread States

Transition

Ready

Waiting

Runnable

Not Runnable

StandbyPick to

Run
Switch

Preempted

Block/

Suspend

Unblock/Resume

Resource Available
Resource

Available

Unblock

Resource Not Available

Terminate

Terminated

Running

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Solaris Process

• Includes the user’s address space, stack, and
process control blockProcess

• A user-created unit of execution within a process
User-level
Threads

• A mapping between ULTs and kernel threads
Lightweight

Processes (LWP)

• Fundamental entities that can be scheduled and
dispatched to run on one of the system processorsKernel Threads

▪Makes use of four thread-related concepts:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hardware

Figure 4.12 Processes and Threads in Solaris

Kernel

System calls

syscall()syscall()

Process

Kernel

thread

Kernel

thread

Lightweight

process (LWP)

Lightweight

process (LWP)

user

thread

user

thread

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.12 illustrates the relationship among these four entities.

Process ID

UNIX Process Structure

User IDs

Signal Dispatch Table

File Descriptors

Memory Map

Priority
Signal Mask

Registers

STACK

Priority
LWP ID

Signal Mask
Registers

STACK

Processor State

Process ID

Solaris Process Structure

User IDs

Signal Dispatch Table

File Descriptors

LWP 1

Priority
LWP ID

Signal Mask
Registers

STACK

LWP 2

Memory Map

Figure 4.13 Process Structure in Traditional UNIX and Solaris [LEWI96]

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.13 compares, in

general terms, the process

structure of a traditional

UNIX system with that of

Solaris

A Lightweight Process (LWP)

Data Structure Includes:

◼ An LWP identifier

◼ The priority of this LWP and hence the kernel thread that supports it

◼ A signal mask that tells the kernel which signals will be accepted

◼ Saved values of user-level registers

◼ The kernel stack for this LWP, which includes system call arguments,

results, and error codes for each call level

◼ Resource usage and profiling data

◼ Pointer to the corresponding kernel thread

◼ Pointer to the process structure
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

IDLE

thread_create() intr()

swtch()

syscall()

wakeup()

prun() pstop() exit() reap()

preempt()

RUN

PINNED

ONPROC SLEEP

STOP ZOMBIE FREE

Figure 4.14 Solaris Thread States

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• RUN: The thread is runnable; that is, the thread is

ready to execute.

• ONPROC: The thread is executing on a processor.

• SLEEP: The thread is blocked.

• STOP: The thread is stopped.

• ZOMBIE: The thread has terminated.

• FREE: Thread resources have been released and the

thread is awaiting removal from the OS thread data

structure.

Interrupts as Threads

▪Most operating systems contain two fundamental

forms of concurrent activity:

Processes
(threads)

Cooperate with each other and manage the use of shared data
structures by primitives that enforce mutual exclusion and
synchronize their execution

Interrupts Synchronized by preventing their handling for a period of time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

▪ Solaris unifies these two concepts into a single model, namely
kernel threads, and the mechanisms for scheduling and
executing kernel threads

▪ To do this, interrupts are converted to kernel threads

Solaris Solution

▪Solaris employs a set of kernel threads to

handle interrupts

◼ An interrupt thread has its own identifier, priority,

context, and stack

◼ The kernel controls access to data structures and

synchronizes among interrupt threads using

mutual exclusion primitives

◼ Interrupt threads are assigned higher priorities

than all other types of kernel threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Tasks

A process, or task, in
Linux is represented
by a task_struct data

structure

This structure
contains information

in a number of
categories

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

task_struct data structure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• State:

The execution state of the process (executing, ready, suspended, stopped,

zombie). This is described subsequently.

• Scheduling information:

Information needed by Linux to schedule processes. A process can be normal or

real time and has a priority. Real-time processes are scheduled before normal

processes, and within each category, relative priorities can be used. A counter

keeps track of the amount of time a process is allowed to execute.

• Identifiers:

Each process has a unique process identifier and also has user and group

identifiers. A group identifier is used to assign resource access privileges to a

group of processes.

• Interprocess communication:

Linux supports the IPC mechanisms found in UNIX SVR4, described in Chapter

6 .

task_struct data structure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• Links:

Each process includes a link to its parent process, links to its siblings (processes

with the same parent), and links to all of its children.

Times and timers:

Includes process creation time and the amount of processor time so far consumed

by the process. A process may also have associated one or more interval timers.

• File system:

Includes pointers to any files opened by this process, as well as pointers to the

current and the root directories for this process.

• Address space:

Defines the virtual address space assigned to this process.

• Processor-specific context:

The registers and stack information that constitute the context of this process.

Stopped

Ready

Running

State

Uninterruptible

Interruptible

Executing Zombie

Figure 4.15 Linux Process/Thread Model

creation
scheduling

termination

signalsignal

event
signal

or

event

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Running:

• Corresponds to two states.

-A Running process is either

executing or

- it is ready to execute.

Interruptible:

• A blocked state, in which the process

is waiting for an event, such as the end

of an I/O operation, the availability of a

resource, or a signal from another

process.

Uninterruptible:

• Another blocked state.

• The difference between the

Interruptible state is that in this state, a

process is waiting directly on hardware

conditions and therefore will not handle

any signals.

Stopped:

• The process has been halted and can

only resume by positive action from

another process.

• E.G., a process that is being

debugged can be put into the Stopped

state.

Zombie:

• The process has been terminated but,

for some reason, still must have its task

structure in the process table.

Linux Threads

Linux does not
recognize a
distinction

between threads
and processes

User-level
threads are

mapped into
kernel-level
processes

A new process is
created by

copying the
attributes of the
current process

The new process
can be cloned so

that it shares
resources

The clone() call
creates separate
stack spaces for

each process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Traditional UNIX systems support a single thread of execution per process, while modern UNIX systems

typically provide support for multiple kernel-level threads per process. We have seen that modern versions of

UNIX offer kernel-level threads. Linux provides a unique solution in that it does not recognize a distinction

between threads and processes. Using a mechanism similar to the lightweight processes of Solaris, user-level

threads are mapped into kernel-level processes. Multiple user-level threads that constitute a single user-level

process are mapped into Linux kernel-level processes that share the same group ID. This enables these

processes to share resources such as files and memory and to avoid the need for a context switch when the

scheduler switches among processes in the same group.

Linux Namespaces

◼ Associated with each process in Linux are a set of namespaces

◼ A namespace enables a process to have a different view of the
system than other processes that have other associated
namespaces

◼ There are currently six namespaces in Linux

◼ Mnt (Mount namespace)

◼ Pid (Process ID namespace)

◼ Net (network namespace)

◼ Ipc (Interprocess communication namespace)

◼ Uts (Unix timesharing namespace)

◼ User (User namespace)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Android Process and

Thread Management

◼ An Android application is the software that implements an app

◼ Each Android application consists of one or more instance of
one or more of four types of application components

◼ Each component performs a distinct role in the overall
application behavior, and each component can be activated
independently within the application and even by other
applications

◼ Four types of components:
◼ Activities

◼ Services

◼ Content providers

◼ Broadcast receivers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Activitities

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• Activities: An activity corresponds to a single screen visible as a user interface. For

example, an e-mail application might have one activity that shows a list of new e-

mails, another activity to compose an e-mail, and another activity for reading e-

mails.

• Although the activities work together to form a cohesive user experience in the e-

mail application, each one is independent of the others.

• Android makes a distinction between internal and exported activities. Other apps

may start exported activities, which generally include the main screen of the app.

• However, other apps cannot start the internal activities. For example, a camera

application can start the activity in the e-mail application that composes new mail, in

order for the user to share a picture.

Services

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• Services are typically used to perform background operations that take a considerable

amount of time to finish. This ensures faster responsiveness, for the main thread (a.k.a.

UI thread) of an application, with which the user is directly interacting.

• For example, a service might create a thread to play music in the background while the

user is in a different application, or it might create a thread to fetch data over the

network without blocking user interaction with an activity.

• A service may be invoked by an application. Additionally, there are system services that

run for the entire lifetime of the Android system, such as Power Manager, Battery, and

Vibrator services. These system services create threads that are part of the System

Server process.

•

Content providers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• A content provider acts as an interface to application data that

can be used by the application. One category of managed data

is private data, which is used only by the application

containing the content provider.

• For example the NotePad application uses a content provider

to save notes. The other category is shared data, accessible by

multiple applications.

• This category includes data stored in file systems, an SQLite

database, on the Web, or any other persistent storage location

your application can access

Broadcast receivers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• A broadcast receiver responds to system-wide broadcast

announcements.

• A broadcast can originate from another application, such as to

let other applications know that some data has been

downloaded to the device and is available for them to use, or

from the system (for example, a low-battery warning).

Dedicated Process

Figure 4.16 Android Application

Broadcast
Receiver

Application

Dedicated
Virtual Machine

Content
Provider

Activity Service

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Each application runs on its

own dedicated virtual machine

and its own single process

that encompasses the

application and its virtual

machine (Figure 4.16).

• This approach, referred to as

the sandboxing model,

isolates each application.

• Thus, one application cannot

access the resources of the

other without permission being

granted.

• Each application is treated as

a separate Linux user with its

own unique user ID, which is

used to set file permissions.

Activities
◼ An Activity is an application component that provides a screen with which users

can interact in order to do something

◼ Each Activity is given a window in which to draw its user interface

◼ The window typically fills the screen, but may be smaller than the screen and
float on top of other windows

◼ An application may include multiple activities

◼ When an application is running, one activity is in the foreground, and it is this
activity that interacts with the user

◼ The activities are arranged in a last-in-first-out stack in the order in which each
activity is opened

◼ If the user switches to some other activity within the application, the new
activity is created and pushed on to the top of the back stack, while the
preceding foreground activity becomes the second item on the stack for this
application

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Resumed

Paused

Entire

Lifetime

Visible

Lifetime

Foreground

Lifetime

Stopped

Figure 4.17 Activity State Transition Diagram

Activity

launched

App process

killed

Activity

shut down

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()

User returns

to the activity

Apps with higher

priority need memory

User navigates

to the activity

User navigates

to the activity

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.17 provides a simplified view of the state transition

diagram of an activity. Keep in mind that there may be multiple activities in the

application, each one at its own particular point on the state transition diagram.

When a new activity is launched, the application software performs a series of

system calls to the Activity Manager (Figure 2.20): onCreate() does the static

setup of the activity, including any data structure initialization; onStart() makes

the activity visible to the user on the screen; onResume() passes control to

the activity so that user input goes to the activity. At this point the activity is in

the Resumed state. This is referred to as the foreground lifetime of the

activity. During this time, the activity is in front of all other activities on screen

and has user input focus.

A user action may invoke another activity within the application. For example,

during the execution of the e-mail application, when the user selects an e-mail,

a new activity opens to view that e-mail. The system responds to such an

activity with the onPause() system call, which places the currently running

activity on the stack, putting it in the Paused state. The application then

creates a new activity, which will enter the Resumed state.

At any time, a user may terminate the currently running activity by means of

the Back button, closing a window, or some other action relevant to this

activity. The application then invokes onStop(0) to stop the activity. The

application then pops the activity that is on the top of the stack and resumes it.

The Resumed and Paused states together constitute the visible lifetime of the

activity. During this time, the user can see the activity on-screen and interact

with it.

If the user leaves one application to go to another, for example, by going to the

Home screen, the currently running activity is paused and then stopped. When

the user resumes this application, the stopped activity, which is on top of the

back stack, is restarted and becomes the foreground activity for the

application.

Processes and Threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

• The default allocation of processes and threads to an application is a single

process and a single thread. All of the components of the application run on the

single thread of the single process for that application.

• To avoid slowing down the user interface when slow and/or blocking operations

occur in a component, the developer can create multiple threads within a

process and/or multiple processes within an application. In any case, all

processes and their threads for a given application execute within the same

virtual machine.

• In order to reclaim memory in a system that is becoming heavily loaded, the

system may kill one or more processes. As was discussed in the preceding

section, when a process is killed, one or more of the activities supported by that

process are also killed.

• A precedence hierarchy is used to determine which process or processes to kill

in order to reclaim needed resources.

Processes and Threads
◼ A precedence hierarchy

is used to determine
which process or
processes to kill in order
to reclaim needed
resources

◼ Processes are killed
beginning with the
lowest precedence first

◼ The levels of the
hierarchy, in descending
order of precedence are:

Foreground process

Visible process

Service process

Background process

Empty process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mac OS X Grand Central

Dispatch (GCD)

◼ Mac OS X Grand Central Dispatch (GCD)

provides a pool of available threads

◼ Designers can designate portions of applications,

called blocks, that can be dispatched independently

and run concurrently

◼ Concurrency is based on the number of cores

available and the thread capacity of the system

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ A simple extension to a language. Here is a simple
example of a block definition:

x = ^{ printf(“hello world\n”); }

◼ A block is denoted by a caret at the start of the
function, which is enclosed in curly brackets.

◼ A block defines a self-contained unit of work

◼ Enables the programmer to encapsulate complex
functions

◼ Blocks are scheduled and dispatched by queues

◼ Dispatched on a first-in-first-out basis

◼ Can be associated with an event source, such as a
timer, network socket, or file descriptor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary
◼ Processes and threads

◼ Multithreading

◼ Thread functionality

◼ Types of threads

◼ User level and kernel level threads

◼ Multicore and multithreading

◼ Performance of Software on Multicore

◼ Windows process and thread management

◼ Management of background tasks and
application lifecycles

◼ Windows process

◼ Process and thread objects

◼ Multithreading

◼ Thread states

◼ Support for OS subsystems

◼ Solaris thread and SMP management

◼ Multithreaded architecture

◼ Motivation

◼ Process structure

◼ Thread execution

◼ Interrupts as threads

◼ Linux process and thread management

◼ Tasks/threads/namespaces

◼ Android process and thread
management

◼ Android applications

◼ Activities

◼ Processes and threads

◼ Mac OS X grand central dispatch

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

