
Chapter 7

Memory

Management
Ninth Edition

William Stallings

Operating

Systems:

Internals

and Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Frame A fixed-length block of main memory.

Page

A fixed-length block of data that resides in secondary memory

(such as disk). A page of data may temporarily be copied into a

frame of main memory.

Segment

A variable-length block of data that resides in secondary memory.

An entire segment may temporarily be copied into an available

region of main memory (segmentation) or the segment may be divided

into pages which can be individually copied into main memory

(combined segmentation and paging).

Table 7.1

Memory Management Terms

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Management
Requirements

◼ Memory management is intended to satisfy the

following requirements:

◼ Relocation

◼ Protection

◼ Sharing

◼ Logical organization

◼ Physical organization

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Relocation

◼ Programmers typically do not know in advance which other programs

will be resident in main memory at the time of execution of their

program

◼ Active processes need to be able to be swapped in and out of main

memory in order to maximize processor utilization

◼ Specifying that a process must be placed in the same memory

region when it is swapped back in would be limiting

◼ May need to relocate the process to a different area

of memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Control Block

Program

Data

Stack

Current top

of stack

Entry point

to program

Process control

information

Increasing

address

values

Branch

instruction

Reference

to data

Figure 7.1 Addressing Requirements for a Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

- Thus, we cannot know ahead of time where a program will be placed, and we must allow for the

possibility that the program may be moved about in main memory due to swapping.

- The processor hardware and operating system software must be able to translate the memory

references found in the code of the program into actual physical memory addresses, reflecting the

current location of the program in main memory.

Protection

◼ Processes need to acquire permission to reference memory locations for

reading or writing purposes

◼ Location of a program in main memory is unpredictable

◼ Memory references generated by a process must be checked at run time

◼ Mechanisms that support relocation also support protection

Sharing

◼ Advantageous to allow each process access to the same copy of

the program rather than have their own separate copy

◼ Memory management must allow controlled access to shared

areas of memory without compromising protection

◼ Mechanisms used to support relocation support sharing

capabilities

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Logical Organization

◼ Memory is organized as linear

◼ Segmentation is the tool that most readily satisfies
requirements

Programs are written in modules

• Modules can be written and compiled independently

• Different degrees of protection given to modules (read-only,
execute-only)

• Sharing on a module level corresponds to the user’s way of
viewing the problem

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Physical Organization

Cannot leave the
programmer with the

responsibility to manage
memory

Memory available for a
program plus its data
may be insufficient

Overlaying allows various
modules to be assigned

the same region of
memory but is time

consuming to program

Programmer does not
know how much space

will be available

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

- As we discussed in Section 1.5 , computer memory is organized into at least two levels,

referred to as main memory and secondary memory.

- In this two-level scheme, the organization of the flow of information between main and

secondary memory is a major system concern. The responsibility for this flow could be

assigned to the individual programmer, but this is impractical and undesirable

Memory Partitioning

◼ Memory management brings processes into main memory for

execution by the processor

▪ Involves virtual memory (VM)

▪ VM is based on segmentation and paging

◼ Partitioning (simple)

▪ Used in several variations in some now-obsolete operating

systems

▪ Does not involve virtual memory

◼ We will first look at and understand simple techniques before

studying the sophisticated VM scheme

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Technique Description Strengths Weaknesses

Fixed Partitioning

Main memory is divided into a
number of static partitions at

system generation time. A process
may be loaded into a partition of

equal or greater size.

Simple to implement;
little operating system

overhead.

Inefficient use of
memory due to internal

fragmentation;
maximum number of

active processes is
fixed.

Dynamic Partitioning

Partitions are created dynamically,
so that each process is loaded into a

partition of exactly the same size as
that process.

No internal
fragmentation; more

efficient use of main
memory.

Inefficient use of
processor due to the

need for compaction to
counter external

fragmentation.

Simple Paging

Main memory is divided into a

number of equal-size frames. Each
process is divided into a number of

equal-size pages of the same length
as frames. A process is loaded by

loading all of its pages into
available, not necessarily

contiguous, frames.

No external

fragmentation.

A small amount of

internal fragmentation.

Simple Segmentation

Each process is divided into a

number of segments. A process is
loaded by loading all of its

segments into dynamic partitions
that need not be contiguous.

No internal

fragmentation; improved
memory utilization and

reduced overhead
compared to dynamic

partitioning.

External fragmentation.

Virtual Memory

Paging

As with simple paging, except that

it is not necessary to load all of the
pages of a process. Nonresident

pages that are needed are brought in
later automatically.

No external

fragmentation; higher
degree of

multiprogramming;
large virtual address

space.

Overhead of complex

memory management.

Virtual Memory

Segmentation

As with simple segmentation,

except that it is not necessary to
load all of the segments of a

process. Nonresident segments that
are needed are brought in later

automatically.

No internal

fragmentation, higher
degree of

multiprogramming;
large virtual address

space; protection and

sharing support.

Overhead of complex

memory management.

Table 7.2

Memory

Management

Techniques

(Table is on page 317 in textbook)© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operating System

8M

Operating System

8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

we can assume that the OS occupies some fixed portion of main memory and that the

rest of main memory is available for use by multiple processes. The simplest scheme for

managing this available memory is to partition it into regions with fixed boundaries.

Fixed partitioning

◼ A program may be too big to fit in a partition

◼ Program needs to be designed with the use of overlays

◼ Main memory utilization is inefficient

◼ Any program, regardless of size, occupies an entire

partition

◼ Internal fragmentation

◼ Wasted space due to the block of data loaded being

smaller than the partition

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operating

System

New

Processes

New

Processes

Operating

System

Figure 7.3 Memory Assignment for Fixed Partitioning

(a) One process queue per partition (b) Single queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

- With unequal-size partitions, there are two possible ways to assign processes to partitions. The simplest

way is to assign each process to the smallest partition within which it will fit. In this case, a scheduling

queue is needed for each partition, to hold swapped-out processes destined for that partition (Figure 7.3a).

- The advantage of this approach is that processes are always assigned in such a way as to minimize wasted

memory within a partition (internal fragmentation).

◼ The number of partitions specified at system

generation time limits the number of active

processes in the system

◼ Small jobs will not utilize partition space

efficiently

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Partitions are of variable length and number

◼ Process is allocated exactly as much memory as it

requires

◼ This technique was used by IBM’s mainframe

operating system, OS/MVT

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

As this example shows, this method starts out well, but eventually it leads to a situation in which

there are a lot of small holes in memory. As time goes on, memory becomes more and more

fragmented, and memory utilization declines. This phenomenon is referred to as external

fragmentation , indicating that the memory that is external to all partitions becomes increasingly

fragmented. This is in contrast to internal fragmentation, referred to earlier.

Dynamic Partitioning

• Memory becomes more and more fragmented

• Memory utilization declines

External Fragmentation

• Technique for overcoming external fragmentation

• OS shifts processes so that they are contiguous

• Free memory is together in one block

• Time consuming and wastes CPU time

Compaction

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Placement Algorithms

Best-fit

• Chooses the
block that is
closest in size to
the request

First-fit

• Begins to scan
memory from
the beginning
and chooses the
first available
block that is
large enough

Next-fit

• Begins to scan
memory from
the location of
the last
placement and
chooses the next
available block
that is large
enough

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last

allocated

block (14M)

8M

12M

6M

2M

8M

6M

14M

20 M

(b) After

Next Fit

Allocated block

Best Fit

First Fit

Figure 7.5 Example Memory Configuration befor e

and after Allocation of 16-Mbyte Block

Free block

Possible new allocation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Allocate a 16-Mbyte for a process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

❑ Which of these approaches is best will depend on the exact sequence of process

swapping that occurs and the size of those processes. However, some general

comments can be made (see also [BREN89], [SHOR75], and [BAYS77]).

❑ The first-fit algorithm is not only the simplest but usually the best and fastest as

well.

Buddy System

◼Comprised of fixed and dynamic partitioning
schemes

◼ Space available for allocation is treated as a
single block

◼Memory blocks are available of size 2K words,
L ≤ K ≤ U, where
◼ 2L = smallest size block that is allocated

◼ 2U = largest size block that is allocated; generally 2U is
the size of the entire memory available for allocation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

256K 256KD =256 KA = 128K C =64 K 64K

Figure 7.7 Tree Representation of Buddy System

1M

512K

256K

128K

64K

Leaf node for

allocated block

Leaf node for

unallocated block

Non-leaf node

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Relocation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ When the fixed partition scheme is used, we can expect a process will always be
assigned to the same partition

◼ Whichever partition is selected when a new process is loaded will always be used to swap that process
back into memory after it has been swapped out

◼ In that case, a simple relocating loader can be used

◼ When the process is first loaded, all relative memory references in the code are replaced by absolute
main memory addresses, determined by the base address of the loaded process

◼ In the case of equal-size partitions and in the case of a single process queue for unequal-
size partitions, a process may occupy different partitions during the course of its life

◼ When a process image is first created, it is loaded into some partition in main memory; Later, the
process may be swapped out

◼ When it is subsequently swapped back in, it may be assigned to a different partition than the last time

◼ The same is true for dynamic partitioning

◼ When compaction is used, processes are shifted while they are in main memory

◼ Thus, the locations referenced by a process are not fixed, they will change each time a
process is swapped in or shifted

Addresses

• Reference to a memory location independent of the current
assignment of data to memory

Logical

• A particular example of logical address, in which the address
is expressed as a location relative to some known point

Relative

• Actual location in main memory

Physical or Absolute

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Control Block

Program

Data

Stack

Figure 7.8 Hardware Support for Relocation

Comparator

Interrupt to

operating system

Absolute

address

Process image in

main memory

Relative address

Base Register

Bounds Register

Adder

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Programs that employ relative addresses in memory are loaded using dynamic run-time loading (see

Appendix 7A for a discussion). Typically, all of the memory references in the loaded process are relative

to the origin of the program. Thus a hardware mechanism is needed for translating relative addresses to

physical main memory addresses at the time of execution of the instruction that contains the reference.

◼ Partition memory into equal fixed-size chunks that are

relatively small

◼ Process is also divided into small fixed-size chunks of the

same size

Pages

• Chunks of a
process

Frames

• Available
chunks of
memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Page Table

◼ Maintained by operating system for each process

◼ Contains the frame location for each page in the process

◼ Processor must know how to access for the current process

◼ Used by processor to produce a physical address

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

00
11
22
33

Process A

page table

—0
—1
—2

Process B

page table

70
81
92
103

Process C

page table

40
51
62
113
124

Process D

page table

13
14

Free frame

list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0000010111011110

(a) Partitioning

Relative address = 1502
U

se
r p

ro
ce

ss

(2
70

0
by

te
s)

0000010111011110

(b) Paging

(page size = 1K)

Logical address =

Page# = 1, Offset = 478

Logical address =

Segment# = 1, Offset = 752

Pa
ge

 0
Pa

ge
 1

Pa
ge

 2

In
te

rn
al

fr
ag

m
en

ta
tio

n

0001001011110000

(c) Segmentation

Se
gm

en
t 0

75
0

by
te

s

Se
gm

en
t 1

19
50

 b
yt

es

47
8 75

2

Figure 7.11 Logical Addresses

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

- The logical address, expressed as a page number and offset.

- An example is shown in Figure 7.11 . In this example, 16-bit addresses are used, and the page size is

1K 1,024 bytes.

- The relative address 1502, in binary form, is 0000010111011110.

- With a page size of 1K, an offset field of 10 bits is needed, leaving 6 bits for the page number.

- Thus a program can consist of a maximum of 26 = 64 pages of 1K bytes each.

- As Figure 7.11b shows, relative address 1502 corresponds to an offset of 478 (0111011110) on page 1

(000001), which yields the same 16-bit number, 0000010111011110.

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Segmentation

◼A program can be subdivided into segments
▪ May vary in length

▪ There is a maximum length

◼Addressing consists of two parts:
▪ Segment number

▪ An offset

◼Similar to dynamic partitioning

◼Eliminates internal fragmentation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Segmentation

◼ Usually visible

◼ Provided as a convenience for organizing programs and

data

◼ Typically the programmer will assign programs and data

to different segments

◼ For purposes of modular programming the program or

data may be further broken down into multiple segments

◼ The principal inconvenience of this service is that the

programmer must be aware of the maximum segment size

limitation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address Translation

◼ Another consequence of unequal size segments is
that there is no simple relationship between
logical addresses and physical addresses

◼ The following steps are needed for address
translation:

Extract the segment
number as the leftmost n
bits of the logical address

Use the segment number
as an index into the

process segment table to
find the starting physical
address of the segment

Compare the offset,
expressed in the rightmost
m bits, to the length of the
segment. If the offset is
greater than or equal to
the length, the address is

invalid

The desired physical
address is the sum of the
starting physical address
of the segment plus the

offset

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary

◼ Memory partitioning

◼ Fixed partitioning

◼ Dynamic

partitioning

◼ Buddy system

◼ Relocation

◼ Segmentation

◼ Memory management
requirements

◼ Relocation

◼ Protection

◼ Sharing

◼ Logical
organization

◼ Physical
organization

◼ Paging

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

