
Chapter 9

Uniprocessor

Scheduling
Ninth Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Long-term scheduling The decision to add to the pool of processes to be

executed

Medium-term scheduling The decision to add to the number of processes that

are partially or fully in main memory

Short-term scheduling The decision as to which available process will be

executed by the processor

I/O scheduling The decision as to which process's pending I/O

request shall be handled by an available I/O device

Table 9.1

Types of Scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Scheduling

◼ Aim is to assign processes to be executed by the

processor in a way that meets system objectives, such as

response time, throughput, and processor efficiency

◼ Broken down into three separate functions:

Long term
scheduling

Medium
term

scheduling

Short term
scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 9.1 Scheduling and Process State Transitions

Ready/

Suspend

New

Running Exit

Blocked

Long-term

scheduling

Long-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Short-term

scheduling

Ready

Blocked/

Suspend

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Running

Ready

Blocked

Short Term

Medium Term

Long Term

Blocked,

Suspend

Ready,

Suspend

New Exit

Figure 9.2 Levels of Scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 9.3 Queuing Diagram for Scheduling

Event Wait

Time-out

Release
Ready Queue Short-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Interactive

users

Batch

jobs
Processor

Ready, Suspend Queue

Event

Occurs

Blocked, Suspend Queue

Blocked Queue

Long-term

scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Long-Term Scheduler

◼ Determines which
programs are admitted to
the system for processing

◼ Controls the degree of
multiprogramming

◼ The more processes
that are created, the
smaller the
percentage of time
that each process can
be executed

◼ May limit to provide
satisfactory service to
the current set of
processes

Creates processes
from the queue
when it can, but

must decide:

When the operating
system can take on

one or more
additional processes

Which jobs to
accept and turn into

processes

First come, first
served

Priority, expected
execution time, I/O

requirements

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Medium-Term Scheduling

◼ Part of the swapping function

◼ Swapping-in decisions are based on the need to manage

the degree of multiprogramming

◼ Considers the memory requirements of the

swapped-out processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Short-Term Scheduling

◼ Known as the dispatcher

◼ Executes most frequently

◼ Makes the fine-grained decision of which process to execute next

◼ Invoked when an event occurs that may lead to the blocking of the

current process or that may provide an opportunity to preempt a

currently running process in favor of another

Examples:

• Clock interrupts

• I/O interrupts

• Operating system calls

• Signals (e.g., semaphores)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Short Term Scheduling Criteria

◼ Main objective is

to allocate

processor time to

optimize certain

aspects of system

behavior

◼ A set of criteria is

needed to

evaluate the

scheduling policy

User-oriented criteria

• Relate to the behavior of
the system as perceived
by the individual user or
process (such as response
time in an interactive
system)

• Important on virtually all
systems

System-oriented
criteria

• Focus is on effective and
efficient utilization of the
processor (rate at which
processes are completed)

• Generally of minor
importance on single-
user systems

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Criteria can
be classified

into:

Performance-related

Quantitative
Easily

measured

Non-performance
related

Qualitative
Hard to
measure

Short-Term Scheduling Criteria:

Performance

Examples:

• Response time
and throughput

Example:

• Predictability

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User Oriented, Performance Related

Turnaround time This is the interval of time between the

submission of a process and its completion. Includes actual execution

time plus time spent waiting for resources, including the processor.

This is an appropriate measure for a batch job.

Response time For an interactive process, this is the time from

the submission of a request until the response begins to be received.

Often a process can begin producing some output to the user while

continuing to process the request. Thus, this is a better measure than

turnaround time from the user's point of view. The scheduling

discipline should attempt to achieve low response time and to maximize

the number of interactive users receiving acceptable response time.

Deadlines When process completion deadlines can be specified, the

scheduling discipline should subordinate other goals to that of

maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should run in about the same amount of

time and at about the same cost regardless of the load on the system.

A wide variation in response time or turnaround time is distracting to

users. It may signal a wide swing in system workloads or the need for

system tuning to cure instabilities.

System Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the

number of processes completed per unit of time. This is a measure of

how much work is being performed. This clearly depends on the average

length of a process but is also influenced by the scheduling policy,

which may affect utilization.

Processor utilization This is the percentage of time that the

processor is busy. For an expensive shared system, this is a

significant criterion. In single-user systems and in some other

systems, such as real-time systems, this criterion is less important

than some of the others.

System Oriented, Other

Fairness In the absence of guidance from the user or other system-

supplied guidance, processes should be treated the same, and no

process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the

scheduling policy should favor higher-priority processes.

Balancing resources The scheduling policy should keep the

resources of the system busy. Processes that will underutilize

stressed resources should be favored. This criterion also involves

medium-term and long-term scheduling.

Table 9.2 Scheduling Criteria

Figure 9.4 Priority Queuing

Event Wait

Event

occurs

Preemption

Dispatch
ReleaseRQ0

RQ1

RQn

Admit

Processor

Blocked Queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Instead of a single ready

queue, we provide a set

of queues, in descending

order of priority: RQ0,

RQ1, . . . , RQ n , with

priority[RQ i] >

priority[RQ j] for i > j .

-When a scheduling

selection is to be made,

the scheduler will start at

the highest-priority ready

queue (RQ0).

-If there are one or more

processes in the queue, a

process is selected using

some scheduling policy. If

RQ0 is empty, then RQ1 is

examined, and so on.

 FCFS
Round

robin
SPN SRT HRRN Feedback

Selection

function
max[w] constant min[s] min[s – e]

max

w + s

s

æ

è
ç

ö

ø
÷ (see text)

Decision

mode

Non-

preemptive

Preemptive

(at time

quantum)

Non-

preemptive

Preemptive

(at arrival)

Non-

preemptive

Preemptive

(at time

quantum)

Through-

Put

Not

emphasized

May be

low if

quantum

is too

small

High High High
Not

emphasized

Response

time

May be

high,
especially if

there is a

large

variance in
process

execution

times

Provides

good
response

time for

short

processes

Provides

good
response

time for

short

processes

Provides

good
response

time

Provides good

response time

Not

emphasized

Overhead Minimum Minimum Can be high Can be high Can be high Can be high

Effect on

processes

Penalizes

short

processes;
penalizes

I/O bound

processes

Fair

treatment

Penalizes

long

processes

Penalizes

long

processes

Good balance
May favor

I/O bound

processes

Starvation No No Possible Possible No Possible

Table 9.3 Characteristics of Various Scheduling Policies

◼ Determines which process, among ready processes, is selected next for

execution

◼ May be based on priority, resource requirements, or the execution

characteristics of the process

◼ If based on execution characteristics, then important quantities are:

▪ w = time spent in system so far, waiting

▪ e = time spent in execution so far

▪ s = total service time required by the process, including e; generally, this

quantity must be estimated or supplied by the user

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

▪ Specifies
the instants
in time at
which the
selection
function is
exercised

▪ Two categories:

▪ Nonpreemptive : Once the

resources (CPU cycles) is

allocated to a process, the

process holds the CPU till it

gets terminated or it reaches a

waiting state.

▪ Preemptive : Interrrupt the

running process and switch the

CPU into another process.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Nonpreemptive

◼ Once a process is in the

running state, it will

continue until it terminates

or blocks itself for I/O

Preemptive
◼ Currently running process

may be interrupted and

moved to ready state by

the OS

◼ Decision to preempt may

be performed when a new

process arrives, when an

interrupt occurs that

places a blocked process in

the Ready state, or

periodically, based on a

clock interrupt

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 9.4

Process Scheduling Example

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

First-Come-First

Served (FCFS)

0 5 10 15 20

0 5 10 15 20

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

Round-Robin

(RR), q = 1

Round-Robin

(RR), q = 4

Shortest Process

Next (SPN)

Shortest Remaining

Time (SRT)

Highest Response

Ratio Next (HRRN)

Feedback

q = 1

Feedback

q = 2
i

Figure 9.5 A Comparison of Scheduling Policies

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process A B C D E

Arrival Time 0 2 4 6 8

Service Time (Ts) 3 6 4 5 2 Mean

FCFS

Finish Time 3 9 13 18 20

Turnaround Time (Tr) 3 7 9 12 12 8.60

Tr/Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR q = 1

Finish Time 4 18 17 20 15

Turnaround Time (Tr) 4 16 13 14 7 10.80

Tr/Ts 1.33 2.67 3.25 2.80 3.50 2.71

RR q = 4

Finish Time 3 17 11 20 19

Turnaround Time (Tr) 3 15 7 14 11 10.00

Tr/Ts 1.00 2.5 1.75 2.80 5.50 2.71

SPN

Finish Time 3 9 15 20 11

Turnaround Time (Tr) 3 7 11 14 3 7.60

Tr/Ts 1.00 1.17 2.75 2.80 1.50 1.84

SRT

Finish Time 3 15 8 20 10

Turnaround Time (Tr) 3 13 4 14 2 7.20

Tr/Ts 1.00 2.17 1.00 2.80 1.00 1.59

HRRN

Finish Time 3 9 13 20 15

Turnaround Time (Tr) 3 7 9 14 7 8.00

Tr/Ts 1.00 1.17 2.25 2.80 3.5 2.14

FB q = 1

Finish Time 4 20 16 19 11

Turnaround Time (Tr) 4 18 12 13 3 10.00

Tr/Ts 1.33 3.00 3.00 2.60 1.5 2.29

FB q = 2i

Finish Time 4 17 18 20 14

Turnaround Time (Tr) 4 15 14 14 6 10.60

Tr/Ts 1.33 2.50 3.50 2.80 3.00 2.63

Table 9.5

A Comparison

of Scheduling

Policies

(Table is on page 408 in textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Simplest scheduling policy

◼ Also known as first-in-first-out

(FIFO) or a strict queuing

scheme

◼ As each process becomes ready,

it joins the ready queue

◼ When the currently running

process ceases to execute, the

process that has been in the

ready queue the longest is

selected for running

◼ Performs much better for long

processes than short ones

◼ Tends to favor processor-bound

processes over I/O-bound

processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Uses preemption based on a clock

◼ A clock interrupt is generated at
periodic intervals. When the
interrupt occurs, the currently
running process is placed in the
ready queue, and the next ready job
is selected on a FCFS basis.

◼ Also known as time slicing because
each process is given a slice of time
before being preempted

◼ Principal design issue is the length
of the time quantum, or slice, to be
used

◼ Particularly effective in a general-
purpose time-sharing system or
transaction processing system

◼ One drawback is its relative
treatment of processor-bound and
I/O-bound processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process allocated

time quantum

Time

Response time

s

Quantum

q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction

complete

(a) Time quantum greater than typical interaction

Process allocated

time quantum

s

q

Process allocated

time quantum

Process

preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction

complete

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

-One useful guide is that the time quantum

should be slightly greater than the time required

for a typical interaction or process function.

-If it is less, then most processes will require at

least two-time quanta.

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release
Ready Queue

Admit
Processor

I/O 1 Queue

Auxiliary Queue

I/O 1

Occurs

I/O 2

Occurs

I/O n

Occurs

I/O 2 Queue

I/O n Queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• [HALD91] suggests a

refinement to round robin

that he refers to as a virtual

round robin (VRR) and that

avoids this unfairness.

• The new feature is an

FCFS auxiliary queue to

which processes are moved

after being released from

an I/O block.

• When a dispatching

decision is to be made,

processes in the auxiliary

queue get preference over

those in the main ready

queue.

◼ Nonpreemptive policy in which

the process with the shortest

expected processing time is

selected next

◼ A short process will jump to the

head of the queue

◼ Possibility of starvation for longer

processes

◼ One difficulty is the need to

know, or at least estimate, the

required processing time of each

process

◼ If the programmer’s estimate is

substantially under the actual

running time, the system may

abort the job

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

SPN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

One difficulty with the SPN policy is the need to know (or at least estimate)

the required processing time of each process.

SPN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

A common technique for predicting a future value on the basis of a time

series of past values is exponential averaging.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The larger the value of  , the greater is the weight given to the more

recent observations.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 9.9 compares simple averaging with exponential averaging (for two different

values of α). Here (Figure 9.9a), the observed value begins at 1, grows gradually to

a value of 10, and then stays there.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

While here (Figure 9.9b), the observed value begins at 20, declines gradually

to 10, and then stays there.

-Note that exponential averaging tracks changes in process behavior faster than

does simple averaging and that the larger value of α results in a more rapid

reaction to the change in the observed value.

◼ Preemptive version of SPN

◼ Scheduler always chooses the

process that has the shortest

expected remaining processing

time

◼ Risk of starvation of longer

processes

◼ Should give

superior

turnaround time

performance to

SPN because a

short job is given

immediate

preference to a

running longer job

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Chooses next process

with the greatest ratio

◼ Attractive because it

accounts for the age of

the process

◼ While shorter jobs are

favored, aging without

service increases the

ratio so that a longer

process will eventually

get past competing

shorter jobs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Feedback scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

If we have no indication of the relative length of various processes, then none of

SPN, SRT, and HRRN can be used. Another way of establishing a preference for

shorter jobs is to penalize jobs that have been running longer. In other words, if

we cannot focus on the time remaining to execute, let us focus on the time

spent in execution so far.

The way to do this is as follows.

• Scheduling is done on a preemptive (at time quantum) basis, and a dynamic

priority mechanism is used.

• When a process first enters the system, it is placed in RQ0 (see Figure 9.4).

• After its first preemption, when it returns to the Ready state, it is placed in

RQ1. Each subsequent time that it is preempted, it is demoted to the next

lower-priority queue.

A short process will complete quickly, without migrating very far down the

hierarchy of ready queues. A longer process will gradually drift downward. Thus,

newer, shorter processes are favored over older, longer processes.

Feedback scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

Figure 9.10 illustrates the feedback scheduling mechanism by showing the

path that a process will follow through the various queues. This approach is known

as multilevel feedback , meaning that the operating system allocates the processor

to a process and, when the process blocks or is preempted, feeds it back into one of

several priority queues.

There are a number of variations on this scheme.

• A simple version is to perform preemption in the same fashion as for round robin:

at periodic intervals. Our example shows this (see Figure 9.5 and Table 9.5) for a

quantum of one time unit. Note that in this case, the behavior is similar to round

robin with a time quantum of q = 1. Even with the allowance for greater time

allocation at lower priority, a longer process may still suffer starvation.

• A possible remedy is to promote a process to a higher-priority queue after it

spends a certain amount of time waiting for service in its current queue.

Figure 9.10 Feedback Scheduling

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Performance Comparison

◼ Any scheduling discipline that chooses the next item to be served

independent of service time obeys the relationship:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 9.6

Formulas

for Single-

Server

Queues

with Two

Priority

Categories

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

Figure 9.14 Simulation Results for Normalized Turnaround Time

Percentile of time required

N
o

rm
a

li
ze

d
 t

u
rn

a
ro

u
n

d
 t

im
e

FCFS

FCFS

HRRN

HRRN

SPN

RR (q = 1)
RR (q = 1)

FB

FB

SRT

SRT

SPN

0

1

10

100

10 20 30 40 50 60 70 80 90 100

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 9.15 Simulation Results for Waiting Time

Percentile of time required

W
a

it
 t

im
e

FCFS
FCFS

HRRN

HRRN

RR

(q = 1)

RR (q = 1)

FB

FB
SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Fair-Share Scheduling

◼ Scheduling decisions based on the process sets

◼ Each user is assigned a share of the processor

◼ Objective is to monitor usage to give fewer

resources to users who have had more than their

fair share and more to those who have had less

than their fair share

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Fair Share Scheduler (FFS)

CPUj(i – 1)

CPUj(i) = 2

GCPUk(i - 1)

GCPUk(i) = 2

CPUj(i) GCPUk(i)

Pj(i) = Basej + 2 + 4 x Wk

where

CPUj(i) = measure of processor utilization by process j through interval i,

GCPUk(i) = measure of processor utilization of group k through interval i,

Pj(i) = priority of process j at beginning of interval i; lower values equal

higher priorities,

Basej = base priority of process j, and

Wk = weighting assigned to group k, with the constraint that and

0 < Wk < 1 and ∑ Wk = 1.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The following formulas apply for process j in group k :

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Traditional UNIX Scheduling

◼ Used in both SVR3 and 4.3 BSD UNIX

◼ These systems are primarily targeted at the time-sharing interactive

environment

◼ Designed to provide good response time for interactive users while

ensuring that low-priority background jobs do not starve

◼ Employs multilevel feedback using round robin within each of the

priority queues

◼ Makes use of one-second preemption

◼ Priority is based on process type and execution history

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Scheduling Formula

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Bands

◼ Used to optimize access

to block devices and to

allow the operating

system to respond

quickly to system calls

◼ In decreasing order of

priority, the bands are:

Swapper

Block I/O
device control

File
manipulation

Character I/O
device control

User
processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary

◼ Scheduling

algorithms
◼ Short-term scheduling

criteria

◼ The use of priorities

◼ Alternative scheduling

policies

◼ Performance

comparison

◼ Fair-share scheduling

◼ Types of processor

scheduling
◼ Long-term scheduling

◼ Medium-term

scheduling

◼ Short-term scheduling

◼ Traditional UNIX

scheduling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

