
Chapter 11

I/O Management

and Disk Scheduling
Ninth Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

External devices that engage in I/O with computer

systems can be grouped into three categories:

• Suitable for communicating with the computer user

• Printers, terminals, video display, keyboard, mouse

Human readable

• Suitable for communicating with electronic equipment

• Disk drives, USB keys, sensors, controllers

Machine readable

• Suitable for communicating with remote devices

• Modems, digital line drivers

Communication

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Devices differ in a number of areas:

Data Rate

• There may be differences of magnitude between the data transfer rates

Application

• The use to which a device is put has an influence on the software

Complexity of Control

• The effect on the operating system is filtered by the complexity of the I/O module that controls the
device

Unit of Transfer

• Data may be transferred as a stream of bytes or characters or in larger blocks

Data Representation

• Different data encoding schemes are used by different devices

Error Conditions

• The nature of errors, the way in which they are reported, their consequences, and
the available range of responses differs from one device to another

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Keyboard

101 102 103 104 105

Data Rate (bps)

106 107 108 109

Mouse

Modem

Ethernet

Hard disk

Graphics display

Gigabit Ethernet

Floppy disk

Laser printer

Scanner

Optical disk

Figure 11.1 Typical I /O Device Data Rates

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Three techniques for performing I/O are:

◼ Programmed I/O
◼ The processor issues an I/O command on behalf of a process to an I/O module;

that process then busy waits for the operation to be completed before proceeding

◼ Interrupt-driven I/O
◼ The processor issues an I/O command on behalf of a process

◼ If non-blocking – processor continues to execute instructions from the process
that issued the I/O command

◼ If blocking – the next instruction the processor executes is from the OS,
which will put the current process in a blocked state and schedule another
process

◼ Direct Memory Access (DMA)
◼ A DMA module controls the exchange of data between main memory and an

I/O module

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 No Interrupts Use of Interrupts

I /O-to-memory transfer
through processor

Programmed I/O Interrupt-driven I/O

Direct I /O-to-memory
transfer

 Direct memory access (DMA)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

1
• Processor directly controls a peripheral device

2
• A controller or I/O module is added

3
• Same configuration as step 2, but now interrupts are employed

4
• The I/O module is given direct control of memory via DMA

5

• The I/O module is enhanced to become a separate processor, with
a specialized instruction set tailored for I/O

6

• The I/O module has a local memory of its own and is, in fact, a
computer in its own right

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Address

Register

Control

Logic

Data

Register

Figure 11.2 Typical DMA Block Diagram

Data

Count

Data Lines

Address Lines

Request to DMA

Acknowledge from DMA

 Interrupt

Read

Write

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, Integrated DMA-I /O

(c) I /O bus

Figure 11.3 Alternative DMA Configurations

I /O bus

System bus

I /O I /O Memory

Processor DMA Memory

I /O I /O I /O

Processor DMA DMA

I/O

I /O I /O

Memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Efficiency

◼ Major effort in I/O design

◼ Important because I/O

operations often form a

bottleneck

◼ Most I/O devices are extremely

slow compared with main

memory and the processor

◼ The area that has received the

most attention is disk I/O

Generality

◼ Desirable to handle all devices in

a uniform manner

◼ Applies to the way processes view

I/O devices and the way the

operating system manages I/O

devices and operations

◼ Diversity of devices makes it

difficult to achieve true generality

◼ Use a hierarchical, modular

approach to the design of the I/O

function

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User

Processes

Communication

Architecture

Device

I /O

Scheduling

& Control

(b) Communications port

Figure 11.4 A Model of I /O Organization

Hardware

User

Processes

Logical

I /O

Device

I /O

Scheduling

& Control

(a) Local peripheral device

Hardware

User

Processes

Directory

Management

File

System

Physical

Organization

Device

I /O

Scheduling

& Control

(c) File system

Hardware

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ To avoid overheads and inefficiencies, it is sometimes convenient to perform

input transfers in advance of requests being made, and to perform output

transfers some time after the request is made

Block-oriented device

• Stores information in blocks
that are usually of fixed size

• Transfers are made one block
at a time

• Possible to reference data by
its block number

• Disks and USB keys are
examples

Stream-oriented device

• Transfers data in and out as a
stream of bytes

• No block structure

• Terminals, printers,
communications ports,
mouse and other pointing
devices, and most other
devices that are not
secondary storage are
examples

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

No Buffer
◼ Without a buffer, the OS

directly accesses the device

when it needs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single Buffer

◼ The simplest type of support
that the operating system can
provide

◼ When a user process issues
an I/O request, the OS
assigns a buffer in the system
portion of main memory to
the operation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Input transfers are made to the system buffer

◼ Reading ahead/anticipated input

◼ Is done in the expectation that the block will eventually be needed

◼ When the transfer is complete, the process moves the block into user space
and immediately requests another block

◼ Approach generally provides a speedup compared to the lack of system
buffering

◼ The user process can be processing one block of data while the next block is
being read in

◼ The OS is able to swap the process out because the input operation is taking
place in system memory rather than user process memory

◼ Disadvantages:

◼ Complicates the logic in the operating system

◼ Swapping logic is also affected

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Can be used in a line-at-a-time

fashion or a byte-at-a-time

fashion

◼ Line-at-a-time operation is

appropriate for scroll-mode

terminals (dumb terminals)

◼ With this form of terminal,

user input is one line at a

time, with a carriage return

signaling the end of a line

◼ Output to the terminal is

similarly one line at a time

◼ Byte-at-a-time operation is

used on forms-mode

terminals, when each

keystroke is significant and

for many other peripherals,

such as sensors and

controllers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Double Buffer

◼ Assigning two system buffers to

the operation

◼ A process now transfers data to

or from one buffer while the

operating system empties or fills

the other buffer

◼ Also known as buffer swapping

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Circular Buffer

◼ When more than two buffers

are used, the collection of

buffers is itself referred to as

a circular buffer

◼ Each individual buffer is one

unit in the circular buffer

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disk
Performance
Parameters

◼ The actual details of disk I/O

operation depend on the:

◼ Computer system

◼ Operating system

◼ Nature of the I/O

channel and disk

controller hardware

Wait for

Device

Wait for

Channel

Seek Rotational

Delay

Data

Transfer

Device Busy

Figure 11.6 Timing of a Disk I /O Transfer

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ When the disk drive is operating, the disk is rotating at constant speed

◼ To read or write the head must be positioned at the desired track and
at the beginning of the desired sector on that track

◼ Track selection involves moving the head in a movable-head system or
electronically selecting one head on a fixed-head system

◼ On a movable-head system the time it takes to position the head at the
track is known as seek time

◼ The time it takes for the beginning of the sector to reach the head is
known as rotational delay

◼ The sum of the seek time and the rotational delay equals the access
time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Seek Time

◼ The time required to move the disk arm to the required track

◼ Consists of two key components:

◼ The initial startup time

◼ The time taken to traverse the tracks that have to be crossed once the
access arm is up to speed

◼ Settling time

◼ Time after positioning the head over the target track until track
identification is confirmed

◼ Much improvement comes from smaller and lighter disk
components

◼ A typical average seek time on contemporary hard disks is under
10ms

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disk Performance

◼ Rotational delay

◼ The time required for the addressed area of the disk to rotate into a

position where it is accessible by the read/write head

◼ Disks rotate at speeds ranging from 3,6000 rpm (for handheld devices

such as digital cameras) up to 15,000 rpm

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

199

175

150

125

100

75

tra
ck

 nu
mb

er
tra

ck
 nu

mb
er

tra
ck

 nu
mb

er
tra

ck
 nu

mb
er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The requested tracks, in the order

received by the disk scheduler, are 55, 58, 39, 18, 90, 160, 150, 38, 184.

(a) FIFO

(starting at track 100)

(b) SSTF

(starting at track 100)

(c) SCAN

(starting at track 100,

in the direction of

increasing track
number)

(d) C-SCAN

(starting at track 100,

in the direction of

increasing track
number)

Next
track
accessed

Number
of tracks
traversed

Next
track
accessed

Number
of tracks
traversed

Next
track
accessed

Number
of tracks
traversed

Next
track
accessed

Number
of tracks
traversed

55 45 90 10 150 50 150 50

58 3 58 32 160 10 160 10

39 19 55 3 184 24 184 24
18 21 39 16 90 94 18 166

90 72 38 1 58 32 38 20

160 70 18 20 55 3 39 1

150 10 150 132 39 16 55 16

38 112 160 10 38 1 58 3

184 146 184 24 18 20 90 32

Average
seek
length

55.3 Average
seek
length

27.5 Average
seek
length

27.8 Average
seek
length

35.8

Table 11.2 Comparison of Disk Scheduling Algorithms

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Processes in sequential order

◼ Fair to all processes

◼ Approximates random scheduling in performance

if there are many processes competing for the disk

First-In, First-Out (FIFO)

199

175

150

125

100

75

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u

m
b
er

tr
a
ck

 n
u
m

b
er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The requested tracks, in the order

received by the disk scheduler, are 55, 58, 39, 18, 90, 160, 150, 38, 184.

Name Description Remarks

Selection according to requestor

 Random Random scheduling For analysis and simulation

 FIFO First in first out Fairest of them all

 PRI Priority by process Control outside of disk queue

management

 LIFO Last in first out Maximize locality and

resource utilization

Selection according to requested item

 SSTF Shortest service time first High utilization, small queues

 SCAN Back and forth over disk Better service distribution

 C-SCAN One way with fast return Lower service variability

 N-step-SCAN SCAN of N records at a time Service guarantee

 FSCAN N-step-SCAN with N = queue

size at beginning of SCAN
cycle

Load sensitive

Table 11.3 Disk Scheduling Algorithms

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Control of the scheduling is outside the control of disk management

software

◼ Goal is not to optimize disk utilization but to meet other objectives

◼ Short batch jobs and interactive jobs are given higher priority

◼ Provides good interactive response time

◼ Longer jobs may have to wait an excessively long time

◼ A poor policy for database systems

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Shortest Service

Time First

(SSTF)

◼ Select the disk I/O request

that requires the least

movement of the disk arm

from its current position

◼ Always choose the

minimum seek time

199

175

150

125

100

75

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u

m
b
er

tr
a
ck

 n
u
m

b
er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

SCAN

◼ Also known as the elevator algorithm

◼ Arm moves in one direction only

◼ Satisfies all outstanding requests until it
reaches the last track in that direction
then the direction is reversed

◼ Favors jobs whose requests are for tracks
nearest to both innermost and outermost
tracks and favors the latest-arriving jobs

199

175

150

125

100

75

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u

m
b
er

tr
a
ck

 n
u
m

b
er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

C-SCAN
(Circular SCAN)

◼ Restricts scanning to one

direction only

◼ When the last track has been

visited in one direction, the arm

is returned to the opposite end of

the disk and the scan begins

again

199

175

150

125

100

75

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u
m

b
er

tr
a
ck

 n
u

m
b
er

tr
a
ck

 n
u
m

b
er

50

25

0

(a) FIFO Time

Time

Time

Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

Figure 11.7 Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

With SSTF, SCAN, and C-SCAN, it is possible that the arm may not move for a considerable
period of time. For example, if one or a few processes have high access rates to one track,
they can monopolize the entire device by repeated requests to that track. High-density
multisurface disks are more likely to be affected by this characteristic than lower-density
disks and/or disks with only one or two surfaces. To avoid this “arm stickiness,” the disk
request queue can be segmented, with one segment at a time being processed completely.
Two examples of this approach are N -step-SCAN and FSCAN.

◼ Segments the disk request queue into subqueues of length N

◼ Subqueues are processed one at a time, using SCAN

◼ While a queue is being processed new requests must be added to some
other queue

◼ If fewer than N requests are available at the end of a scan, all of them
are processed with the next scan

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Uses two subqueues

◼ When a scan begins, all of the requests are in one of the queues,

with the other empty

◼ During scan, all new requests are put into the other queue

◼ Service of new requests is deferred until all of the old requests have

been processed

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Redundant Array

of Independent

Disks

◼ Consists of seven

levels, zero through

six

Design
architectures
share three

characteristics:

RAID is a set of
physical disk drives

viewed by the operating
system as a single logical

drive

Data are distributed
across the physical

drives of an array in
a scheme known as

striping

Redundant disk capacity is
used to store parity
information, which

guarantees data
recoverability in case of a

disk failure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ The term was originally coined in a paper by a group of researchers at the

University of California at Berkeley

◼ The paper outlined various configurations and applications and

introduced the definitions of the RAID levels

◼ Strategy employs multiple disk drives and distributes data in such a way as

to enable simultaneous access to data from multiple drives

◼ Improves I/O performance and allows easier incremental increases in

capacity

◼ The unique contribution is to address effectively the need for redundancy

◼ Makes use of stored parity information that enables the recovery of data

lost due to a disk failure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Category Level Description
Disks
required

Data availability
Large I /O data
transfer capacity

Small I /O request rate

Striping 0 Nonredundant N
Lower than single

disk
Very high

Very high for both read

and write

Mirroring 1 Mirrored 2N

Higher than RAID

2, 3, 4, or 5; lower

than RAID 6

Higher than single

disk for read;

similar to single

disk for write

Up to twice that of a

single disk for read;

similar to single disk

for write

2
Redundant via

Hamming code
N + m

Much higher than

single disk;

comparable to

RAID 3, 4, or 5

Highest of all

listed alternatives

Approximately twice

that of a single disk

Parallel

access

3 Bit-interleaved parity N + 1

Much higher than

single disk;

comparable to

RAID 2, 4, or 5

Highest of all

listed alternatives

Approximately twice

that of a single disk

4
Block-interleaved

parity
N + 1

Much higher than

single disk;

comparable to

RAID 2, 3, or 5

Similar to RAID 0

for read;

significantly lower

than single disk

for write

Similar to RAID 0 for

read; significantly

lower than single disk

for write

5
Block-interleaved

distributed parity
N + 1

Much higher than

single disk;

comparable to

RAID 2, 3, or 4

Similar to RAID 0

for read; lower

than single disk

for write

Similar to RAID 0 for

read; generally lower

than single disk for

write

Independent

access

6
Block-interleaved dual

distributed parity
N + 2

Highest of all

listed alternatives

Similar to RAID 0

for read; lower

than RAID 5 for

write

Similar to RAID 0 for

read; significantly

lower than RAID 5 for

write

Table 11.4 RAID LevelsN = number of data disks; m proportional to log N

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(Page 498 in textbook)

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Of the seven

RAID levels

described,

only four are

commonly

used: RAID

levels 0, 1,

5, and 6.

RAID
Level 0

◼ Not a true RAID because it does not

include redundancy to improve

performance or provide data protection

◼ User and system data are distributed

across all of the disks in the array

◼ Logical disk is divided into strips

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RAID
Level 1

◼ Redundancy is achieved by the simple

expedient of duplicating all the data

◼ There is no “write penalty”

◼ When a drive fails the data may still be

accessed from the second drive

◼ Principal disadvantage is the cost
strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RAID
Level 2

◼ Makes use of a parallel access

technique

◼ Data striping is used

◼ Typically a Hamming code is used

◼ Effective choice in an environment in

which many disk errors occur

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

Figure 11.8 RAID Levels (page 1 of 2)© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RAID
Level 3

◼ Requires only a single redundant disk,

no matter how large the disk array

◼ Employs parallel access, with data

distributed in small strips

◼ Can achieve very high data transfer

rates

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RAID
Level 4

◼ Makes use of an independent access

technique

◼ A bit-by-bit parity strip is calculated across

corresponding strips on each data disk,

and the parity bits are stored in the

corresponding strip on the parity disk

◼ Involves a write penalty when an I/O write

request of small size is performed

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RAID
Level 5

◼ Similar to RAID-4 but distributes the

parity bits across all disks

◼ Typical allocation is a round-robin

scheme

◼ Has the characteristic that the loss of

any one disk does not result in data loss

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

RAID
Level 6

◼ Two different parity calculations are

carried out and stored in separate blocks

on different disks

◼ Provides extremely high data availability

◼ Incurs a substantial write penalty

because each write affects two parity

blocks

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

Figure 11.8 RAID Levels (page 2 of 2)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy)

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Cache memory is used to apply to a memory that is smaller and faster than

main memory and that is interposed between main memory and the

processor

◼ Reduces average memory access time by exploiting the principle of locality

◼ Disk cache is a buffer in main memory for disk sectors

◼ Contains a copy of some of the sectors on the disk

When an I/O request is made
for a particular sector, a check

is made to determine if the
sector is in the disk cache

If YES
The request is satisfied

via the cache

If NO
The requested sector is

read into the disk
cache from the disk

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Most commonly used algorithm that deals with the design issue of

replacement strategy

◼ The block that has been in the cache the longest with no reference

to it is replaced

◼ A stack of pointers reference the cache

◼ Most recently referenced block is on the top of the stack

◼ When a block is referenced or brought into the cache, it is placed on the

top of the stack

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ The block that has experienced the fewest references is replaced

◼ A counter is associated with each block

◼ Counter is incremented each time block is accessed

◼ When replacement is required, the block with the smallest count is

selected

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

MRU

Re-reference;

count unchanged

(a) FIFO

New Section Old Section

Miss (new block brought in)

count := 1

Re-reference;

count := count + 1

LRU

MRU

(b) Use of three sections

Figure 11.9 Frequency-Based Replacement

New Section

LRU

Middle Section Old Section

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

To overcome the difficulty with LFU, a technique known as frequency-

based replacement is proposed in [ROBI90].

Figure 11.10 Some Disk Cache Performance Results Using LRU

50

Cache size (megabytes)

IBM SVS

IBM MVS

VAX UNIX

D
is

k
 c

a
ch

e
m

is
s

ra
te

 (
%

)

0

10

20

30

40

50

60

10 15 20 25 30

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 11.11 Disk Cache Performance Using Frequency-Based Replacement [ROBI90]

50

Cache size (megabytes)

IBM VM

IBM MVS

VAX UNIX

D
is

k
 c

a
ch

e
m

is
s

ra
te

 (
%

)

0

10

20

30

40

50

60

70

10 15 20 25 30

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Character Block

Buffer Cache

File Subsystem

Figure 11.12 UNIX I /O Structure

Device Drivers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

In UNIX, each individual I/O device is associated with a special file. These are managed by the file system

and are read and written in the same manner as user data files. This provides a clean, uniform interface to

users and processes. To read from or write to a device, read and write requests are made for the special

file associated with the device.

There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O passes through system buffers,

whereas unbuffered I/O typically involves the DMA facility, with the transfer taking place directly between

the I/O module and the process I/O area. For buffered I/O, two types of buffers are used: system buffer

caches and character queues.

UNIX Buffer Cache
◼ Is essentially a disk cache

◼ I/O operations with disk are handled through the buffer cache

◼ The data transfer between the buffer cache and the user process space
always occurs using DMA

◼ Does not use up any processor cycles

◼ Does consume bus cycles

◼ Three lists are maintained:

◼ Free list
◼ List of all slots in the cache that are available for allocation

◼ Device list
◼ List of all buffers currently associated with each disk

◼ Driver I/O queue
◼ List of buffers that are actually undergoing or waiting for I/O on a particular

device

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Device#, Block#

Figure 11.13 UNIX Buffer Cache Organization

Hash Table Buffer Cache

Free List

Pointer

F
re

e
L

is
t

P
o
in

te
rs

H
a
sh

 P
o
in

te
rs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Character queues may only be read once

As each character is read, it is effectively destroyed

Either written by the I/O device and read by the process or
vice versa

Producer/consumer model is used

Used by character oriented devices

Terminals and printers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Is simply DMA between device and process space

◼ Is always the fastest method for a process to perform I/O

◼ Process is locked in main memory and cannot be swapped out

◼ I/O device is tied up with the process for the

duration of the transfer making it unavailable

for other processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Unbuffered I /O Buffer Cache Character Queue

Disk drive X X

Tape drive X X

Terminals X

Communication lines X

Printers X X

Table 11.5 Device I/O in UNIX : shows the types of I/O suited to each type of

device
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Very similar to other UNIX implementation

◼ Associates a special file with each I/O device driver

◼ Block, character, and network devices are recognized

◼ Default disk scheduler in Linux 2.4 is the Linux Elevator

For Linux 2.6 the Elevator algorithm has been
augmented by two additional algorithms:

• The deadline I/O scheduler

• The anticipatory I/O scheduler

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Maintains a single queue for disk read and write requests and

performs both sorting and merging functions on the queue

◼ When a new request is added to the queue, four operations are

considered in order:

◼ If the request is to the same on-disk sector or an immediately adjacent

sector to a pending request in the queue, then the existing request and

the new request are merged into one request

◼ If a request in the queue is sufficiently old, the new request is inserted at

the tail of the queue

◼ If there is a suitable location, the new request is inserted in sorted order

◼ If there is no suitable location, the new request is placed at the tail of

the queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Two problems manifest themselves with the elevator scheme:

◼ A distant block request can be delayed for a substantial time because the queue is
dynamically updated

◼ A stream of write requests can block a read request for a considerable time, and thus
block a process

◼ To overcome these problems, a new deadline I/O scheduler was developed in 2002

◼ This scheduler makes use of two pairs of queues

◼ In addition to each incoming request being placed in a sorted elevator queue as before,
the same request is placed at the tail of a read FIFO queue for a read request or a
write FIFO queue for a write request

◼ When a request is satisfied, it is removed from the head of the sorted queue and also
from the appropriate FIFO queue

◼ However, when the item at the head of one of the FIFO queues becomes older than its expiration
time, then the scheduler next dispatches from that FIFO queue, taking the expired request, plus the
next few requests from the queue

◼ As each request is dispatched, it is also removed from the sorted queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Elevator and deadline scheduling can be counterproductive if there

are numerous synchronous read requests

◼ In Linux, the anticipatory scheduler is superimposed on the deadline

scheduler

◼ When a read request is dispatched, the anticipatory scheduler causes

the scheduling system to delay

◼ There is a good chance that the application that issued the last read

request will issue another read request to the same region of the disk

◼ That request will be serviced immediately

◼ Otherwise the scheduler resumes using the deadline scheduling algorithm

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The NOOP Scheduler

This is the simplest among Linux I/O schedulers

It is a minimal scheduler that inserts I/O requests into a FIFO
queue and uses merging

Its main uses include nondisk-based block devices such as
memory devices, and specialized software or hardware
environments that do their own scheduling and need only minimal
support in the kernel

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Completely Fair Queuing I/O

Scheduler (CFQ)

◼ Was developed in 2003

◼ Is the default I/O scheduler in Linux

◼ The CFQ scheduler guarantees a fair allocation of the disk I/O bandwidth

among all processes

◼ It maintains per process I/O queues
◼ Each process is assigned a single queue

◼ Each queue has an allocated timeslice

◼ Requests are submitted into these queues and are processed in round robin

◼ When the scheduler services a specific queue, and there are no more

requests in that queue, it waits in idle mode for a predefined time interval for

new requests, and if there are no requests, it continues to the next queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ For Linux 2.4 and later there is a single unified

page cache for all traffic between disk and main

memory

◼ Benefits:

◼ When it is time to write back dirty pages to disk, a

collection of them can be ordered properly and

written out efficiently

◼ Because of the principle of temporal locality, pages in

the page cache are likely to be referenced again before

they are flushed from the cache, thus saving a disk

I/O operation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

I /O Manager

Cache

Manager

File System

Drivers

Network

Drivers

Hardware

Device Drivers

Figure 11.15 Windows I /O Manager

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Network Drivers

◼ Windows includes
integrated networking
capabilities and support
for remote file systems

◼ The facilities are
implemented as software
drivers

◼ Hardware Device Drivers

◼ The source code of
Windows device drivers
is portable across
different processor types

◼ Cache Manager

◼ Maps regions of files into
kernel virtual memory and
then relies on the virtual
memory manager to copy
pages to and from the files
on disk

◼ File System Drivers

◼ Sends I/O requests to the

software drivers that

manage the hardware

device adapter

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Windows offers two
modes of I/O

operation

Asynchronous

Is used whenever
possible to optimize

application
performance

An application initiates an
I/O operation and then
can continue processing
while the I/O request is

fulfilled

Synchronous

The application is
blocked until the I/O
operation completes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

▪ Windows provides five different techniques

for signaling I/O completion:

1 • Signaling the file object

2 • Signaling an event object

3 • Asynchronous procedure call

4 • I/O completion ports

5 • Polling

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Windows supports two sorts of RAID configurations:

Hardware
RAID

Separate physical
disks combined into
one or more logical

disks by the disk
controller or disk
storage cabinet

hardware

Software RAID

Noncontiguous disk
space combined into
one or more logical

partitions by the
fault-tolerant

software disk driver,
FTDISK

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

◼ Volume Shadow

Copies

◼ Efficient way of making

consistent snapshots of

volumes so they can be

backed up

◼ Also useful for archiving

files on a per-volume basis

◼ Implemented by a software

driver that makes copies of

data on the volume before

it is overwritten

◼ Volume

Encryption

◼ Windows uses

BitLocker to encrypt

entire volumes

◼ More secure than

encrypting individual

files

◼ Allows multiple

interlocking layers of

security

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary
◼ I/O devices

◼ Organization of the I/O function

◼ The evolution of the I/O function

◼ Direct memory access

◼ Operating system design issues

◼ Design objectives

◼ Logical structure of the I/O function

◼ I/O Buffering

◼ Single/double/circular buffer

◼ The utility of buffering

◼ Disk scheduling

◼ Disk performance parameters

◼ Disk scheduling policies

◼ Raid

◼ Raid levels 0 – 6

◼ Disk cache

◼ Design and performance considerations

◼ UNIX SVR4 I/O

◼ Buffer cache

◼ Character queue

◼ Unbuffered I/O

◼ UNIX devices

◼ Linux I/O

◼ Disk scheduling

◼ Linux page cache

◼ Windows I/O

◼ Basic I/O facilities

◼ Asynchronous and Synchronous I/O

◼ Software RAID

◼ Volume shadow copies/encryption

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

