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External devices that engage in I/O with computer 

systems can be grouped into three categories:

• Suitable for communicating with the computer user

• Printers, terminals, video display, keyboard, mouse

Human readable

• Suitable for communicating with electronic equipment

• Disk drives, USB keys, sensors, controllers

Machine readable

• Suitable for communicating with remote devices

• Modems, digital line drivers

Communication
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◼ Devices differ in a number of  areas:

Data Rate

• There may be differences of  magnitude between the data transfer rates

Application

• The use to which a device is put has an influence on the software

Complexity of  Control

• The effect on the operating system is filtered by the complexity of  the I/O module that controls the   
device

Unit of  Transfer

• Data may be transferred as a stream of bytes or characters or in larger blocks

Data Representation

• Different data encoding schemes are used by different devices

Error Conditions

• The nature of  errors, the way in which they are reported, their consequences, and 
the available range of  responses differs from one device to another
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Figure 11.1  Typical I /O Device Data Rates
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◼ Three techniques for performing I/O are:

◼ Programmed I/O
◼ The processor issues an I/O command on behalf  of  a process to an I/O module; 

that process then busy waits for the operation to be completed before proceeding

◼ Interrupt-driven I/O
◼ The processor issues an I/O command on behalf  of  a process

◼ If  non-blocking – processor continues to execute instructions from the process 
that issued the I/O command

◼ If  blocking – the next instruction the processor executes is from the OS, 
which will put the current process in a blocked state and schedule another 
process

◼ Direct Memory Access (DMA)
◼ A DMA module controls the exchange of  data between main memory and an 

I/O module
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Direct I /O-to-memory 
transfer 

 Direct memory access (DMA) 
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1
• Processor directly controls a peripheral device

2
• A controller or I/O module is added

3
• Same configuration as step 2, but now interrupts are employed

4
• The I/O module is given direct control of  memory via DMA

5

• The I/O module is enhanced to become a separate processor, with 
a specialized instruction set tailored for I/O

6

• The I/O module has a local memory of  its own and is, in fact, a 
computer in its own right 
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Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, Integrated DMA-I /O

(c) I /O bus

Figure 11.3  Alternative DMA Configurations
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Efficiency

◼ Major effort in I/O design

◼ Important because I/O 

operations often form a 

bottleneck

◼ Most I/O devices are extremely 

slow compared with main 

memory and the processor

◼ The area that has received the 

most attention is disk I/O

Generality

◼ Desirable to handle all devices in 

a uniform manner

◼ Applies to the way processes view 

I/O devices and the way the 

operating system manages I/O 

devices and operations

◼ Diversity of  devices makes it 

difficult to achieve true generality

◼ Use a hierarchical, modular 

approach to the design of  the I/O 

function
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◼ To avoid overheads and inefficiencies, it is sometimes convenient to perform 

input transfers in advance of  requests being made, and to perform output 

transfers some time after the request is made

Block-oriented device

• Stores information in blocks 
that are usually of  fixed size

• Transfers are made one block 
at a time

• Possible to reference data by 
its block number

• Disks and USB keys are 
examples

Stream-oriented device

• Transfers data in and out as a 
stream of  bytes

• No block structure

• Terminals, printers, 
communications ports, 
mouse and other pointing 
devices, and most other 
devices that are not 
secondary storage are 
examples
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No Buffer
◼ Without a buffer, the OS 

directly accesses the device 

when it needs
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Single Buffer

◼ The simplest type of  support 
that the operating system can 
provide

◼ When a user process issues 
an I/O request, the OS 
assigns a buffer in the system 
portion of  main memory to 
the operation
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◼ Input transfers are made to the system buffer

◼ Reading ahead/anticipated input

◼ Is done in the expectation that the block will eventually be needed

◼ When the transfer is complete, the process moves the block into user space 
and immediately requests another block

◼ Approach generally provides a speedup compared to the lack of  system 
buffering

◼ The user process can be processing one block of  data while the next block is 
being read in

◼ The OS is able to swap the process out because the input operation is taking 
place in system memory rather than user process memory

◼ Disadvantages:

◼ Complicates the logic in the operating system

◼ Swapping logic is also affected
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◼ Can be used in a line-at-a-time 

fashion or a byte-at-a-time 

fashion

◼ Line-at-a-time operation is 

appropriate for scroll-mode 

terminals (dumb terminals)

◼ With this form of  terminal, 

user input is one line at a 

time, with a carriage return 

signaling the end of  a line

◼ Output to the terminal is 

similarly one line at a time

◼ Byte-at-a-time operation is 

used on forms-mode 

terminals, when each 

keystroke is significant and 

for many other peripherals, 

such as sensors and 

controllers
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Double Buffer

◼ Assigning two system buffers to 

the operation

◼ A process now transfers data to 

or from one buffer while the 

operating system empties or fills 

the other buffer

◼ Also known as buffer swapping
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Circular Buffer

◼ When more than two buffers 

are used, the collection of  

buffers is itself  referred to as 

a circular buffer

◼ Each individual buffer is one 

unit in the circular buffer
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Disk 
Performance 
Parameters

◼ The actual details of  disk I/O 

operation depend on the:

◼ Computer system

◼ Operating system

◼ Nature of  the I/O 

channel and disk 

controller hardware

Wait for

Device

Wait for

Channel

Seek Rotational

Delay

Data

Transfer

Device Busy

Figure 11.6  Timing of a Disk I /O Transfer
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◼ When the disk drive is operating, the disk is rotating at constant speed

◼ To read or write the head must be positioned at the desired track and 
at the beginning of  the desired sector on that track

◼ Track selection involves moving the head in a movable-head system or 
electronically selecting one head on a fixed-head system

◼ On a movable-head system the time it takes to position the head at the 
track is known as seek time

◼ The time it takes for the beginning of  the sector to reach the head is 
known as rotational delay

◼ The sum of  the seek time and the rotational delay equals the access 
time
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Seek Time

◼ The time required to move the disk arm to the required track

◼ Consists of  two key components:

◼ The initial startup time

◼ The time taken to traverse the tracks that have to be crossed once the 
access arm is up to speed

◼ Settling time

◼ Time after positioning the head over the target track until track 
identification is confirmed

◼ Much improvement comes from smaller and lighter disk 
components

◼ A typical average seek time on contemporary hard disks is under 
10ms

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Disk Performance

◼ Rotational delay

◼ The time required for the addressed area of  the disk to rotate into a 

position where it is accessible by the read/write head

◼ Disks rotate at speeds ranging from 3,6000 rpm (for handheld devices 

such as digital cameras) up to 15,000 rpm
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Figure 11.7   Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN
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The requested tracks, in the order

received by the disk scheduler, are 55, 58, 39, 18, 90, 160, 150, 38, 184.



(a) FIFO 

(starting at track 100) 

(b) SSTF 

(starting at track 100) 

(c) SCAN 

(starting at track 100, 

in the direction of 

increasing track 
number) 

(d) C-SCAN 

(starting at track 100, 

in the direction of 

increasing track 
number) 

Next 
track 
accessed 

Number 
of tracks 
traversed 

Next 
track 
accessed 

Number 
of tracks 
traversed 

Next 
track 
accessed 

Number 
of tracks 
traversed 

Next 
track 
accessed 

Number 
of tracks 
traversed 

55 45 90 10 150 50 150 50 

58 3 58 32 160 10 160 10 

39 19 55 3 184 24 184 24 
18 21 39 16 90 94 18 166 

90 72 38 1 58 32 38 20 

160 70 18 20 55 3 39 1 

150 10 150 132 39 16 55 16 

38 112 160 10 38 1 58 3 

184 146 184 24 18 20 90 32 

Average 
seek 
length 

55.3 Average 
seek 
length 

27.5 Average 
seek 
length 

27.8 Average 
seek 
length 

35.8 

 
Table 11.2   Comparison of Disk Scheduling Algorithms
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◼ Processes in sequential order

◼ Fair to all processes

◼ Approximates random scheduling in performance 

if  there are many processes competing for the disk
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Figure 11.7   Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN
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The requested tracks, in the order

received by the disk scheduler, are 55, 58, 39, 18, 90, 160, 150, 38, 184.



Name Description Remarks 

Selection according to requestor 

 Random Random scheduling For analysis and simulation 

 FIFO First in first out Fairest of them all 

 PRI Priority by process Control outside of disk queue 

management 

 LIFO Last in first out Maximize locality and 

resource utilization 

Selection according to requested item 

 SSTF Shortest service time first High utilization, small queues 

 SCAN Back and forth over disk Better service distribution 

 C-SCAN One way with fast return Lower service variability 

 N-step-SCAN SCAN of N records at a time Service guarantee 

 FSCAN N-step-SCAN with N = queue 

size at beginning of SCAN 
cycle 

Load sensitive 

 
Table 11.3   Disk Scheduling Algorithms
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◼ Control of  the scheduling is outside the control of  disk management 

software

◼ Goal is not to optimize disk utilization but to meet other objectives

◼ Short batch jobs and interactive jobs are given higher priority

◼ Provides good interactive response time

◼ Longer jobs may have to wait an excessively long time

◼ A poor policy for database systems
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Shortest Service

Time First 

(SSTF)

◼ Select the disk I/O request 

that requires the least 

movement of  the disk arm 

from its current position

◼ Always choose the 

minimum seek time
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Figure 11.7   Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN
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SCAN

◼ Also known as the elevator algorithm

◼ Arm moves in one direction only

◼ Satisfies all outstanding requests until it 
reaches the last track in that direction 
then the direction is reversed

◼ Favors jobs whose requests are for tracks 
nearest to both innermost and outermost 
tracks and favors the latest-arriving jobs
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Figure 11.7   Comparison of Disk Scheduling Algorithms (see Table 11.3)

(d) C-SCAN
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C-SCAN
(Circular SCAN)

◼ Restricts scanning to one 

direction only

◼ When the last track has been 

visited in one direction, the arm 

is returned to the opposite end of  

the disk and the scan begins 

again
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With SSTF, SCAN, and C-SCAN, it is possible that the arm may not move for a considerable 
period of time. For example, if one or a few processes have high access rates to one track, 
they can monopolize the entire device by repeated requests to that track. High-density 
multisurface disks are more likely to be affected by this characteristic than lower-density 
disks and/or disks with only one or two surfaces. To avoid this “arm stickiness,” the disk 
request queue can be segmented, with one segment at a time being processed completely. 
Two examples of this approach are N -step-SCAN and FSCAN.

◼ Segments the disk request queue into subqueues of  length N

◼ Subqueues are processed one at a time, using SCAN

◼ While a queue is being processed new requests must be added to some 
other queue

◼ If  fewer than N requests are available at the end of  a scan, all of  them 
are processed with the next scan
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◼ Uses two subqueues

◼ When a scan begins, all of  the requests are in one of  the queues, 

with the other empty

◼ During scan, all new requests are put into the other queue

◼ Service of  new requests is deferred until all of  the old requests have 

been processed
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◼ Redundant Array 

of  Independent 

Disks

◼ Consists of  seven 

levels, zero through 

six

Design 
architectures 
share three 

characteristics:

RAID is a set of  
physical disk drives 

viewed by the operating 
system as a single logical 

drive

Data are distributed 
across the physical 

drives of  an array in 
a scheme known as 

striping

Redundant disk capacity is 
used to store parity 
information, which 

guarantees data 
recoverability in case of  a 

disk failure
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◼ The term was originally coined in a paper by a group of  researchers at the 

University of  California at Berkeley

◼ The paper outlined various configurations and applications and 

introduced the definitions of  the RAID levels

◼ Strategy employs multiple disk drives and distributes data in such a way as 

to enable simultaneous access to data from multiple drives

◼ Improves I/O performance and allows easier incremental increases in 

capacity

◼ The unique contribution is to address effectively the need for redundancy

◼ Makes use of  stored parity information that enables the recovery of  data 

lost due to a disk failure
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Category Level Description 
Disks 
required 

Data availability 
Large I /O data 
transfer capacity 

Small I /O request rate 

Striping 0 Nonredundant N 
Lower than single 

disk 
Very high 

Very high for both read 

and write 

Mirroring 1 Mirrored 2N 

Higher than RAID 

2, 3, 4, or 5; lower 

than RAID 6 

Higher than single 

disk for read; 

similar to single 

disk for write 

Up to twice that of a 

single disk for read; 

similar to single disk 

for write 

2 
Redundant via 

Hamming code 
N + m 

Much higher than 

single disk; 

comparable to 

RAID 3, 4, or 5 

Highest of all 

listed alternatives 

Approximately twice 

that of a single disk 

Parallel 

access 

3 Bit-interleaved parity N + 1 

Much higher than 

single disk; 

comparable to 

RAID 2, 4, or 5 

Highest of all 

listed alternatives 

Approximately twice 

that of a single disk 

4 
Block-interleaved 

parity 
N + 1 

Much higher than 

single disk; 

comparable to 

RAID 2, 3, or 5 

Similar to RAID 0 

for read; 

significantly lower 

than single disk 

for write 

Similar to RAID 0 for 

read; significantly 

lower than single disk 

for write 

5 
Block-interleaved 

distributed parity 
N + 1 

Much higher than 

single disk; 

comparable to 

RAID 2, 3, or 4 

Similar to RAID 0 

for read; lower 

than single disk 

for write 

Similar to RAID 0 for 

read; generally lower 

than single disk for 

write 

Independent 

access 

6 
Block-interleaved dual 

distributed parity 
N + 2 

Highest of all 

listed alternatives 

Similar to RAID 0 

for read; lower 

than RAID 5 for 

write 

Similar to RAID 0 for 

read; significantly 

lower than RAID 5 for 

write 

 

Table 11.4  RAID LevelsN = number of  data disks;    m proportional to log N
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(a) RAID 0 (non-redundant)
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Figure 11.8    RAID Levels (page 1 of 2)
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block 12

(e) RAID 4 (block-level parity)
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Figure 11.8   RAID Levels (page 2 of 2)
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Of the seven 

RAID levels 

described, 

only four are 

commonly 

used: RAID

levels 0, 1, 

5, and 6.



RAID 
Level 0

◼ Not a true RAID because it does not 

include redundancy to improve 

performance or provide data protection

◼ User and system data are distributed 

across all of  the disks in the array

◼ Logical disk is divided into strips
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Figure 11.8    RAID Levels (page 1 of 2)
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RAID 
Level 1

◼ Redundancy is achieved by the simple 

expedient of  duplicating all the data

◼ There is no “write penalty”

◼ When a drive fails the data may still be 

accessed from the second drive

◼ Principal disadvantage is the cost
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Figure 11.8    RAID Levels (page 1 of 2)
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RAID 
Level 2

◼ Makes use of  a parallel access 

technique

◼ Data striping is used

◼ Typically a Hamming code is used

◼ Effective choice in an environment in 

which many disk errors occur
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RAID 
Level 3

◼ Requires only a single redundant disk, 

no matter how large the disk array

◼ Employs parallel access, with data 

distributed in small strips

◼ Can achieve very high data transfer 

rates
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RAID 
Level 4

◼ Makes use of  an independent access 

technique

◼ A bit-by-bit parity strip is calculated across 

corresponding strips on each data disk, 

and the parity bits are stored in the 

corresponding strip on the parity disk

◼ Involves a write penalty when an I/O write 

request of  small size is performed
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RAID 
Level 5

◼ Similar to RAID-4 but distributes the 

parity bits across all disks

◼ Typical allocation is a round-robin 

scheme

◼ Has the characteristic that the loss of  

any one disk does not result in data loss
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RAID 
Level 6

◼ Two different parity calculations are 

carried out and stored in separate blocks 

on different disks

◼ Provides extremely high data availability

◼ Incurs a substantial write penalty 

because each write affects two parity 

blocks
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◼ Cache memory is used to apply to a memory that is smaller and faster than 

main memory and that is interposed between main memory and the 

processor

◼ Reduces average memory access time by exploiting the principle of  locality

◼ Disk cache is a buffer in main memory for disk sectors

◼ Contains a copy of  some of  the sectors on the disk

When an I/O request is made 
for a particular sector, a check 

is made to determine if  the 
sector is in the disk cache

If  YES
The request is satisfied 

via the cache

If  NO
The requested sector is 

read into the disk 
cache from the disk
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◼ Most commonly used algorithm that deals with the design issue of  

replacement strategy

◼ The block that has been in the cache the longest with no reference 

to it is replaced

◼ A stack of  pointers reference the cache

◼ Most recently referenced block is on the top of  the stack

◼ When a block is referenced or brought into the cache, it is placed on the 

top of  the stack
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◼ The block that has experienced the fewest references is replaced

◼ A counter is associated with each block

◼ Counter is incremented each time block is accessed

◼ When replacement is required, the block with the smallest count is 

selected
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MRU

Re-reference;

count unchanged

(a)  FIFO

New Section Old Section

Miss (new block brought in)
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(b)  Use of three sections

Figure 11.9  Frequency-Based Replacement
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To overcome the difficulty with LFU, a technique known as frequency-

based replacement is proposed in [ROBI90]. 



Figure 11.10  Some Disk Cache Performance Results Using LRU
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Figure 11.11  Disk Cache Performance Using Frequency-Based Replacement [ROBI90]
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Character Block

Buffer Cache

File Subsystem

Figure 11.12   UNIX I /O Structure

Device Drivers
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In UNIX, each individual I/O device is associated with a special file. These are managed by the file system 

and are read and written in the same manner as user data files. This provides a clean, uniform interface to 

users and processes. To read from or write to a device, read and write requests are made for the special 

file associated with the device.

There are two types of I/O in UNIX: buffered and unbuffered. Buffered I/O passes through system buffers, 

whereas unbuffered I/O typically involves the DMA facility, with the transfer taking place directly between 

the I/O module and the process I/O area. For buffered I/O, two types of buffers are used: system buffer

caches and character queues.



UNIX Buffer Cache
◼ Is essentially a disk cache

◼ I/O operations with disk are handled through the buffer cache

◼ The data transfer between the buffer cache and the user process space 
always occurs using DMA

◼ Does not use up any processor cycles 

◼ Does consume bus cycles

◼ Three lists are maintained:

◼ Free list
◼ List of  all slots in the cache that are available for allocation

◼ Device list
◼ List of  all buffers currently associated with each disk

◼ Driver I/O queue
◼ List of  buffers that are actually undergoing or waiting for I/O on a particular 

device
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Figure 11.13  UNIX Buffer Cache Organization
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Character queues may only be read once

As each character is read, it is effectively destroyed

Either written by the I/O device and read by the process or 
vice versa

Producer/consumer model is used

Used by character oriented devices 

Terminals and printers
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◼ Is simply DMA between device and process space

◼ Is always the fastest method for a process to perform I/O

◼ Process is locked in main memory and cannot be swapped out

◼ I/O device is tied up with the process for the                               

duration of  the transfer making it unavailable                                          

for other processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



 Unbuffered I /O Buffer Cache Character Queue 

Disk drive X X  

Tape drive X X  

Terminals   X 

Communication lines   X 

Printers X  X 

 

Table 11.5 Device I/O in UNIX : shows the types of I/O suited to each type of 

device
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



◼ Very similar to other UNIX implementation

◼ Associates a special file with each I/O device driver

◼ Block, character, and network devices are recognized

◼ Default disk scheduler in Linux 2.4 is the Linux Elevator

For Linux 2.6 the Elevator algorithm has been 
augmented by two additional algorithms:

• The deadline I/O scheduler

• The anticipatory I/O scheduler
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◼ Maintains a single queue for disk read and write requests and 

performs both sorting and merging functions on the queue

◼ When a new request is added to the queue, four operations are 

considered in order:

◼ If  the request is to the same on-disk sector or an immediately adjacent 

sector to a pending request in the queue, then the existing request and 

the new request are merged into one request

◼ If  a request in the queue is sufficiently old, the new request is inserted at 

the tail of  the queue

◼ If  there is a suitable location, the new request is inserted in sorted order

◼ If  there is no suitable location, the new request is placed at the tail of  

the queue
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◼ Two problems manifest themselves with the elevator scheme:

◼ A distant block request can be delayed for a substantial time because the queue is 
dynamically updated

◼ A stream of  write requests can block a read request for a considerable time, and thus 
block a process

◼ To overcome these problems, a new deadline I/O scheduler was developed in 2002

◼ This scheduler makes use of  two pairs of  queues

◼ In addition to each incoming request being placed in a sorted elevator queue as before, 
the same request is placed at the tail of  a read FIFO queue for a read request or a 
write FIFO queue for a write request

◼ When a request is satisfied, it is removed from the head of  the sorted queue and also 
from the appropriate FIFO queue

◼ However, when the item at the head of  one of  the FIFO queues becomes older than its expiration 
time, then the scheduler next dispatches from that FIFO queue, taking the expired request, plus the 
next few requests from the queue

◼ As each request is dispatched, it is also removed from the sorted queue
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◼ Elevator and deadline scheduling can be counterproductive if  there 

are numerous synchronous read requests

◼ In Linux, the anticipatory scheduler is superimposed on the deadline 

scheduler

◼ When a read request is dispatched, the anticipatory scheduler causes 

the scheduling system to delay

◼ There is a good chance that the application that issued the last read 

request will issue another read request to the same region of  the disk

◼ That request will be serviced immediately

◼ Otherwise the scheduler resumes using the deadline scheduling algorithm

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



The NOOP Scheduler

This is the simplest among Linux I/O schedulers

It is a minimal scheduler that inserts I/O requests into a FIFO 
queue and uses merging

Its main uses include nondisk-based block devices such as 
memory devices, and specialized software or hardware 
environments that do their own scheduling and need only minimal 
support in the kernel
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Completely Fair Queuing I/O 

Scheduler (CFQ)

◼ Was developed in 2003

◼ Is the default I/O scheduler in Linux

◼ The CFQ scheduler guarantees a fair allocation of  the disk I/O bandwidth 

among all processes

◼ It maintains per process I/O queues
◼ Each process is assigned a single queue

◼ Each queue has an allocated timeslice

◼ Requests are submitted into these queues and are processed in round robin

◼ When the scheduler services a specific queue, and there are no more 

requests in that queue, it waits in idle mode for a predefined time interval for 

new requests, and if  there are no requests, it continues to the next queue

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



◼ For Linux 2.4 and later there is a single unified 

page cache for all traffic between disk and main 

memory

◼ Benefits:

◼ When it is time to write back dirty pages to disk, a 

collection of  them can be ordered properly and 

written out efficiently

◼ Because of  the principle of  temporal locality, pages in 

the page cache are likely to be referenced again before 

they are flushed from the cache, thus saving a disk 

I/O operation
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Figure 11.15   Windows I /O Manager
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◼ Network Drivers

◼ Windows includes 
integrated networking 
capabilities and support 
for remote file systems

◼ The facilities are 
implemented as software 
drivers

◼ Hardware Device Drivers

◼ The source code of  
Windows device drivers 
is portable across 
different processor types

◼ Cache Manager

◼ Maps regions of  files into 
kernel virtual memory and 
then relies on the virtual 
memory manager to copy 
pages to and from the files 
on disk

◼ File System Drivers

◼ Sends I/O requests to the 

software drivers that 

manage the hardware 

device adapter
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Windows offers two 
modes of  I/O 

operation

Asynchronous

Is used whenever 
possible to optimize 

application 
performance

An application initiates an 
I/O operation and then 
can continue processing 
while the I/O request is 

fulfilled

Synchronous

The application is 
blocked until the I/O 
operation completes
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▪ Windows provides five different techniques 

for signaling I/O completion:

1 • Signaling the file object

2 • Signaling an event object

3 • Asynchronous procedure call

4 • I/O completion ports

5 • Polling
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◼ Windows supports two sorts of  RAID configurations:

Hardware 
RAID

Separate physical 
disks combined into 
one or more logical 

disks by the disk 
controller or disk 
storage cabinet 

hardware

Software RAID

Noncontiguous disk 
space combined into 
one or more logical 

partitions by the 
fault-tolerant 

software disk driver, 
FTDISK
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◼ Volume Shadow 

Copies

◼ Efficient way of  making 

consistent snapshots of  

volumes so they can be 

backed up

◼ Also useful for archiving 

files on a per-volume basis

◼ Implemented by a software 

driver that makes copies of  

data on the volume before 

it is overwritten

◼ Volume 

Encryption

◼ Windows uses 

BitLocker to encrypt 

entire volumes

◼ More secure than 

encrypting individual 

files

◼ Allows multiple 

interlocking layers of  

security
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Summary
◼ I/O devices

◼ Organization of  the I/O function

◼ The evolution of  the I/O function

◼ Direct memory access

◼ Operating system design issues

◼ Design objectives

◼ Logical structure of  the I/O function

◼ I/O Buffering

◼ Single/double/circular buffer

◼ The utility of  buffering

◼ Disk scheduling

◼ Disk performance parameters

◼ Disk scheduling policies

◼ Raid 

◼ Raid levels 0 – 6

◼ Disk cache

◼ Design and performance considerations

◼ UNIX SVR4 I/O

◼ Buffer cache

◼ Character queue

◼ Unbuffered I/O

◼ UNIX devices

◼ Linux I/O

◼ Disk scheduling

◼ Linux page cache

◼ Windows I/O

◼ Basic I/O facilities

◼ Asynchronous and Synchronous I/O

◼ Software RAID

◼ Volume shadow copies/encryption
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