
Chapter 14

Virtual Machines
Ninth Edition

By William Stallings

Operating

Systems:

Internals

and

Design

Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Virtual Machines (VM)

◼ Virtualization technology enables a single PC or server to simultaneously
run multiple operating systems or multiple sessions of a single OS

◼ A machine with virtualization software can host numerous applications,
including those that run on different operating systems, on a single platform

◼ The host operating system can support a number of virtual machines, each
of which has the characteristics of a particular OS and, in some versions of
virtualization, the characteristics of a particular hardware platform

◼ The solution that enables virtualization is a virtual machine monitor (VMM),
or hypervisor

◼ This software sits between the hardware and the VMs acting as a resource
broker

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Virt
ualiz

ing

Softw
are

Guest O
SBins/Libs

Virt
ual

Machine

Sta
ck

Applic
atio

ns

Guest O
SLibra

rie
s

Virt
ual

Machine

Sta
ck

Applic
atio

ns

Figure 14.1 Virtual Machine Concept

Hard
ware

Platfo
rm

Guest O
SBins/Libs

Virt
ual

Machine

Sta
ck

Applic
atio

ns

Guest O
SLibra

rie
s

Virt
ual

Machine

Sta
ck

Applic
atio

ns

Key Reasons for Using
Virtualization
◼ We can summarize the key

reasons the organizations use
virtualization as follows:

◼ Legacy hardware

◼ Applications built for legacy
hardware can still be run by
virtualizing the legacy hardware,
enabling the retirement of the old
hardware

◼ Rapid deployment

◼ A new VM may be deployed in a
matter of minutes

◼ Versatility

◼ Hardware usage can be optimized by
maximizing the number of kinds of
applications that a single computer
can handle

◼ Consolidation
◼ A large-capacity or high-speed resource can

be used more efficiently by sharing the
resource among multiple applications
simultaneously

◼ Aggregating
◼ Virtualization makes it easy to combine

multiple resources in to one virtual resource,
such as in the case of storage virtualization

◼ Dynamics
◼ Hardware resources can be easily allocated

in a dynamic fashion, enhancing load
balancing and fault tolerance

◼ Ease of management
◼ Virtual machines facilitate deployment and

testing of software

◼ Increased availability
◼ Virtual machine hosts are clustered together

to form pools of compute resources

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hypervisors

A Virtual Machine is a software construct
that mimics the characteristics of a physical
server

It is configured with
some number of
processors, some
amount of RAM,

storage resources, and
connectivity through

the network ports

Once the VM is
created it can be

powered on like a
physical server, loaded

with an operating
system and software

solutions, and utilized
in the manner of a

physical server

Unlike a physical
server, this virtual

server only sees the
resources it has been
configured with, not

all of the resources of
the physical host itself

The hypervisor
facilitates the

translation and I/O
from the virtual
machine to the

physical server devices
and back again to the

correct virtual machine

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hypervisors

A VM instance is defined in
files:

Configuration file
describes the attributes
of the virtual machine

It contains the server
definition, how many

virtual processors
(vCPUs) are allocated
to this virtual machine,

how much RAM is
allocated, which I/O
devices the VM has

access to, how many
network interface cards
(NICs) are in the virtual

server, and more

It also describes the
storage that the VM can

access

When a virtual machine
is powered on, or

instantiated, additional
files are created for

logging, for memory
paging, and other

functions

Since VMs are already
files, copying them
produces not only a

backup of the data but
also a copy of the entire

server, including the
operating system,

applications, and the
hardware configuration

itself

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hypervisor Functions

◼ The principal functions performed by a hypervisor are:

◼ Execution management of VMs

◼ Devices emulation and access control

◼ Execution of privileged operations by hypervisor for

guest VMs

◼ Management of VMs (also called VM lifecycle

management

◼ Administration of hypervisor platform and

hypervisor software

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Shared Hardware

(a) Type 1 Hypervisor

Figure 14.2 Type 1 and Type 2 Hypervisors

Hypervisor Type 1

Guest OS

libraries

Guest OS

Applications

Virtual

Machine 1

Applications

(b) Type 2 Hypervisor

libraries

Shared Hardware

Host Operating System

Hypervisor Type 2

Guest OS

libraries

Guest OS

Applications Applications

libraries

Virtual

Machine 2

Virtual

Machine 1

Virtual

Machine 2

Paravirtualization

◼ A software assisted virtualization technique that uses specialized

APIs to link virtual machines with the hypervisor to optimize their

performance

◼ The operating system in the virtual machine, Linux or Microsoft

Windows, has specialized paravirtualization support as part of the

kernel, as well as specific paravirtualization drivers that allow the OS

and hypervisor to work together more efficiently with the overhead

of the hypervisor translations

◼ Support has been offered as part of many of the general Linux

distributions since 2008

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.3 Paravirtualization

Hypervisor

Real

Drivers

Hardware

(a) Type 1 Hypervisor

VM

Real

Drivers

App

Guest

OS

VM

Real

Drivers

App

Guest

OS

VM

Real

Drivers

App

Guest

OS

Device Models

(emulated hardware)

Hypervisor

Real

Drivers

Hardware

(b) Paravirtualized Type 1 Hypervisor

with Paravirtualized Guest OSs

VM

Modified

Drivers

App

Guest

OS

VM

App

Guest

OS

VM

App

Guest

OS

Hypervisor

Driver Interface

Modified

Drivers

Modified

Drivers

Hardware-Assisted
Virtualization

◼ Processor manufacturers AMD and Intel added functionality to their

processors to enhance performance with hypervisors

◼ AMD-V and Intel’s VT-x designate the hardware assisted virtualization

extensions that the hypervisors can take advantage of during processing

◼ Intel processors offer an extra instruction set called Virtual Machine

Extensions (VMX)

◼ By having some of these instructions as part of the processor, the

hypervisors no longer need to maintain these functions as part of the

processor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Virtual Appliance

◼ A virtual appliance is standalone software that can be distributed as a virtual machine image

◼ It consists of a packaged set of applications and guest OS

◼ It is independent of hypervisor or processor architecture, and can run on either a type 1 or type 2
hypervisor

◼ Virtual appliances are becoming a de-facto means of software distribution and have created a need for
“the virtual appliance vendor”

◼ A recent and important development is the security virtual appliance (SVA)

◼ The SVA is a security tool that performs the function of monitoring and protecting the other
VMs and is run outside of those VMs in a specially security-hardened VM

◼ The SVA obtains its visibility into the state of a VM as well as the network traffic between
VMs, and between VMs and the hypervisor, through the virtual machine introspection API of the
hypervisor

◼ Advantages of SVA

◼ Not vulnerable to a flaw in the Guest OS

◼ Independent of the virtual network configuration and does not have to be reconfigured
every time the virtual network configuration changes due to migration of VMs or
change in connectivity among VMs resident on the hypervisor host

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Container Virtualization

Container
virtualization
is a relatively
recent
approach to
virtualization

In this approach, software, known as a
virtualization container, runs on top of the host OS
kernel and provides an isolated execution
environment for applications

Unlike hypervisor-based VMs, containers do not
aim to emulate physical servers; instead, all
containerized applications on a host share a
common OS kernel

This eliminates the resources needed to run a
separate OS for each application and can greatly
reduce overhead

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.4 Comparison of Virtual Machines and Containers

(a) Type 1 Hypervisor

Hardware

Hypervisor

Guest OS Guest OS

libraries
V

ir
tu

a
l
m

a
c
h

in
e

libraries

App App App App

Hardware

Container Engine

Host OS

libraries libraries

App App App App

(c) Container

(b) Type 2 Hypervisor

Hardware

Hypervisor

Host OS

Guest OS Guest OS

libraries

V
ir

tu
a

l
m

a
c
h

in
e

libraries

App App App App

C
o

n
ta

in
e
r

C
o

n
ta

in
e
r

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.5 Data Flow for I /O Operation via Hypervisor and Container

(a) Hypervisor (b) Container

Applicat ion

Guest OS device dr iver

Virtual I / O device

Hypervisor intercept ion

Physical device dr iver

Physical I / O device

Applicat ion

I ndirect ion through

kernel cont rol groups

Physical device dr iver

Physical I / O device

Virtual containers are feasible due to resource control and process

isolations as explained using techniques such as the kernel control group.

This approach allows system resources being shared between multiple

instances of isolated containers.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.6 OpenVZ File scheme

bin dev etc system

2 y

/ vz/ root

1 x 3 z

users

abrady rjones

var

docsdesktop library

As part of the isolation of a container, each container must maintain its own

isolated file system. The specific features vary from one container product to

another, but the essential principals are the same.

As an example, we look at the container file system used in OpenVZ.

Microservices

◼ NIST SP 800-180 (NIST Definition of Microservices, Application Containers and System

Virtual Machines) defines a microservice as:

“a basic element that results from the architectural decomposition of an

application’s components into loosely coupled patterns consisting of self-

contained services that communicate with each other using a standard

communication protocol 219 and a set of well-defined APIs,

independent of any vendor, product, or technology”

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A concept related to containers is that of microservice.

Microservices

Two key advantages of
microservices are:

Microservices implement
much smaller deployable units,
which then enables the user to

push out updates or do
features and capabilities much

more quickly

This coincides with continuous
delivery practices, where the goal is

to push out small units without
having to create a monolithic

system

Mocroservices also support
precise scalability

Because a microservice is a section of a
much larger application, it can easily be

replicated to create multiple instances, and
spread the load for just that one small piece

of the application

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Docker
◼ Provides a simpler and more standardized way to run containers

◼ Docker container also runs in Linux

◼ One of the reasons the Docker container is more popular compared to competing
containers is its ability to load a container image on a host operating system in a simple and
quick manner

◼ Docker containers are stored in the cloud as images and called upon for execution by users
when needed in a simple way

◼ The principal components of Docker are:
◼ Docker image

◼ Docker client

◼ Docker host

◼ Docker engine

◼ Docker machine

◼ Docker registry

◼ Docker hub

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Issues

◼ In a virtual environment there are two main strategies for providing

processor resources:

◼ Emulate a chip as software and

provide access to that resource

◼ Examples of this method

are QEMU and the

Android Emulator in the

Android SDK

◼ Provide segments of processing

time on the physical processors

(pCPUs) of the virtualization

host to the virtual processors of

the virtual machines hosted on

the physical server

◼ This is how most of the

virtualization hypervisors

offer processor resources to

their guests

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Allocation

• One basic rule during VM
creation is to begin with one
vCPU and monitor the
application’s performance

• Another good practice is not
to overallocate the number of
vCPUs in a VM

• When applications are
migrated to virtual
environments, the number of
virtual processors allocated to
their virtual machines needs
to be determined

The number of
processors a server has is

one of the more
important metrics when

sizing a server

Moore’s law provides
processors that would be

four times faster than
those on the original

physical server

There are tools available
that will monitor

resource (processor,
memory, network, and
storage I/O) usage on
the physical server and

then make
recommendations for

the optimum VM sizing

If the consolidation
estimate utility cannot

be run, there are a
number of good

practices in place

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ring O

Native operating systems manage hardware by acting as the intermediary between application code
requests and the hardware

One key function of the operating system is to help prevent malicious or accidental system calls
from disrupting the applications or the operating system itself

Protection rings describe level of access or privilege inside of a computer system and many
operating systems and processor architectures take advantage of this security model

The most trusted layer is often called Ring 0 (zero) and is where the operating system kernel
works and can interact directly with hardware

Hypervisors run in Ring 0 controlling hardware access for the virtual machines they host

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.7 Page Sharing

Virtual memory Virtual memory Virtual memory

Physical memory

Memory Management

◼ Since hypervisor manages page sharing, the virtual machine operating systems

are unaware of what is happening in the physical system

◼ Ballooning

◼ The hypervisor activates a balloon driver that (virtually) inflates and

presses the guest operating system to flush pages to disk

◼ Once the pages are cleared, the balloon driver deflates and the hypervisor

can use the physical memory for other VMs

◼ Memory overcommit

◼ The capability to allocate more memory than physically exists on a host

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.8 I /O in a Virtual Environment

Applications

Operating system

NIC driver

NIC driver

NIC

Hypervisor

Vir
tua

l m
ach

ine

Ph
ysu

cal
 se

rve
r

Emulated device

Network

Application performance is often directly linked to the bandwidth that a server

has been allocated. Whether it is storage access that has been bottlenecked or

constrained traffic to the network, either case will cause an application to be

perceived as underperforming. In this way, during the virtualization of workloads,

I/O virtualization is a critical item.

I/O Management

◼ An advantage of virtualizing the workload’s I/O path enables hardware
independence by abstracting vendor-specific drivers to more generalized versions
that run on the hypervisor

◼ This abstraction enables:

◼ Live migration, which is one of virtualization’s greatest availability
strengths

◼ The sharing of aggregate resources, such as network paths

◼ The memory overcommit capability is another benefit of virtualizing the I/O of
a VM

◼ The trade-off for this is that the hypervisor is managing all the traffic and
requires processor overhead

◼ This was an issue in the early days of virtualization but now faster
multicore processors and sophisticated hypervisors have addressed this
concern

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Performance Technologies

I/OAT

I/O Acceleration
Technology

Offered by Intel

A physical subsystem
that moves memory
copies via direct memory
access (DMA) from the
main processor to this
specialized portion of the
motherboard

TOE

TCP Offload Engine

Removes the TCP/IP
processing from the
server processor entirely
to the NIC

LRO

Large Receive Offload

Aggregates incoming
packets into bundles for
more efficient processing

LSO

Large Segment Offload

Allows the hypervisor to
aggregate multiple
outgoing TCP/IP packets
and has the NIC
hardware segment them
into separate packets

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A faster processor enables the hypervisor to perform its I/O management functions more

quickly, and also speeds the rate at which the guest processor processing is done.

Explicit hardware changes for virtualization support also improve performance.

VMware ESXi

◼ A commercially available hypervisor from VMware that

provides users a Type-1, or bare-metal, hypervisor to host

virtual machines on their servers

◼ VMware developed their initial x86-based solutions in

the late 1990s and were the first to deliver a commercial

product to the marketplace

◼ This first-to-market timing, coupled with continuous

innovations, has kept VMware firmly on top in market

share

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.9 ESX and ESXi

(a) ESX

(a) ESXi

Hardware
monitoring

agents

VMware
management

agents

Infrastructure
agents

(NTP, Syslog)

CLI commands
for configuration

and support

VM support and
resource

management

VM VM

VMkernel

System
management

agents

CLI commands
for configuration

and support

Agentless
systems

management

Agentless
hardware

monitoring

VMware
management
framework

Common
information

model

Infrastructure
agents

(NTP, Syslog)

VM support and
resource

management

Local support consoles

VM VM

VMkernel

The virtualization kernel (VMkernel) is the core of the hypervisor and performs

all of the virtualization functions. In earlier releases of ESX (Figure 14.9a), the

hypervisor was deployed alongside a Linux installation that served as a

management layer.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.9 ESX and ESXi

(a) ESX

(a) ESXi

Hardware
monitoring

agents

VMware
management

agents

Infrastructure
agents

(NTP, Syslog)

CLI commands
for configuration

and support

VM support and
resource

management

VM VM

VMkernel

System
management

agents

CLI commands
for configuration

and support

Agentless
systems

management

Agentless
hardware

monitoring

VMware
management
framework

Common
information

model

Infrastructure
agents

(NTP, Syslog)

VM support and
resource

management

Local support consoles

VM VM

VMkernel

This new architecture, dubbed ESXi, the “i” for integrated, has all of the

management services as part of the VMkernel (Figure 14.9b). This provides a

smaller and much more secure package than before. Current versions are in the

neighborhood of about 100MB. This small size allows server vendors to deliver

hardware with ESXi already available on flash memory in the server.

VMware ESXi Features
Storage VMotion Permits the relocation of the data files that compose a virtual machine,

while that virtual machine is in use

Fault Tolerance Creates a lockstep copy of a virtual machine on a different host --- if the
original host suffers a failure, the virtual machine’s connections get shifted
to the copy without interrupting users or the application they are using

Site Recovery
Manager

Uses various replication technologies to copy selected virtual machines to
a secondary site in the case of a data center disaster

Storage and
Network I/O
Control

Allows an administrator to allocate network bandwidth in a virtual
network in a very granular manner

Distributed
Resource
Scheduler (DRS)

Intelligently places virtual machines on hosts for startup and can
automatically balance the workloads via VMotion based on business
policies and resource usage

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.10 Xen

Dom0

drivers

DomU

KernelU

Xen Hypervisor

Hardware

Kernel0

DomU

KernelU

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 14.11 Hyper-V

Parent partition

drivers

Child partition

Kernel

Microsoft Hyper-V

Hardware

Kernel

Child partition

Kernel

WMI

VSP VSC VSC

VM
workers

VMBus

Java VM

◼ The goal of a Java Virtual
Machine (JVM) is to provide a
runtime space for a set of Java
code to run on any operating
system staged on any hardware
platform without needing to
make code changes to
accommodate the different
operating systems or hardware

◼ The JVM can support multiple
threads

◼ Promises “Write Once, Run
Anywhere”

◼ The JVM is described as being
an abstract computing machine
consisting of:

◼ An instruction set

◼ A program counter
register

◼ A stack to hold variables
and results

◼ A heap for runtime data
and garbage collection

◼ A method area for code
and constants

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux VServer

◼ Linux VServer is an open-source, fast, lightweight approach to implementing

virtual machines on a Linux server

◼ Only a single copy of the Linux kernel is involved

◼ VServer consists of a relatively modest modification to the kernel plus a small

set of OS userland tools

◼ The VServer Linux kernel supports a number of separate virtual servers

◼ The kernel manages all system resources and tasks, including process

scheduling, memory, disk space, and processor time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Architecture
◼ Each virtual server is isolated from the others using Linux kernel capabilities

◼ The isolation involves four elements:

◼ chroot

◼ A UNIX or Linux command to make the root directory (/) become something other than its default for the

lifetime of the current process

◼ This command provides file system isolation

◼ chcontext

◼ Linux utility that allocates a new security context and executes commands in that context

◼ Each virtual server has its own execution context that provides process isolation

◼ chbind

◼ Executes a command and locks the resulting process and its children into using a specific IP address

◼ System call provides network isolation

◼ capablities

◼ Refers to a partitioning of the privilege available to a root user

◼ Each virtual server can be assigned a limited subset of the root user’s privileges which provides root

isolation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

VM Admin.

Remote Admin.

Core Services

Server

Applications

Standard OS Image

H
o
stin

g
 P

la
tfo

rm

V
irtu

a
l P

la
tfo

rm

Server

Applications

/p
ro

c

/h
o

m
e

/u
sr

/d
ev

/p
ro

c

/h
o

m
e

/u
sr

/d
ev

/p
ro

c

/h
o

m
e

/u
sr

/d
ev

VMhost VM1 VMn

Figure 14.12 Linux VServer Architecture

Figure 14.12 shows the general architecture of Linux VServer. VServer provides

a shared, virtualized OS image, consisting of a root file system, and a shared

set of system libraries and kernel services. Each VM can be booted, shut down,

and rebooted independently.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

bucket size=

S tokens
minimum

threshold =

S tokens

Token input rate =

 R/T tokens per second

Figure 14.13 Linux VServer Token Bucket Scheme

Tokens can accumulate

up to bucket size; excess

tokens discarded

running process consumes

1 token/timer tick

current bucket

occupancy

The Linux VServer

virtual machine facility

provides a way of

controlling VM use of

processor time.

VServer overlays a

token bucket filter

(TBF) on top of the

standard

Linux schedule. The

purpose of the TBF is

to determine how

much of the processor

execution time (single

processor,

multiprocessor, or

multicore) is allocated

to each VM.

Summary
◼ Virtual machine concepts

◼ Hypervisors

◼ Hypervisors

◼ Paravirtualization

◼ Hardware-assisted virtualization

◼ Virtual appliance

◼ Processor issues

◼ Memory management

◼ I/O management

◼ VMware ESXi

◼ Container virtualization

◼ Kernel control groups

◼ Container concepts

◼ Container file system

◼ Microservices

◼ Docker

◼ Microsoft Hyper-V and Xen
variants

◼ Java VM

◼ Linux VServer virtual machine
architecture

◼ Architecture

◼ Process scheduling
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

