
1

Concurrency: Mutual Exclusion
and Synchronization

Chapter 5

2

Problems with concurrent execution

Concurrent processes (or threads) often

need to share data (maintained either in

shared memory or files) and resources

If there is no controlled access to shared

data, some processes will obtain an

inconsistent view of this data

The action performed by concurrent

processes will then depend on the order in

which their execution is interleaved

3

An example

Process P1 and P2 are

running this same

procedure and have access

to the same variable “a”

Processes can be

interrupted anywhere

If P1 is first interrupted

after user input and P2

executes entirely

Then the character echoed

by P1 will be the one read

by P2 !!

static char a;

void echo()

{

cin >> a;

cout << a;

}

4

Race Conditions

Situations like this where processes

access the same data concurrently and the

outcome of execution depends on the

particular order in which the access takes

place is called a race condition

How must the processes coordinate (or

synchronise) in order to guard against race

conditions?

5

The critical section problem

When a process executes code that

manipulates shared data (or resource), we

say that the process is in it’s critical

section (CS) (for that shared data)

The execution of critical sections must be

mutually exclusive: at any time, only one

process is allowed to execute in its critical

section (even with multiple CPUs)

Then each process must request the

permission to enter it’s critical section (CS)

6

The critical section problem

The section of code implementing this

request is called the entry section

The critical section (CS) might be followed

by an exit section

The remaining code is the remainder

section

The critical section problem is to design a

protocol that the processes can use so that

their action will not depend on the order in

which their execution is interleaved

(possibly on many processors)

7

Framework for analysis of solutions

Each process

executes at nonzero

speed but no

assumption on the

relative speed of n

processes

General structure of a

process:

many CPU may be

present but memory

hardware prevents

simultaneous access

to the same memory

location

No assumption about

order of interleaved

execution

For solutions: we

need to specify entry

and exit sections

repeat

entry section

critical section

exit section

remainder section

forever

8

Requirements for a valid solution to
the critical section problem

Mutual Exclusion

At any time, at most one process can be in its

critical section (CS)

Progress

Only processes that are not executing in their

RS can participate in the decision of who will

enter next in the CS.

This selection cannot be postponed indefinitely

9

Requirements for a valid solution to
the critical section problem (cont.)

Bounded Waiting

After a process has made a request to enter it’s

CS, there is a bound on the number of times

that the other processes are allowed to enter

their CS

otherwise the process will suffer from starvation

Of course also no deadlock

10

Types of solutions

Software solutions

algorithms who’s correctness does not rely on

any other assumptions (see framework)

Hardware solutions

rely on some special machine instructions

Operation System solutions

provide some functions and data structures to

the programmer

11

Software solutions

We consider first the case of 2 processes

Algorithm 1 and 2 are incorrect

Algorithm 3 is correct (Peterson’s algorithm)

Then we generalize to n processes

the bakery algorithm

Notation

We start with 2 processes: P0 and P1

When presenting process Pi, Pj always

denotes the other process (i != j)

12

Algorithm 1

The shared variable turn

is initialized (to 0 or 1)

before executing any Pi

Pi’s critical section is

executed iff turn = i

Pi is busy waiting if Pj is

in CS: mutual exclusion is

satisfied

Progress requirement is

not satisfied since it

requires strict alternation

of CSs

If a process requires its CS

more often then the other, it

cannot get it.

Process Pi:

repeat

while(turn!=i){};

CS

turn:=j;

RS

forever

13

Process P0:

repeat

while(turn!=0){};

CS

turn:=1;

RS

forever

Process P1:

repeat

while(turn!=1){};

CS

turn:=0;

RS

forever

Algorithm 1 global view

Ex: P0 has a large RS and P1 has a small RS. If turn=0,

P0 enter its CS and then its long RS (turn=1). P1 enter

its CS and then its RS (turn=0) and tries again to enter its

CS: request refused! He has to wait that P0 leaves its RS.

14

Algorithm 2

Keep 1 Bool variable for

each process: flag[0] and

flag[1]

Pi signals that it is ready to

enter it’s CS by:

flag[i]:=true

Mutual Exclusion is

satisfied but not the

progress requirement

If we have the sequence:

T0: flag[0]:=true

T1: flag[1]:=true

Both process will wait

forever to enter their CS:

we have a deadlock

Process Pi:

repeat

flag[i]:=true;

while(flag[j]){};

CS

flag[i]:=false;

RS

forever

15

Algorithm 3 (Peterson’s algorithm)

Initialization:

flag[0]:=flag[1]:=false

turn:= 0 or 1

Willingness to enter

CS specified by

flag[i]:=true

If both processes

attempt to enter their

CS simultaneously,
only one turn value

will last

Exit section: specifies

that Pi is unwilling to

enter CS

Process Pi:

repeat

flag[i]:=true;

// I want in

turn:=j;

// but I let the other in

while

(flag[j]&turn=j){};

CS

flag[i]:=false;

// I no longer want in

RS

forever

16

Process P0:

repeat

flag[0]:=true;

// 0 wants in

turn:= 1;

// 0 gives a chance to 1

while

(flag[1]&turn=1){};

CS

flag[0]:=false;

// 0 no longer wants in

RS

forever

Process P1:

repeat

flag[1]:=true;

// 1 wants in

turn:=0;

// 1 gives a chance to 0

while

(flag[0]&turn=0){};

CS

flag[1]:=false;

// 1 no longer wants in

RS

forever

Peterson’s algorithm global view

17

Algorithm 3: proof of correctness

Mutual exclusion is preserved since:

P0 and P1 are both in CS only if flag[0] = flag[1] =

true and only if turn = i for each Pi (impossible)

We now prove that the progress and bounded

waiting requirements are satisfied:

Pi cannot enter CS only if stuck in while() with

condition flag[j] = true and turn = j.

If Pj is not ready to enter CS then flag[j] = false

and Pi can then enter its CS

18

Algorithm 3: proof of correctness (cont.)

If Pj has set flag[j]=true and is in its while(),

then either turn=i or turn=j

If turn=i, then Pi enters CS. If turn=j then Pj

enters CS but will then reset flag[j]=false on

exit: allowing Pi to enter CS

but if Pj has time to reset flag[j]=true, it must

also set turn=i

since Pi does not change value of turn while

stuck in while(), Pi will enter CS after at most

one CS entry by Pj (bounded waiting)

19

What about process failures?

If all 3 criteria (ME, progress, bounded

waiting) are satisfied, then a valid solution

will provide robustness against failure of a

process in its remainder section (RS)

since failure in RS is just like having an infinitely

long RS

However, no valid solution can provide

robustness against a process failing in its

critical section (CS)

A process Pi that fails in its CS does not signal

that fact to other processes: for them Pi is still in

its CS

20

n-process solution: bakery algorithm

Before entering their CS, each Pi receives a

number. Holder of smallest number enter CS

(like in bakeries, ice-cream stores...)

When Pi and Pj receives same number:

if i<j then Pi is served first, else Pj is served first

Pi resets its number to 0 in the exit section

Notation:

(a,b) < (c,d) if a < c or if a = c and b < d

max(a0,...ak) is a number b such that

b >= ai for i=0,..k

21

The bakery algorithm (cont.)

Shared data:

choosing: array[0..n-1] of boolean;

initialized to false

number: array[0..n-1] of integer;

initialized to 0

Correctness relies on the following fact:

If Pi is in CS and Pk has already chosen its

number[k]!= 0, then (number[i],i) < (number[k],k)

but the proof is somewhat tricky...

22

The bakery algorithm (cont.)

Process Pi:

repeat

choosing[i]:=true;

number[i]:=max(number[0]..number[n-1])+1;

choosing[i]:=false;

for j:=0 to n-1 do {

while (choosing[j]) {};

while (number[j]!=0

and (number[j],j)<(number[i],i)){};

}

CS

number[i]:=0;

RS

forever

23

Drawbacks of software solutions

Processes that are requesting to enter in

their critical section are busy waiting

(consuming processor time needlessly)

If Critical Sections are long, it would be

more efficient to block processes that are

waiting...

24

Hardware solutions: interrupt
disabling

On a uniprocessor:
mutual exclusion is
preserved but efficiency
of execution is degraded:
while in CS, we cannot
interleave execution with
other processes that are
in RS

On a multiprocessor:
mutual exclusion is not
preserved

CS is now atomic but
not mutually exclusive

Generally not an
acceptable solution

Process Pi:

repeat

disable interrupts

critical section

enable interrupts

remainder section

forever

25

Hardware solutions: special machine
instructions

Normally, access to a memory location excludes

other access to that same location

Extension: designers have proposed machines

instructions that perform 2 actions atomically

(indivisible) on the same memory location (ex:

reading and writing)

The execution of such an instruction is also

mutually exclusive (even with multiple CPUs)

They can be used to provide mutual exclusion but

need to be complemented by other mechanisms to

satisfy the other 2 requirements of the CS problem

(and avoid starvation and deadlock)

26

The test-and-set instruction

A C++ description of

test-and-set:

An algorithm that uses

testset for Mutual

Exclusion:

Shared variable b is

initialized to 0

Only the first Pi who sets

b enter CS

bool testset(int& i)

{

if (i==0) {

i=1;

return true;

} else {

return false;

}

}

Process Pi:

repeat

repeat{}

until testset(b);

CS

b:=0;

RS

forever

27

The test-and-set instruction (cont.)

Mutual exclusion is preserved: if Pi enter

CS, the other Pj are busy waiting

Problem: still using busy waiting

When Pi exit CS, the selection of the Pj who

will enter CS is arbitrary: no bounded

waiting. Hence starvation is possible

Processors (ex: Pentium) often provide an

atomic xchg(a,b) instruction that swaps the

content of a and b.

But xchg(a,b) suffers from the same

drawbacks as test-and-set

28

Using xchg for mutual exclusion

Shared variable b is

initialized to 0

Each Pi has a local

variable k

The only Pi that can

enter CS is the one

who finds b=0

This Pi excludes all

the other Pj by setting

b to 1

Process Pi:

repeat

k:=1

repeat xchg(k,b)

until k=0;

CS

b:=0;

RS

forever

29

Semaphores

Synchronization tool (provided by the OS)
that do not require busy waiting

A semaphore S is an integer variable that,
apart from initialization, can only be
accessed through 2 atomic and mutually
exclusive operations:

wait(S)

signal(S)

To avoid busy waiting: when a process has
to wait, it will be put in a blocked queue of
processes waiting for the same event

30

Semaphores

Hence, in fact, a semaphore is a record (structure):

type semaphore = record

count: integer;

queue: list of process

end;

var S: semaphore;

When a process must wait for a semaphore S, it

is blocked and put on the semaphore’s queue

The signal operation removes (acc. to a fair

policy like FIFO) one process from the queue

and puts it in the list of ready processes

31

Semaphore’s operations

wait(S):

S.count--;

if (S.count<0) {

block this process

place this process in S.queue

}

signal(S):

S.count++;

if (S.count<=0) {

remove a process P from S.queue

place this process P on ready list

}

S.count must be initialized to a nonnegative

value (depending on application)

32

Semaphores: observations

When S.count >=0: the number of processes

that can execute wait(S) without being blocked

= S.count

When S.count<0: the number of processes

waiting on S is = |S.count|

Atomicity and mutual exclusion: no 2 process

can be in wait(S) and signal(S) (on the same S)

at the same time (even with multiple CPUs)

Hence the blocks of code defining wait(S) and

signal(S) are, in fact, critical sections

33

Semaphores: observations

The critical sections defined by wait(S) and

signal(S) are very short: typically 10

instructions

Solutions:

uniprocessor: disable interrupts during these

operations (ie: for a very short period). This

does not work on a multiprocessor machine.

multiprocessor: use previous software or

hardware schemes. The amount of busy

waiting should be small.

34

Using semaphores for solving critical
section problems

For n processes

Initialize S.count to 1

Then only 1 process is

allowed into CS

(mutual exclusion)

To allow k processes

into CS, we initialize

S.count to k

Process Pi:

repeat

wait(S);

CS

signal(S);

RS

forever

35

Using semaphores to synchronize
processes

We have 2 processes:

P1 and P2

Statement S1 in P1

needs to be performed

before statement S2 in

P2

Then define a

semaphore “synch”

Initialize synch to 0

Proper synchronization

is achieved by having in

P1:

S1;

signal(synch);

And having in P2:

wait(synch);

S2;

36

The producer/consumer problem

A producer process produces information

that is consumed by a consumer process

Ex1: a print program produces characters that

are consumed by a printer

Ex2: an assembler produces object modules

that are consumed by a loader

We need a buffer to hold items that are

produced and eventually consumed

A common paradigm for cooperating

processes

37

P/C: unbounded buffer

We assume first an unbounded buffer

consisting of a linear array of elements

in points to the next item to be produced

out points to the next item to be consumed

38

P/C: unbounded buffer

We need a semaphore S to perform mutual

exclusion on the buffer: only 1 process at a

time can access the buffer

We need another semaphore N to

synchronize producer and consumer on

the number N (= in - out) of items in the

buffer

an item can be consumed only after it has been

created

39

P/C: unbounded buffer

The producer is free to add an item into the

buffer at any time: it performs wait(S)

before appending and signal(S) afterwards

to prevent customer access

It also performs signal(N) after each

append to increment N

The consumer must first do wait(N) to see

if there is an item to consume and use

wait(S)/signal(S) to access the buffer

40

Solution of P/C: unbounded buffer

Producer:

repeat

produce v;

wait(S);

append(v);

signal(S);

signal(N);

forever

Consumer:

repeat

wait(N);

wait(S);

w:=take();

signal(S);

consume(w);

forever

Initialization:

S.count:=1;

N.count:=0;

in:=out:=0;

critical sections

append(v):

b[in]:=v;

in++;

take():

w:=b[out];

out++;

return w;

41

P/C: unbounded buffer

Remarks:

Putting signal(N) inside the CS of the producer

(instead of outside) has no effect since the

consumer must always wait for both

semaphores before proceeding

The consumer must perform wait(N) before

wait(S), otherwise deadlock occurs if consumer

enter CS while the buffer is empty

Using semaphores is a difficult art...

42

P/C: finite circular buffer of size k

can consume only when number N of

(consumable) items is at least 1 (now: N!=in-out)

can produce only when number E of empty spaces

is at least 1

43

P/C: finite circular buffer of size k

As before:

we need a semaphore S to have mutual

exclusion on buffer access

we need a semaphore N to synchronize

producer and consumer on the number of

consumable items

In addition:

we need a semaphore E to synchronize

producer and consumer on the number of

empty spaces

44

Solution of P/C: finite circular buffer of
size k
Initialization: S.count:=1; in:=0;

N.count:=0; out:=0;

E.count:=k;

Producer:

repeat

produce v;

wait(E);

wait(S);

append(v);

signal(S);

signal(N);

forever

Consumer:

repeat

wait(N);

wait(S);

w:=take();

signal(S);

signal(E);

consume(w);

forever

critical sections

append(v):

b[in]:=v;

in:=(in+1)

mod k;

take():

w:=b[out];

out:=(out+1)

mod k;

return w;

45

The Dining Philosophers Problem

5 philosophers who

only eat and think

each need to use 2

forks for eating

we have only 5 forks

A classical synchron.

problem

Illustrates the difficulty

of allocating resources

among process

without deadlock and

starvation

46

The Dining Philosophers Problem

Each philosopher is a

process

One semaphore per

fork:

fork: array[0..4] of

semaphores

Initialization:

fork[i].count:=1 for

i:=0..4

A first attempt:

Deadlock if each

philosopher start by

picking his left fork!

Process Pi:

repeat

think;

wait(fork[i]);

wait(fork[i+1 mod 5]);

eat;

signal(fork[i+1 mod 5]);

signal(fork[i]);

forever

47

The Dining Philosophers Problem

A solution: admit only 4

philosophers at a time

that tries to eat

Then 1 philosopher can

always eat when the other

3 are holding 1 fork

Hence, we can use

another semaphore T that

would limit at 4 the numb.

of philosophers “sitting at

the table”

Initialize: T.count:=4

Process Pi:

repeat

think;

wait(T);

wait(fork[i]);

wait(fork[i+1 mod 5]);

eat;

signal(fork[i+1 mod 5]);

signal(fork[i]);

signal(T);

forever

48

Binary semaphores

The semaphores we have studied are

called counting (or integer) semaphores

We have also binary semaphores

similar to counting semaphores except that

“count” is Boolean valued

counting semaphores can be implemented by

binary semaphores...

generally more difficult to use than counting

semaphores (eg: they cannot be initialized to

an integer k > 1)

49

Binary semaphores

waitB(S):

if (S.value = 1) {

S.value := 0;

} else {

block this process

place this process in S.queue

}

signalB(S):

if (S.queue is empty) {

S.value := 1;

} else {

remove a process P from S.queue

place this process P on ready list

}

50

Problems with semaphores

semaphores provide a powerful tool for

enforcing mutual exclusion and coordinate

processes

But wait(S) and signal(S) are scattered

among several processes. Hence, difficult

to understand their effects

Usage must be correct in all the processes

One bad (or malicious) process can fail the

entire collection of processes

Readers/Writers Problem

A data area is shared among many processes

Some processes only read the data area, (readers)

and some only write to the data area (writers)

Conditions that must be satisfied:

Any number of readers may simultaneously read

the file

Only one writer at a time may write to the file

If a writer is writing to the file, no reader may read it

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The semaphore wsem is used to enforce mutual exclusion. As long as one writer is accessing the

shared data area, no other writers and no readers may access it. The global variable readcount is used

to keep track of the number of readers, and the semaphore x is used to assure that readcount is

updated properly.

53

Monitors

Are high-level language constructs that

provide equivalent functionality to that of

semaphores but are easier to control

Found in many concurrent programming

languages

Concurrent Pascal, Modula-3, uC++, Java...

Can be implemented by semaphores...

54

Monitor

Is a software module containing:

one or more procedures

an initialization sequence

local data variables

Characteristics:

local variables accessible only by monitor’s

procedures

a process enters the monitor by invoking one of

it’s procedures

only one process can be in the monitor at any

one time

55

Monitor

The monitor ensures mutual exclusion: no

need to program this constraint explicitly

Hence, shared data are protected by

placing them in the monitor

The monitor locks the shared data on process

entry

Process synchronization is done by the

programmer by using condition variables

that represent conditions a process may

need to wait for before executing in the

monitor

56

Condition variables

are local to the monitor (accessible only

within the monitor)

can be access and changed only by two

functions:

cwait(a): blocks execution of the calling

process on condition (variable) a

the process can resume execution only if

another process executes csignal(a)

csignal(a): resume execution of some process

blocked on condition (variable) a.

If several such process exists: choose any one

If no such process exists: do nothing

57

Monitor

Awaiting processes are

either in the entrance

queue or in a condition

queue

A process puts itself

into condition queue cn

by issuing cwait(cn)

csignal(cn) brings into

the monitor 1 process

in condition cn queue

Hence csignal(cn)

blocks the calling

process and puts it in

the urgent queue

(unless csignal is the

last operation of the

monitor procedure)

58

Producer/Consumer problem

Two types of processes:

producers

consumers

Synchronization is now

confined within the

monitor

append(.) and take(.) are

procedures within the

monitor: are the only

means by which P/C can

access the buffer

If these procedures are

correct, synchronization

will be correct for all

participating processes

ProducerI:

repeat

produce v;

Append(v);

forever

ConsumerI:

repeat

Take(v);

consume v;

forever

59

Monitor for the bounded P/C problem

Monitor needs to hold the buffer:

buffer: array[0..k-1] of items;

needs two condition variables:

notfull: csignal(notfull) indicates that the buffer

is not full

notemty: csignal(notempty) indicates that the

buffer is not empty

needs buffer pointers and counts:

nextin: points to next item to be appended

nextout: points to next item to be taken

count: holds the number of items in buffer

60

Monitor for the bounded P/C problem

Monitor boundedbuffer:

buffer: array[0..k-1] of items;

nextin:=0, nextout:=0, count:=0: integer;

notfull, notempty: condition;

Append(v):

if (count=k) cwait(notfull);

buffer[nextin]:= v;

nextin:= nextin+1 mod k;

count++;

csignal(notempty);

Take(v):

if (count=0) cwait(notempty);

v:= buffer[nextout];

nextout:= nextout+1 mod k;

count--;

csignal(notfull);

61

Message Passing

Is a general method used for interprocess

communication (IPC)

for processes inside the same computer

for processes in a distributed system

Yet another mean to provide process

synchronization and mutual exclusion

We have at least two primitives:

send(destination, message)

received(source, message)

In both cases, the process may or may not

be blocked

62

Synchronization in message passing

For the sender: it is more natural not to be

blocked after issuing send(.,.)

can send several messages to multiple dest.

but sender usually expect acknowledgment of

message receipt (in case receiver fails)

For the receiver: it is more natural to be

blocked after issuing receive(.,.)

the receiver usually needs the info before

proceeding

but could be blocked indefinitely if sender

process fails before send(.,.)

63

Synchronization in message passing

Hence other possibilities are sometimes

offered

Ex: blocking send, blocking receive:

both are blocked until the message is received

occurs when the communication link is

unbuffered (no message queue)

provides tight synchronization (rendez-vous)

64

Addressing in message passing

direct addressing:

when a specific process identifier is used for

source/destination

but it might be impossible to specify the

source ahead of time (ex: a print server)

indirect addressing (more convenient):

messages are sent to a shared mailbox which

consists of a queue of messages

senders place messages in the mailbox,

receivers pick them up

65

Mailboxes and Ports

A mailbox can be private

to one sender/receiver pair

The same mailbox can be

shared among several

senders and receivers

the OS may then

allow the use of

message types (for

selection)

Port: is a mailbox

associated with one

receiver and multiple

senders

used for

client/server

applications: the

66

Ownership of ports and mailboxes

A port is usually own and created by the

receiving process

The port is destroyed when the receiver

terminates

The OS creates a mailbox on behalf of a

process (which becomes the owner)

The mailbox is destroyed at the owner’s

request or when the owner terminates

67

Message format

Consists of header and

body of message

In Unix: no ID, only

message type

control info:

what to do if run out of

buffer space

sequence numbers

priority...

Queuing discipline: usually

FIFO but can also include

priorities

68

Enforcing mutual exclusion with
message passing

create a mailbox mutex

shared by n processes

send() is non blocking

receive() blocks when

mutex is empty

Initialization:

send(mutex, “go”);

The first Pi who

executes receive() will

enter CS. Others will

be blocked until Pi

resends msg.

Process Pi:

var msg: message;

repeat

receive(mutex,msg);

CS

send(mutex,msg);

RS

forever

69

The bounded-buffer P/C problem with
message passing

We will now make use of messages

The producer place items (inside messages) in

the mailbox mayconsume

mayconsume acts as our buffer: consumer can

consume item when at least one message is

present

Mailbox mayproduce is filled initially with k null

messages (k= buffer size)

The size of mayproduce shrinks with each

production and grows with each consumption

can support multiple producers/consumers

70

The bounded-buffer P/C problem with
message passing

Producer:

var pmsg: message;

repeat

receive(mayproduce, pmsg);

pmsg:= produce();

send(mayconsume, pmsg);

forever

Consumer:

var cmsg: message;

repeat

receive(mayconsume, cmsg);

consume(cmsg);

send(mayproduce, null);

forever

71

Unix SVR4 concurrency mechanisms

To communicate data across processes:

Pipes

Messages

Shared memory

To trigger actions by other processes:

Signals

Semaphores

72

Unix Pipes

A shared bounded FIFO queue written by one

process and read by another

based on the producer/consumer model

OS enforces Mutual Exclusion: only one process at

a time can access the pipe

if there is not enough room to write, the producer is

blocked, else he writes

consumer is blocked if attempting to read more

bytes that are currently in the pipe

accessed by a file descriptor, like an ordinary file

processes sharing the pipe are unaware of each

other’s existence

73

Unix Messages

A process can create or access a message

queue (like a mailbox) with the msgget

system call.

msgsnd and msgrcv system calls are used

to send and receive messages to a queue

There is a “type” field in message headers

FIFO access within each message type

each type defines a communication channel

Process is blocked (put asleep) when:

trying to receive from an empty queue

trying to send to a full queue

74

Shared memory in Unix

A block of virtual memory shared by multiple

processes

The shmget system call creates a new region

of shared memory or return an existing one

A process attaches a shared memory region to

its virtual address space with the shmat

system call

Mutual exclusion must be provided by

processes using the shared memory

Fastest form of IPC provided by Unix

75

Unix signals

Similar to hardware interrupts without priorities

Each signal is represented by a numeric value. Ex:

02, SIGINT: to interrupt a process

09, SIGKILL: to terminate a process

Each signal is maintained as a single bit in the

process table entry of the receiving process: the

bit is set when the corresponding signal arrives

(no waiting queues)

A signal is processed as soon as the process runs

in user mode

A default action (eg: termination) is performed

unless a signal handler function is provided for

that signal (by using the signal system call)

76

Unix Semaphores

Are a generalization of the counting semaphores

(more operations are permitted).

A semaphore includes:

the current value S of the semaphore

number of processes waiting for S to increase

number of processes waiting for S to be 0

We have queues of processes that are blocked

on a semaphore

The system call semget creates an array of

semaphores

The system call semop performs a list of

operations: one on each semaphore (atomically)

77

Unix Semaphores

Each operation to be done is specified by a

value sem_op.

Let S be the semaphore value

if sem_op > 0:

S is incremented and process awaiting for S to

increase are awaken

if sem_op = 0:

If S=0: do nothing

if S!=0, block the current process on the event

that S=0

78

Unix Semaphores

if sem_op < 0 and |sem_op| <= S:

set S:= S + sem_op (ie: S decreases)

then if S=0: awake processes waiting for S=0

if sem_op < 0 and |sem_op| > S:

current process is blocked on the event that S

increases

Hence: flexibility in usage (many

operations are permitted)

