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Concurrency: Mutual Exclusion 
and Synchronization

Chapter 5
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Problems with concurrent execution

Concurrent processes (or threads) often 

need to share data (maintained either in 

shared memory or files) and resources

If there is no controlled access to shared 

data, some processes will obtain an 

inconsistent view of this data

The action performed by concurrent 

processes will then depend on the order in 

which their execution is interleaved
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An example

Process P1 and P2 are 

running this same 

procedure and have access 

to the same variable “a”

Processes can be 

interrupted anywhere

If P1 is first interrupted 

after user input and P2 

executes entirely

Then the character echoed 

by P1 will be the one read 

by P2 !!

static char a;

void echo()

{

cin >> a;

cout << a;

}
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Race Conditions

Situations like this where processes 

access the same data concurrently and the 

outcome of execution depends on the 

particular order in which the access takes

place is called a race condition

How must the processes coordinate (or 

synchronise) in order to guard against race 

conditions?
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The critical section problem

When a process executes code that 

manipulates shared data (or resource), we 

say that the process is in it’s critical 

section (CS) (for that shared data) 

The execution of critical sections must be 

mutually exclusive: at any time, only one 

process is allowed to execute in its critical 

section (even with multiple CPUs)

Then each process must request the  

permission to enter it’s critical section (CS)
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The critical section problem

The section of code implementing this 

request is called the entry section

The critical section (CS) might be followed 

by an exit section

The remaining code is the remainder 

section

The critical section problem is to design a 

protocol that the processes can use so that 

their action will not depend on the order in 

which their execution is interleaved 

(possibly on many processors)
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Framework for analysis of solutions

Each process 

executes at nonzero 

speed but no 

assumption on the 

relative speed of n 

processes

General structure of a 

process:

many CPU may be 

present but memory 

hardware prevents 

simultaneous access 

to the same memory 

location

No assumption about 

order of interleaved 

execution 

For solutions: we 

need to specify entry 

and exit sections 

repeat

entry section

critical section

exit section

remainder section

forever
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Requirements for a valid solution to 
the critical section problem

Mutual Exclusion

At any time, at most one process can be in its 

critical section (CS)

Progress

Only processes that are not executing in their 

RS can participate in the decision of who will 

enter next in the CS. 

This selection cannot be postponed indefinitely
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Requirements for a valid solution to 
the critical section problem (cont.)

Bounded Waiting

After a process has made a request to enter it’s 

CS, there is a bound on the number of times 

that the other processes are allowed to enter 

their CS 

otherwise the process will suffer from starvation

Of course also no deadlock
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Types of solutions

Software solutions

algorithms who’s correctness does not rely on 

any other assumptions (see framework)

Hardware solutions

rely on some special machine instructions

Operation System solutions

provide some functions and data structures to 

the programmer
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Software solutions

We consider first the case of 2 processes

Algorithm 1 and 2 are incorrect

Algorithm 3 is correct (Peterson’s algorithm)

Then we generalize to n processes

the bakery algorithm

Notation

We start with 2 processes: P0 and P1

When presenting process Pi, Pj always 

denotes the other process (i != j)
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Algorithm 1

The shared variable turn

is initialized (to 0 or 1) 

before executing any Pi

Pi’s critical section is 

executed iff turn = i

Pi is busy waiting if Pj is 

in CS: mutual exclusion is 

satisfied

Progress requirement is 

not satisfied since it 

requires strict alternation 

of CSs

If a process requires its CS 

more often then the other, it  

cannot get it.

Process Pi:

repeat

while(turn!=i){};

CS

turn:=j;

RS

forever
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Process P0:

repeat

while(turn!=0){};

CS

turn:=1;

RS

forever

Process P1:

repeat

while(turn!=1){};

CS

turn:=0;

RS

forever

Algorithm 1 global view

Ex: P0 has a large RS and P1 has a small RS. If turn=0, 

P0 enter its CS and then its long RS (turn=1).  P1 enter 

its CS and then its RS (turn=0) and tries again to enter its 

CS: request refused! He has to wait that P0 leaves its RS.
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Algorithm 2

Keep 1  Bool variable for 

each process: flag[0] and 

flag[1]

Pi signals that it is ready to 

enter it’s CS by: 

flag[i]:=true

Mutual Exclusion is 

satisfied but not the 

progress requirement

If we have the sequence:

T0: flag[0]:=true

T1: flag[1]:=true

Both process will wait 

forever to enter their CS: 

we have a deadlock

Process Pi:

repeat

flag[i]:=true;  

while(flag[j]){};

CS

flag[i]:=false;

RS

forever
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Algorithm 3 (Peterson’s algorithm)

Initialization: 

flag[0]:=flag[1]:=false 

turn:= 0 or 1

Willingness to enter 

CS specified by 

flag[i]:=true

If both processes 

attempt to enter their 

CS simultaneously, 
only one turn value 

will last

Exit section: specifies 

that Pi is unwilling to 

enter CS

Process Pi:

repeat

flag[i]:=true;

// I want in 

turn:=j; 

// but I let the other in

while

(flag[j]&turn=j){};

CS

flag[i]:=false;

// I no longer want in

RS

forever
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Process P0:

repeat

flag[0]:=true;

// 0 wants in 

turn:= 1; 

// 0 gives a chance to 1

while

(flag[1]&turn=1){};

CS

flag[0]:=false;

// 0 no longer wants in

RS

forever

Process P1:

repeat

flag[1]:=true;

// 1 wants in 

turn:=0; 

// 1 gives a chance to 0

while

(flag[0]&turn=0){};

CS

flag[1]:=false;

// 1 no longer wants in

RS

forever

Peterson’s algorithm global view
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Algorithm 3: proof of correctness

Mutual exclusion is preserved since: 

P0 and P1 are both in CS only if flag[0] = flag[1] = 

true and only if turn = i for each Pi (impossible)

We now prove that the progress and bounded 

waiting requirements are satisfied: 

Pi cannot enter CS only if stuck in while() with 

condition flag[ j] = true and turn = j. 

If Pj is not ready to enter CS then flag[ j] = false 

and Pi can then enter its CS
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Algorithm 3: proof of correctness (cont.)

If Pj has set flag[ j]=true and is in its while(), 

then either turn=i or turn=j

If turn=i, then Pi enters CS. If turn=j then Pj 

enters CS but will then reset flag[ j]=false on 

exit: allowing Pi to enter CS

but if Pj has time to reset flag[ j]=true, it must 

also set turn=i

since Pi does not change value of turn while 

stuck in while(), Pi will enter CS after at most 

one CS entry by Pj (bounded waiting)
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What about process failures?

If all 3 criteria (ME, progress, bounded 

waiting) are satisfied, then a valid solution 

will provide robustness against failure of a 

process in its remainder section (RS)

since failure in RS is just like having an infinitely 

long RS

However, no valid solution can provide 

robustness against a process failing in its 

critical section (CS)

A process Pi that fails in its CS does not signal 

that fact to other processes: for them Pi is still in 

its CS  
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n-process solution: bakery algorithm

Before entering their CS, each Pi receives a 

number. Holder of smallest number enter CS 

(like in bakeries, ice-cream stores...)

When Pi and Pj receives same number: 

if i<j then Pi is served first, else Pj is served first

Pi resets its number to 0 in the exit section

Notation:

(a,b) < (c,d) if a < c or if a = c and b < d

max(a0,...ak) is a number b such that

b >= ai for i=0,..k
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The bakery algorithm (cont.)

Shared data:

choosing: array[0..n-1] of boolean;

initialized to false

number: array[0..n-1] of integer;

initialized to 0

Correctness relies on the following fact:

If Pi is in CS and Pk has already chosen its 

number[k]!= 0, then (number[i],i) < (number[k],k) 

but the proof is somewhat tricky...
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The bakery algorithm (cont.)

Process Pi:

repeat

choosing[i]:=true;

number[i]:=max(number[0]..number[n-1])+1;

choosing[i]:=false;

for j:=0 to n-1 do {

while (choosing[j]) {};

while (number[j]!=0 

and (number[j],j)<(number[i],i)){};

}

CS

number[i]:=0;

RS

forever
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Drawbacks of software solutions

Processes that are requesting to enter in 

their critical section are busy waiting

(consuming processor time needlessly)

If Critical Sections are long, it would be 

more efficient to block processes that are 

waiting...
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Hardware solutions: interrupt 
disabling

On a uniprocessor: 
mutual exclusion is 
preserved but efficiency 
of execution is degraded: 
while in CS, we cannot 
interleave execution with 
other processes that are 
in RS

On a multiprocessor: 
mutual exclusion is not 
preserved

CS is now atomic but 
not mutually exclusive

Generally not an 
acceptable solution

Process Pi:

repeat

disable interrupts

critical section

enable interrupts

remainder section

forever
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Hardware solutions: special machine 
instructions

Normally, access to a memory location excludes 

other access to that same location

Extension: designers have proposed machines 

instructions that perform 2 actions atomically 

(indivisible) on the same memory location (ex: 

reading and writing) 

The execution of such an instruction is also 

mutually exclusive (even with multiple CPUs) 

They can be used to provide mutual exclusion but 

need to be complemented by other mechanisms to 

satisfy the other 2 requirements of the CS problem 

(and avoid starvation and deadlock)
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The test-and-set instruction

A C++  description of 

test-and-set:

An algorithm that uses 

testset for Mutual 

Exclusion:

Shared variable b is 

initialized to 0

Only the first Pi who sets 

b enter CS

bool testset(int& i)

{

if (i==0) {

i=1;

return true;

} else {

return false;

}

}

Process Pi:

repeat

repeat{}

until testset(b);

CS

b:=0;

RS

forever
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The test-and-set instruction (cont.)

Mutual exclusion is preserved: if Pi enter 

CS, the other Pj are busy waiting

Problem: still using busy waiting

When Pi exit CS, the selection of the Pj who 

will enter CS is arbitrary: no bounded 

waiting. Hence starvation is possible

Processors (ex: Pentium) often provide an 

atomic xchg(a,b) instruction that swaps the 

content of a and b.

But xchg(a,b) suffers from the same 

drawbacks as test-and-set
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Using xchg for mutual exclusion

Shared variable b is 

initialized to 0

Each Pi has a local 

variable k 

The only Pi that can 

enter CS is the one 

who finds b=0

This Pi excludes all 

the other Pj by setting 

b to 1

Process Pi:

repeat

k:=1  

repeat xchg(k,b)

until k=0;

CS

b:=0;

RS

forever
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Semaphores

Synchronization tool (provided by the OS) 
that do not require busy waiting

A semaphore S is an integer variable that, 
apart from initialization, can only be 
accessed through 2 atomic and mutually 
exclusive operations:

wait(S)

signal(S)

To avoid busy waiting: when a process has 
to wait, it will be put in a blocked queue of 
processes waiting for the same event



30

Semaphores

Hence, in fact, a semaphore is a record (structure): 

type semaphore = record

count: integer;

queue: list of process

end;

var S: semaphore;

When a process must wait for a semaphore S, it 

is blocked and put on the semaphore’s queue

The signal operation removes (acc. to a fair 

policy like FIFO) one process from the queue 

and puts it in the list of ready processes
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Semaphore’s operations

wait(S):

S.count--;

if (S.count<0) {

block this process

place this process in S.queue

}

signal(S):

S.count++;

if (S.count<=0) {

remove a process P from S.queue

place this process P on ready list

}

S.count must be initialized to a nonnegative 

value (depending on application)
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Semaphores: observations

When S.count >=0:  the number of processes 

that can execute wait(S) without being blocked 

= S.count

When S.count<0: the number of processes 

waiting on S is = |S.count|

Atomicity and mutual exclusion: no 2 process 

can be in wait(S) and signal(S) (on the same S) 

at the same time (even with multiple CPUs)

Hence the blocks of code defining wait(S) and 

signal(S) are, in fact, critical sections
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Semaphores: observations

The critical sections defined by wait(S) and 

signal(S) are very short: typically 10 

instructions

Solutions:

uniprocessor: disable interrupts during these 

operations (ie: for a very short period). This 

does not work on a multiprocessor machine.

multiprocessor: use previous software or 

hardware schemes. The amount of busy 

waiting should be small.
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Using semaphores for solving critical 
section problems 

For n processes

Initialize S.count to 1

Then only 1 process is 

allowed into CS 

(mutual exclusion)

To allow k processes 

into CS, we initialize 

S.count to k

Process Pi:

repeat

wait(S);

CS

signal(S);

RS

forever
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Using semaphores to synchronize 
processes

We have 2 processes: 

P1 and P2

Statement S1 in P1 

needs to be performed 

before statement S2 in 

P2

Then define a 

semaphore “synch” 

Initialize synch to 0

Proper synchronization 

is achieved by having in 

P1: 

S1;

signal(synch);

And having in P2:

wait(synch);

S2;
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The producer/consumer problem

A producer process produces information 

that is consumed by a consumer process

Ex1: a print program produces characters that 

are consumed by a printer

Ex2: an assembler produces object modules 

that are consumed by a loader

We need a buffer to hold items that are 

produced and eventually consumed

A common paradigm for cooperating 

processes



37

P/C: unbounded buffer

We assume first an unbounded buffer  

consisting of a linear array of elements

in points to the next item to be produced

out points to the next item to be consumed
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P/C: unbounded buffer

We need a semaphore S to perform mutual 

exclusion on the buffer: only 1 process at a 

time can access the buffer  

We need another semaphore N to 

synchronize producer and consumer on 

the number N (= in - out) of items in the 

buffer 

an item can be consumed only after it has been 

created
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P/C: unbounded buffer

The producer is free to add an item into the 

buffer at any time: it performs wait(S) 

before appending and signal(S) afterwards  

to prevent customer access 

It also performs signal(N) after each 

append to increment N

The consumer must first do wait(N) to see 

if there is an item to consume and use 

wait(S)/signal(S) to access the buffer
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Solution of P/C: unbounded buffer

Producer:

repeat

produce v;

wait(S);

append(v);

signal(S);

signal(N);

forever

Consumer:

repeat

wait(N);

wait(S);

w:=take();

signal(S);

consume(w);

forever

Initialization:

S.count:=1;

N.count:=0;

in:=out:=0;

critical sections

append(v):

b[in]:=v;

in++;

take():

w:=b[out];

out++;

return w;
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P/C: unbounded buffer

Remarks:

Putting signal(N) inside the CS of the producer 

(instead of outside) has no effect since the 

consumer must always wait for both 

semaphores before proceeding

The consumer must perform wait(N) before 

wait(S), otherwise deadlock occurs if consumer 

enter CS while the buffer is empty

Using semaphores is a difficult art...
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P/C: finite circular buffer of size k

can consume only when number N of 

(consumable) items is at least 1 (now: N!=in-out)

can produce only when number E of empty spaces 

is at least 1
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P/C: finite circular buffer of size k

As before:

we need a semaphore S to have mutual 

exclusion on buffer access

we need a semaphore N to synchronize 

producer and consumer on the number of 

consumable items

In addition:

we need a semaphore E to synchronize 

producer and consumer on the number of 

empty spaces
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Solution of P/C: finite circular buffer of 
size k
Initialization: S.count:=1; in:=0;

N.count:=0; out:=0;

E.count:=k;

Producer:

repeat

produce v;

wait(E);

wait(S);

append(v);

signal(S);

signal(N);

forever

Consumer:

repeat

wait(N);

wait(S);

w:=take();

signal(S);

signal(E);

consume(w);

forever

critical sections

append(v):

b[in]:=v;

in:=(in+1)

mod k;

take():

w:=b[out];

out:=(out+1)

mod k;

return w;
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The Dining Philosophers Problem

5 philosophers who 

only eat and think

each need to use 2 

forks for eating

we have only 5 forks

A classical synchron. 

problem

Illustrates the difficulty 

of allocating resources 

among process 

without deadlock and 

starvation
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The Dining Philosophers Problem

Each philosopher is a 

process

One semaphore per 

fork:

fork: array[0..4] of 

semaphores

Initialization: 

fork[i].count:=1 for 

i:=0..4

A first attempt:

Deadlock if each 

philosopher start by 

picking his left fork!

Process Pi:

repeat

think;

wait(fork[i]);

wait(fork[i+1 mod 5]);

eat;

signal(fork[i+1 mod 5]);

signal(fork[i]);  

forever
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The Dining Philosophers Problem

A solution: admit only 4 

philosophers at a time 

that tries to eat

Then 1 philosopher can 

always eat when the other 

3 are holding 1 fork

Hence, we can use 

another semaphore T that 

would limit at 4 the numb. 

of philosophers “sitting at 

the table”

Initialize: T.count:=4

Process Pi:

repeat

think;

wait(T);

wait(fork[i]);

wait(fork[i+1 mod 5]);

eat;

signal(fork[i+1 mod 5]);

signal(fork[i]);

signal(T);  

forever
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Binary semaphores

The semaphores we have studied are 

called counting (or integer) semaphores

We have also binary semaphores

similar to counting semaphores except that 

“count” is Boolean valued

counting semaphores can be implemented by 

binary semaphores...

generally more difficult to use than counting 

semaphores (eg: they cannot be initialized to 

an integer k > 1)
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Binary semaphores

waitB(S):

if (S.value = 1) {

S.value := 0;

} else {

block this process

place this process in S.queue

}

signalB(S):

if (S.queue is empty) {

S.value := 1;

} else {

remove a process P from S.queue

place this process P on ready list

}
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Problems with semaphores

semaphores provide a powerful tool for 

enforcing mutual exclusion and coordinate 

processes

But wait(S) and signal(S) are scattered 

among several processes. Hence, difficult 

to understand their effects

Usage must be correct in all the processes

One bad (or malicious) process can fail the 

entire collection of processes



Readers/Writers Problem

A data area is shared among many processes

Some processes only read the data area, (readers) 

and some only write to the data area (writers)

Conditions that must be satisfied:

Any number of readers may simultaneously read 

the file

Only one writer at a time may write to the file

If a writer is writing to the file, no reader may read it

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 



The semaphore wsem is used to enforce mutual exclusion. As long as one writer is accessing the 

shared data area, no other writers and no readers may access it. The global variable readcount is used 

to keep track of the number of readers, and the semaphore x is used to assure that readcount is 

updated properly.
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Monitors

Are high-level language constructs that 

provide equivalent functionality to that of 

semaphores but are easier to control

Found in many concurrent programming 

languages 

Concurrent Pascal, Modula-3, uC++, Java...

Can be implemented by semaphores...
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Monitor

Is a software module containing:

one or more procedures

an initialization sequence

local data variables 

Characteristics:

local variables accessible only by monitor’s 

procedures

a process enters the monitor by invoking one of 

it’s procedures

only one process can be in the monitor at any 

one time
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Monitor

The monitor ensures mutual exclusion: no 

need to program this constraint explicitly

Hence, shared data are protected by 

placing them in the monitor

The monitor locks the shared data on process 

entry

Process synchronization is done by the 

programmer by using condition variables

that represent conditions a process may 

need to wait for before executing in the 

monitor
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Condition variables

are local to the monitor (accessible only 

within the monitor)

can be access and changed only by two 

functions:

cwait(a): blocks execution of the calling 

process on condition (variable) a

the process can resume execution only if 

another process executes csignal(a)

csignal(a): resume execution of some process 

blocked on condition (variable) a.

If several such process exists: choose any one

If no such process exists: do nothing
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Monitor

Awaiting processes are 

either in the entrance 

queue or in a condition 

queue

A process puts itself 

into condition queue cn 

by issuing cwait(cn)

csignal(cn) brings into 

the monitor 1 process 

in condition cn queue

Hence csignal(cn) 

blocks the calling 

process and puts it in 

the urgent queue 

(unless csignal is the 

last operation of the 

monitor procedure)
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Producer/Consumer problem

Two types of processes:

producers

consumers

Synchronization is now 

confined within the 

monitor

append(.) and take(.) are 

procedures within the 

monitor: are the only 

means by which P/C can 

access the buffer

If these procedures are 

correct, synchronization 

will be correct for all 

participating processes

ProducerI:

repeat

produce v;

Append(v);

forever

ConsumerI:

repeat

Take(v);

consume v;

forever
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Monitor for the bounded P/C problem

Monitor needs to hold the buffer:

buffer: array[0..k-1] of items;

needs two condition variables:

notfull: csignal(notfull) indicates that the buffer 

is not full

notemty: csignal(notempty) indicates that the 

buffer is not empty

needs buffer pointers and counts:

nextin: points to next item to be appended

nextout: points to next item to be taken

count: holds the number of items in buffer
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Monitor for the bounded P/C problem

Monitor boundedbuffer:

buffer: array[0..k-1] of items;

nextin:=0, nextout:=0, count:=0: integer;

notfull, notempty: condition;

Append(v):

if (count=k) cwait(notfull);

buffer[nextin]:= v;

nextin:= nextin+1 mod k;

count++;

csignal(notempty);

Take(v):

if (count=0) cwait(notempty);

v:= buffer[nextout];

nextout:= nextout+1 mod k;

count--;

csignal(notfull);  
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Message Passing

Is a general method used for interprocess 

communication (IPC)

for processes inside the same computer

for processes in a distributed system

Yet another mean to provide process 

synchronization and mutual exclusion

We have at least two primitives:

send(destination, message)

received(source, message)

In both cases, the process may or may not 

be blocked
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Synchronization in message passing

For the sender: it is more natural not to be 

blocked after issuing send(.,.)

can send several messages to multiple dest.

but sender usually expect acknowledgment of 

message receipt (in case receiver fails) 

For the receiver: it is more natural to be 

blocked after issuing receive(.,.)

the receiver usually needs the info before 

proceeding

but could be blocked indefinitely if sender 

process fails before send(.,.)
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Synchronization in message passing

Hence other possibilities are sometimes 

offered

Ex: blocking send, blocking receive: 

both are blocked until the message is received

occurs when the communication link is 

unbuffered (no message queue) 

provides tight synchronization (rendez-vous)
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Addressing in message passing

direct addressing: 

when a specific process identifier is used for 

source/destination 

but it might be impossible to specify the 

source ahead of time (ex: a print server)

indirect addressing (more convenient): 

messages are sent to a shared mailbox which 

consists of a queue of messages

senders place messages in the mailbox, 

receivers pick them up
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Mailboxes and Ports

A mailbox can be private 

to one sender/receiver pair

The same mailbox can be 

shared among several 

senders and receivers

the OS may then 

allow the use of 

message types (for 

selection)

Port: is a mailbox 

associated with one 

receiver and multiple 

senders

used for 

client/server 

applications: the 
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Ownership of ports and mailboxes

A port is usually own and created by the 

receiving process

The port is destroyed when the receiver 

terminates

The OS creates a mailbox on behalf of a 

process (which becomes the owner)

The mailbox is destroyed at the owner’s 

request or when the owner terminates
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Message format

Consists of header and  

body of message

In Unix: no ID, only 

message type

control info: 

what to do if run out of 

buffer space

sequence numbers

priority...

Queuing discipline: usually 

FIFO but can also include 

priorities
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Enforcing mutual exclusion with 
message passing

create  a mailbox mutex

shared by n processes

send() is non blocking 

receive() blocks when 

mutex is empty

Initialization: 

send(mutex, “go”);

The first Pi who 

executes receive() will 

enter CS. Others will 

be blocked until Pi 

resends msg. 

Process Pi:

var msg: message;

repeat

receive(mutex,msg);

CS

send(mutex,msg);

RS

forever
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The bounded-buffer P/C problem with 
message passing

We will now make use of messages

The producer place items (inside messages) in 

the mailbox mayconsume

mayconsume acts as our buffer: consumer can 

consume item when at least one message is 

present

Mailbox mayproduce is filled initially with k null 

messages (k= buffer size)

The size of mayproduce shrinks with each 

production and grows with each consumption

can support multiple producers/consumers
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The bounded-buffer P/C problem with 
message passing

Producer:

var pmsg: message;

repeat

receive(mayproduce, pmsg);

pmsg:= produce();

send(mayconsume, pmsg);

forever

Consumer:

var cmsg: message;

repeat

receive(mayconsume, cmsg);

consume(cmsg);

send(mayproduce, null);

forever
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Unix SVR4 concurrency mechanisms

To communicate data across processes:

Pipes

Messages

Shared memory

To trigger actions by other processes: 

Signals

Semaphores
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Unix Pipes

A shared bounded FIFO queue written by one 

process and read by another

based on the producer/consumer model

OS enforces Mutual Exclusion: only one process at 

a time can access the pipe

if there is not enough room to write, the producer is 

blocked, else he writes

consumer is blocked if attempting to read more 

bytes that are currently in the pipe

accessed by a file descriptor, like an ordinary file

processes sharing the pipe are unaware of each 

other’s existence
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Unix Messages

A process can create or access a message 

queue (like a mailbox) with the msgget

system call.

msgsnd and msgrcv system calls are used 

to send and receive messages to a queue

There is a “type” field in message headers

FIFO access within each message type

each type defines a communication channel

Process is blocked (put asleep) when:

trying to receive from an empty queue

trying to send to a full queue
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Shared memory in Unix

A block of virtual memory shared by multiple 

processes

The shmget system call creates a new region 

of shared memory or return an existing one

A process attaches a shared memory region to 

its virtual address space with the shmat 

system call

Mutual exclusion must be provided by 

processes using the shared memory

Fastest form of IPC provided by Unix
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Unix signals

Similar to hardware interrupts without priorities

Each signal is represented by a numeric value. Ex:

02, SIGINT: to interrupt a process

09, SIGKILL: to terminate a process

Each signal is maintained as a single bit in the 

process table entry of the receiving process: the 

bit is set when the corresponding signal arrives 

(no waiting queues)

A signal is processed as soon as the process runs 

in user mode

A default action (eg: termination) is performed 

unless a signal handler function is provided for 

that signal (by using the signal system call)
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Unix Semaphores

Are a generalization of the counting semaphores 

(more operations are permitted). 

A semaphore includes:

the current value S of the semaphore

number of processes waiting for S to increase

number of processes waiting for S to be 0

We have queues of processes that are blocked 

on a semaphore

The system call semget creates an array of 

semaphores

The system call semop performs a list of 

operations: one on each semaphore (atomically)
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Unix Semaphores

Each operation to be done is specified by a 

value sem_op. 

Let S be the semaphore value

if sem_op > 0: 

S is incremented and process awaiting for S to 

increase are awaken

if sem_op = 0: 

If S=0: do nothing 

if S!=0, block the current  process on the event 

that S=0
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Unix Semaphores

if sem_op < 0 and |sem_op| <= S:

set S:= S + sem_op (ie: S decreases)

then if S=0: awake processes waiting for S=0

if sem_op < 0 and |sem_op| > S:

current process is blocked on the event that S 

increases

Hence: flexibility in usage (many 

operations are permitted) 


