
ISBN 0-321-49362-1

Chapter 1

Preliminaries

Copyright © 2018 Pearson Education, Ltd. All rights reserved. 1-2

Chapter 1 Topics

• Reasons for Studying Concepts of
Programming Languages

• Programming Domains

• Language Evaluation Criteria

• Influences on Language Design

• Language Categories

• Language Design Trade-Offs

• Implementation Methods

• Programming Environments

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-3

Reasons for Studying Concepts of
Programming Languages

• Increased ability to express ideas

• Improved background for choosing
appropriate languages

• Increased ability to learn new languages

• Better understanding of significance of
implementation

• Better use of languages that are already
known

• Overall advancement of computing

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-4

Motivation: Why Study Programming
Languages?

• Improves ability to express ideas in primary
language

– Languages influence the way you think and
approach problems

– As you study new language features it may
help you utilize or extend your own
language skills

– Simulate a useful feature in your primary
language

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-5

Motivation: Why Study Programming
Languages?

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-6

Motivation: Why Study Programming
Languages?

• Improved background for choosing
appropriate languages

– Helps you understand the trade-offs in
languages rather than immediately
assuming your known language is the best
one for the job

– Gives you the background to communicate
to others in a logical way the choices
necessary to make an informed language
decision

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-7

Motivation: Why Study Programming
Languages?

• Increased ability to learn new languages

– There is significant similarity in the
constructs provided by languages so that
learning a language is often just a matter of
syntax.

• Selection (if and case)

• Loops (while, for, do)

• Jumps (goto, break, continue)

• Data types (strict or loose, int, char, string,
object)

• Functions

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-8

Motivation: Why Study Programming
Languages?

• Helps you understand the significance of implementation
– Most things don’t happen by chance, there is often a reason behind the

way a language was built.
– Some implementation issues are obviously related to technology.

• Hardware influences
– Many aspects of a language are related to softer issues.

• Who built it and the way the language was promoted
• Programmer understanding of the value of certain constructs
• State of the industry

– Does it need the language? Is it ready for the language?

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-9

Motivation: Why Study Programming
Languages?

•Increased ability to design new languages

– You probably will be designing a language of some sort sometime
in your career

Unlikely a full blown programming language, but maybe an XML schema or
full markup language DTD, a mini-scripting language for controlling a system, a
configuration file language to control software, a simple API/language for data
interchange, and so on.

– Just because you can, it doesn’t mean you should

Real language value is often very much related to number of people
using it.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-10

Motivation: Why Study Programming
Languages?

• Overall advancement of computing

• Extremely useful for understanding
compilers

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-11

Programming Domains

• Scientific applications
– Large number of floating point computations
– Fortran still alive

• Business applications
– Produce reports, use decimal numbers and characters
– Reporting as well as calculations
– Cobol, reporting languages (e.g. Crystal Reports), scripting

environments of business systems like SAP, Siebel, etc.

• Artificial intelligence
– Symbols rather than numbers manipulated
– Natural language, string manipulation, and logic needs

• LISP family (Common Lisp, Scheme, ML), Prolog

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-12

Programming Domains

• Systems programming
– Need efficiency because of continuous use
– Speed! Safety can be a problem

• Machine level -> assembly -> C

• Scripting languages
– Put a list of commands in a file to be executed
– Generally domain specific
– Usually interpreted

• JavaScript, Excel macros, sh, csh, awk, etc.

• Special-purpose languages

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-13

Language Evaluation Criteria

• Readability: the ease with which
programs can be read and understood

• Writability: the ease with which a
language can be used to create programs

• Reliability: conformance to specifications
(i.e., performs to its specifications)

• Cost: the ultimate total cost

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-14

Language Evaluation Criteria

• Readability
– Readability describes the ease of which programs can

be read and understood.

– The most important criterium

– Factors:

• Overall simplicity
– Too many features is bad

– Multiplicity of features is bad

– count = count + 1; count += 1; count++; ++count;

• Operator overloading can be trouble
– • 5 + 6

– • 5.5 + 6.1

– • “test” + “it”

– • “test” + 5

– • [5, 6, 1] + [1, 3, 4] = [6, 9, 5] or [5,6,1,1,3,4] or 20?

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-15

Language Evaluation Criteria

• Orthogonality : small number of primitive

constructs combined in a relatively small number
of ways to build the control and data structures of
the language

• Makes the language easy to learn and read

• Meaning is context independent

• A relatively small set of primitive constructs can be
combined in a relatively small number of ways

• Every possible combination is legal

• Lack of orthogonality leads to exceptions to rules

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-16

Language Evaluation Criteria

– Readability factors (continued)

• Control statements

• Defining data types and structures

• Syntax considerations

– Identifier forms

– Special words

– Form and meaning

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-17

Evaluation Criteria: Readability

• Overall simplicity
– A manageable set of features and constructs
– Minimal feature multiplicity
– Minimal operator overloading

• Orthogonality
– A relatively small set of primitive constructs can be combined in a

relatively small number of ways
– Every possible combination is legal

• Data types
– Adequate predefined data types

• Syntax considerations
– Identifier forms: flexible composition
– Special words and methods of forming compound statements
– Form and meaning: self-descriptive constructs, meaningful keywords

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-18

Language Evaluation Criteria

• Writability : the measure of how easily a
language can be used to create programs for a
given domain.

– Factors:

• Simplicity and orthogonality

• Support for abstraction

• Expressivity

• Reliability : Reliable programs work under all
conditions

– Factors:

• Type checking

• Exception handling

• Aliasing

• Readability and writability

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-19

Evaluation Criteria: Writability

• Simplicity and orthogonality

– Few constructs, a small number of primitives, a small set of
rules for combining them

• Support for abstraction

– The ability to define and use complex structures or
operations in ways that allow details to be ignored

• Expressivity

– A set of relatively convenient ways of specifying operations

– Strength and number of operators and predefined functions

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-20

Evaluation Criteria: Reliability

• Type checking
– Testing for type errors

• Exception handling
– Intercept run-time errors and take corrective measures

• Aliasing
– Presence of two or more distinct referencing methods for the

same memory location

• Readability and writability
– A language that does not support “natural” ways of expressing

an algorithm will require the use of “unnatural” approaches, and
hence reduced reliability

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-21

Evaluation Criteria: Cost

• Training programmers to use the
language

• Writing programs (closeness to particular
applications)

• Compiling programs

• Executing programs

• Language implementation system:
availability of free compilers

• Reliability: poor reliability leads to high
costs

• Maintaining programs

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-22

Evaluation Criteria: Others

• Portability

– The ease with which programs can be moved
from one implementation to another

• Generality

– The applicability to a wide range of applications

• Well-definedness

– The completeness and precision of the
language’s official definition

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-23

Influences on Language Design

• Computer Architecture
– Languages are developed around the prevalent

computer architecture, known as the von
Neumann architecture

• Program Design Methodologies
– New software development methodologies (e.g.,

object-oriented software development) led to
new programming paradigms and by extension,
new programming languages

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-24

Computer Architecture Influence

• The hardware really does influence the software
• The standard computer architecture (von Neumann

machine) pretty much dominates language design
• - John von Neuman is generally considered to be the

inventor of the "stored program" machines – the class to
which most of today's computers belong.
– Data and programs stored in same memory
– Memory is separate from CPU
– Instructions and data are piped from memory to CPU
– Focus on moving data and program instructions between registers

in CPU to memory locations

• We use imperative languages, at least in part, because we
use von Neumann machines
– Basis for imperative languages

• Variables model memory cells
• Assignment statements model piping
• Iteration is efficient

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-25

The von Neumann Architecture

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-26

The von Neumann Architecture

• Fetch-execute-cycle (on a von Neumann
architecture computer)

initialize the program counter

repeat forever

fetch the instruction pointed by the counter

increment the counter

decode the instruction

execute the instruction

end repeat

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-27

Programming Methodologies Influences

• 1950s and early 1960s: Simple applications; worry
about machine efficiency

• Late 1960s: People efficiency became important;
readability, better control structures

– structured programming

– top-down design and step-wise refinement

• Late 1970s: Process-oriented to data-oriented

– data abstraction

• Middle 1980s: Object-oriented programming

– Data abstraction + inheritance + polymorphism

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-28

Language Categories

• Imperative
– Central features are variables, assignment statements, and iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional
– Main means of making computations is by applying functions to

given parameters
– Examples: LISP, Scheme, ML, F#

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Object-Oriented
– Encapsulate data objects with processing
– Inheritance and dynamic type binding
– Grew out of imperative languages
– C++, Java

• Markup/programming hybrid
– Markup languages extended to support some programming
– Examples: JSTL, XSLT

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-29

Language Categories

• Imperative : traditional sequential programming
(passive data, active control). Characterized by
variables, assignment, and loops.
– Central features are variables, assignment statements,

and iteration

– C, Pascal

• Functional : passive data, but no sequential
control; all action by function evaluation (“call”),
particularly recursion. No variables!
– Main means of making computations is by applying

functions to given parameters

– LISP, Scheme

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-30

Language Categories

• Logic : Assertions are the basic data; logic
inference the basic control. Again, no sequential
operation
– Rule-based

– Rules are specified in no special order

– Prolog

• Object-oriented : data-centric, data controls its
own use, action by request to data objects.
Characterized by messages, instance variables, and
protection
– Encapsulate data objects with processing

– Inheritance and dynamic type binding

– Grew out of imperative languages

– C++, Java

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-31

Imperative Programming Example

- Written in Ada

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-32

Imperative Programming Example

#include <stdio.h>

int gcd(int u, int v) /* “functional” version */

{ if (v == 0) return u;

else return gcd (v, u % v); /* “tail” recursion */

}

main() /* I/O driver */

{ int x, y;

printf("Input two integers:\n");

scanf("%d%d",&x,&y);

printf("The gcd of %d and %d is %d\n",

x,y,gcd(x,y));

return 0;

}

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-33

Logic Programming Example

•This example was written in Prolog.

• Logic programming is sometimes called

declarative programming because you declare or

make assertions, but no execution sequence is

specified.

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-34

Language Design Trade-Offs

• Reliability vs. cost of execution
– Example: Java demands all references to array elements

be checked for proper indexing, which leads to increased
execution costs

• Readability vs. writability
Example: APL provides many powerful operators (and a large

number of new symbols), allowing complex computations
to be written in a compact program but at the cost of
poor readability

• Writability (flexibility) vs. reliability
– Example: C++ pointers are powerful and very flexible but

are unreliable

1-35

Layered View of Computer

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-36

Layered View of Computer

The operating system
and language
implementation are
layered over
machine interface of a
computer

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-37

The machine and assembly
language

• Machine languages consist of a set instructions that
computers execute. They consist entirely of numbers and
are almost impossible for humans to read and write.

• Assembly languages have the same structure and set of
commands as machine languages, but they enable a
programmer to use names instead of numbers.

• An assembler is a program that translates programs from
assembly language to machine language.

• Each type of CPU has its own machine language and
assembly language, so an assembly language program
written for one type of CPU won't run on another.

• In the early days of programming, all programs were
written in assembly language.

• Programmers still use assembly language when speed is
essential or when they need to perform an operation that
isn't possible in a high-level language.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-38

Intel Pentium Assembly
TITLE Add individual digits of a number ADDIGITS.ASM

COMMENT |

Objective: To find the sum of individual digits of

a given number. Shows character to binary

conversion of digits.

Input: Requests a number from keyboard.

| Output: Prints the sum of the individual digits.

.MODEL SMALL

.STACK 100H

.DATA

number_prompt DB 'Please type a number (<11 digits): ',0

out_msg DB 'The sum of individual digits is: ',0

number DB 11 DUP (?)

.CODE

INCLUDE io.mac

main PROC

.STARTUP

PutStr number_prompt ; request an input number

GetStr number,11 ; read input number as a string

nwln

mov BX,OFFSET number ; BX := address of number

sub DX,DX ; DX := 0 -- DL keeps the sum

repeat_add:

mov AL,[BX] ; move the digit to AL

cmp AL,0 ; if it is the NULL character

je done ; sum is done

and AL,0FH ; mask off the upper 4 bits

add DL,AL ; add the digit to sum

inc BX ; increment BX to point to next digit

jmp repeat_add ; and jump back

done:

PutStr out_msg

PutInt DX ; write sum

nwln

.EXIT

main ENDP

END main

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-39

Programming Language Implementation
Methods

• Compilation

– Programs are translated into machine language; includes
JIT systems

– Use: Large commercial applications

• Pure Interpretation

– Programs are interpreted by another program known as
an interpreter

– Use: Small programs or when efficiency is not an issue

• Hybrid Implementation Systems

– A compromise between compilers and pure interpreters

– Use: Small and medium systems when efficiency is not the
first concern

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-40

Compilation

• Translate high-level program (source language)
into machine code (machine language)

• Slow translation, fast execution

• Compilation process has several phases:

– lexical analysis: converts characters in the source program
into lexical units

– syntax analysis: transforms lexical units into parse trees
which represent the syntactic structure of program

– Semantics analysis: generate intermediate code

– code generation: machine code is generated

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-41

The Compilation Process

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-42

Compiler and Linker

1-43

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-44

Additional Compilation Terminologies

• Load module (executable image): the user
and system code together

• Linking and loading: the process of
collecting system program units and linking
them to a user program

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-45

Von Neumann Bottleneck

• Connection speed between a computer’s
memory and its processor determines the
speed of a computer

• Program instructions often can be executed
much faster than the speed of the
connection; the connection speed thus
results in a bottleneck

• Known as the von Neumann bottleneck; it is
the primary limiting factor in the speed of
computers

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-46

Implementation Methods

• Pure interpretation: program is executed by
software

– No translation

– Slow execution

– Becoming rare

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-47

Pure Interpretation

• No translation

• Easier implementation of programs (run-time
errors can easily and immediately be displayed)

• Slower execution (10 to 100 times slower than
compiled programs)

• Often requires more space

• Now rare for traditional high-level languages

• Significant comeback with some Web scripting
languages (e.g., JavaScript, PHP)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-48

Pure Interpretation Process

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-49

Hybrid Implementation Systems

• A compromise between compilers and pure
interpreters

• A high-level language program is
translated to an intermediate language that
allows easy interpretation

• Faster than pure interpretation

• Examples
– Perl programs are partially compiled to detect errors

before interpretation

– Initial implementations of Java were hybrid; the
intermediate form, byte code, provides portability to any
machine that has a byte code interpreter and a run-time
system (together, these are called Java Virtual Machine)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-50

Hybrid Implementation Process

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-51

1-52

Source:Daniel Ortiz-Arroyo

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-53

Just-in-Time Implementation Systems

• Initially translate programs to an intermediate
language

• Then compile the intermediate language of the
subprograms into machine code when they are
called

• Machine code version is kept for subsequent calls

• JIT systems are widely used for Java programs

• .NET languages are implemented with a JIT system

• In essence, JIT systems are delayed compilers

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-54

Preprocessors

• Preprocessor macros (instructions) are
commonly used to specify that code from
another file is to be included

• A preprocessor processes a program
immediately before the program is
compiled to expand embedded
preprocessor macros

• A well-known example: C preprocessor

– expands #include, #define, and similar
macros

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-55

Programming Environments

• A collection of tools used in software development

• UNIX

– An older operating system and tool collection

– Nowadays often used through a GUI (e.g., CDE, KDE, or
GNOME) that runs on top of UNIX

• Microsoft Visual Studio.NET

– A large, complex visual environment

• Used to build Web applications and non-Web applications in
any .NET language

• NetBeans

– Related to Visual Studio .NET, except for applications in
Java

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-56

Summary

• The study of programming languages is valuable for
a number of reasons:
– Increase our capacity to use different constructs
– Enable us to choose languages more intelligently
– Makes learning new languages easier

• Most important criteria for evaluating programming
languages include:
– Readability, writability, reliability, cost

• Major influences on language design have been
machine architecture and software development
methodologies

• The major methods of implementing programming
languages are: compilation, pure interpretation, and
hybrid implementation

