
ISBN 0-321-49362-1

Chapter 11

Abstract Data
Types and
Encapsulation
Concepts

Copyright © 2018 Pearson. All rights reserved. 1-2

Chapter 11 Topics

• The Concept of Abstraction

• Introduction to Data Abstraction

• Design Issues for Abstract Data Types

• Language Examples

• Parameterized Abstract Data Types

• Encapsulation Constructs

• Naming Encapsulations

Copyright © 2018 Pearson. All rights reserved. 1-3

The Concept of Abstraction

• An abstraction is a view or representation
of an entity that includes only the most
significant attributes

• The concept of abstraction is fundamental
in programming (and computer science)

• Nearly all programming languages support
process abstraction with subprograms

• Nearly all programming languages
designed since 1980 support data
abstraction

Copyright © 2018 Pearson. All rights reserved. 1-4

Introduction to Data Abstraction

• An abstract data type is a user-defined
data type that satisfies the following two
conditions:

– The representation of objects of the type is
hidden from the program units that use these
objects, so the only operations possible are
those provided in the type's definition

– The declarations of the type and the protocols
of the operations on objects of the type are
contained in a single syntactic unit. Other
program units are allowed to create variables
of the defined type.

Copyright © 2018 Pearson. All rights reserved. 1-5

Advantages of Data Abstraction

• Advantages the first condition
– Reliability--by hiding the data representations, user

code cannot directly access objects of the type or
depend on the representation, allowing the
representation to be changed without affecting user
code

– Reduces the range of code and variables of which the
programmer must be aware

– Name conflicts are less likely

• Advantages of the second condition
– Provides a method of program organization

– Aids modifiability (everything associated with a data
structure is together)

– Separate compilation

Copyright © 2018 Pearson. All rights reserved. 1-6

Language Requirements for ADTs

• A syntactic unit in which to encapsulate the
type definition

• A method of making type names and
subprogram headers visible to clients, while
hiding actual definitions

• Some primitive operations must be built
into the language processor

Copyright © 2018 Pearson. All rights reserved. 1-7

Design Issues

• Can abstract types be parameterized?

• What access controls are provided?

• Is the specification of the type physically
separate from its implementation?

Copyright © 2018 Pearson. All rights reserved. 1-8

Language Examples: C++

• Based on C struct type and Simula 67
classes

• The class is the encapsulation device

• A class is a type

• All of the class instances of a class share a
single copy of the member functions

• Each instance of a class has its own copy of
the class data members

• Instances can be static, stack dynamic, or
heap dynamic

Copyright © 2018 Pearson. All rights reserved. 1-9

Language Examples: C++ (continued)

• Information Hiding

– Private clause for hidden entities

– Public clause for interface entities

– Protected clause for inheritance (Chapter 12)

Copyright © 2018 Pearson. All rights reserved. 1-10

Language Examples: C++ (continued)

• Constructors:

– Functions to initialize the data members of
instances (they do not create the objects)

– May also allocate storage if part of the object
is heap-dynamic

– Can include parameters to provide
parameterization of the objects

– Implicitly called when an instance is created

– Can be explicitly called

– Name is the same as the class name

Copyright © 2018 Pearson. All rights reserved. 1-11

Language Examples: C++ (continued)

• Destructors

– Functions to cleanup after an instance is
destroyed; usually just to reclaim heap storage

– Implicitly called when the object’s lifetime ends

– Can be explicitly called

– Name is the class name, preceded by a tilde (~)

Copyright © 2018 Pearson. All rights reserved. 1-12

An Example in C++

class Stack {

private:

int *stackPtr, maxLen, topPtr;

public:

Stack() { // a constructor

stackPtr = new int [100];

maxLen = 99;

topPtr = -1;

};

~Stack () {delete [] stackPtr;};

void push (int number) {

if (topSub == maxLen)

cerr << ″Error in push - stack is full\n″;

else stackPtr[++topSub] = number;

};

void pop () {…};

int top () {…};

int empty () {…};

}

A Stack class header file

// Stack.h - the header file for the Stack class

#include <iostream.h>

class Stack {

private: //** These members are visible only to other

//** members and friends (see Section 11.6.4)

int *stackPtr;

int maxLen;

int topPtr;

public: //** These members are visible to clients

Stack(); //** A constructor

~Stack(); //** A destructor

void push(int);

void pop();

int top();

int empty();

}

Copyright © 2018 Pearson. All rights reserved. 1-13

The code file for Stack

// Stack.cpp - the implementation file for the Stack class

#include <iostream.h>

#include "Stack.h"

using std::cout;

Stack::Stack() { //** A constructor

stackPtr = new int [100];

maxLen = 99;

topPtr = -1;

}

Stack::~Stack() {delete [] stackPtr;}; //** A destructor

void Stack::push(int number) {

if (topPtr == maxLen)

cerr << "Error in push--stack is full\n";

else stackPtr[++topPtr] = number;

}

...

Copyright © 2018 Pearson. All rights reserved. 1-14

Language Examples: C++ (continued)

• Friend functions or classes - to provide
access to private members to some
unrelated units or functions

– Necessary in C++

Copyright © 2018 Pearson. All rights reserved. 1-15

Copyright © 2018 Pearson. All rights reserved. 1-16

Language Examples: Java

• Similar to C++, except:
– All user-defined types are classes

– All objects are allocated from the heap and
accessed through reference variables

– Individual entities in classes have access
control modifiers (private or public), rather
than clauses

- Implicit garbage collection of all objects

– Java has a second scoping mechanism,
package scope, which can be used in place of
friends

• All entities in all classes in a package that do not
have access control modifiers are visible
throughout the package

Copyright © 2018 Pearson. All rights reserved. 1-17

An Example in Java

class StackClass {

private:

private int [] *stackRef;

private int [] maxLen, topIndex;

public StackClass() { // a constructor

stackRef = new int [100];

maxLen = 99;

topPtr = -1;

};

public void push (int num) {…};

public void pop () {…};

public int top () {…};

public boolean empty () {…};

}

Copyright © 2018 Pearson. All rights reserved. 1-18

Language Examples: C#

• Based on C++ and Java

• Adds two access modifiers, internal and
protected internal

• All class instances are heap dynamic

• Default constructors are available for all
classes

• Garbage collection is used for most heap
objects, so destructors are rarely used

• structs are lightweight classes that do
not support inheritance

Copyright © 2018 Pearson. All rights reserved. 1-19

Language Examples: C# (continued)

• Common solution to need for access to
data members: accessor methods (getter
and setter)

• C# provides properties as a way of
implementing getters and setters without
requiring explicit method calls

Copyright © 2018 Pearson. All rights reserved. 1-20

C# Property Example

public class Weather {

public int DegreeDays { //** DegreeDays is a property

get {return degreeDays;}

set {

if (value < 0 || value > 30)

Console.WriteLine(

"Value is out of range: {0}", value);
else degreeDays = value;}

}

private int degreeDays;

...

}

...

Weather w = new Weather();

int degreeDaysToday, oldDegreeDays;

...

w.DegreeDays = degreeDaysToday;

...

oldDegreeDays = w.DegreeDays;

Copyright © 2018 Pearson. All rights reserved. 1-21

Abstract Data Types in Ruby

• Encapsulation construct is the class

• Local variables have “normal” names

• Instance variable names begin with “at” signs (@)

• Class variable names begin with two “at” signs (@@)

• Instance methods have the syntax of Ruby
functions (def … end)

• Constructors are named initialize (only one per
class)—implicitly called when new is called
– If more constructors are needed, they must have different

names and they must explicitly call new

• Class members can be marked private or public,
with public being the default

• Classes are dynamic

Copyright © 2018 Pearson. All rights reserved. 1-22

Abstract Data Types in Ruby (continued)

class StackClass {

def initialize

@stackRef = Array.new

@maxLen = 100

@topIndex = -1

end

def push(number)

if @topIndex == @maxLen

puts " Error in push – stack is full"

else

@topIndex = @topIndex + 1

@stackRef[@topIndex] = number

end

end

def pop … end

def top … end

def empty … end

end

Copyright © 2018 Pearson. All rights reserved. 1-23

Parameterized Abstract Data Types

• Parameterized ADTs allow designing an
ADT that can store any type elements – only
an issue for static typed languages

• Also known as generic classes

• C++, Java 5.0, and C# 2005 provide
support for parameterized ADTs

Copyright © 2018 Pearson. All rights reserved. 1-24

Parameterized ADTs in C++

• Classes can be somewhat generic by
writing parameterized constructor
functions

Stack (int size) {

stk_ptr = new int [size];

max_len = size - 1;

top = -1;

};

A declaration of a stack object:

Stack stk(150);

Copyright © 2018 Pearson. All rights reserved. 1-25

Parameterized ADTs in C++ (continued)

• The stack element type can be parameterized by making the
class a templated class
template <class Type>

class Stack {

private:

Type *stackPtr;

const int maxLen;

int topPtr;

public:

Stack() { // Constructor for 100 elements

stackPtr = new Type[100];

maxLen = 99;

topPtr = -1;

}

Stack(int size) { // Constructor for a given number

stackPtr = new Type[size];

maxLen = size – 1;

topSub = -1;

}

...

}

- Instantiation: Stack<int> myIntStack;

Copyright © 2018 Pearson. All rights reserved. 1-26

Parameterized Classes in Java 5.0

• Generic parameters must be classes

• Most common generic types are the collection
types, such as LinkedList and ArrayList

• Eliminate the need to cast objects that are removed

• Eliminate the problem of having multiple types in a
structure

• Users can define generic classes

• Generic collection classes cannot store primitives

• Indexing is not supported

• Example of the use of a predefined generic class:

ArrayList <Integer> myArray = new ArrayList <Integer> ();

myArray.add(0, 47); // Put an element with subscript 0 in it

Parameterized Classes in Java 5.0
(continued)

import java.util.*;

public class Stack2<T> {

private ArrayList<T> stackRef;

private int maxLen;

public Stack2)({

stackRef = new ArrayList<T> ();

maxLen = 99;

}

public void push(T newValue) {

if (stackRef.size() == maxLen)

System.out.println(" Error in push – stack is full");

else

stackRef.add(newValue);

...

}

- Instantiation: Stack2<string> myStack = new Stack2<string> ();

Copyright © 2018 Pearson. All rights reserved. 1-27

Copyright © 2018 Pearson. All rights reserved. 1-28

Parameterized Classes in C# 2005

• Similar to those of Java 5.0, except no
wildcard classes

• Predefined for Array, List, Stack, Queue,
and Dictionary

• Elements of parameterized structures can
be accessed through indexing

Copyright © 2018 Pearson. All rights reserved. 1-29

Encapsulation Constructs

• Large programs have two special needs:

– Some means of organization, other than simply
division into subprograms

– Some means of partial compilation (compilation
units that are smaller than the whole program)

• Obvious solution: a grouping of
subprograms that are logically related into
a unit that can be separately compiled
(compilation units)

• Such collections are called encapsulation

Copyright © 2018 Pearson. All rights reserved. 1-30

Nested Subprograms

• Organizing programs by nesting
subprogram definitions inside the logically
larger subprograms that use them

• Nested subprograms are supported in
Python, JavaScript, and Ruby

Copyright © 2018 Pearson. All rights reserved. 1-31

Encapsulation in C

• Files containing one or more subprograms
can be independently compiled

• The interface is placed in a header file

• Problem 1: the linker does not check types
between a header and associated
implementation

• Problem 2: the inherent problems with
pointers

• #include preprocessor specification – used
to include header files in applications

Copyright © 2018 Pearson. All rights reserved. 1-32

Encapsulation in C++

• Can define header and code files, similar to
those of C

• Or, classes can be used for encapsulation

– The class is used as the interface (prototypes)

– The member definitions are defined in a
separate file

• Friends provide a way to grant access to
private members of a class

Copyright © 2018 Pearson. All rights reserved. 1-33

C# Assemblies

• A collection of files that appears to
application programs to be a single
dynamic link library or executable

• Each file contains a module that can be
separately compiled

• A DLL is a collection of classes and
methods that are individually linked to an
executing program

• C# has an access modifier called internal;
an internal member of a class is visible to
all classes in the assembly in which it
appears

Copyright © 2018 Pearson. All rights reserved. 1-34

Naming Encapsulations

• Large programs define many global names;
need a way to divide into logical groupings

• A naming encapsulation is used to create a
new scope for names

• C++ Namespaces

– Can place each library in its own namespace and
qualify names used outside with the namespace

– C# also includes namespaces

Copyright © 2018 Pearson. All rights reserved. 1-35

Naming Encapsulations (continued)

• Java Packages

– Packages can contain more than one class
definition; classes in a package are partial
friends

– Clients of a package can use fully qualified
name or use the import declaration

Copyright © 2018 Pearson. All rights reserved. 1-36

Naming Encapsulations (continued)

• Ruby Modules:
- Ruby classes are name encapsulations, but Ruby

also has modules

- Typically encapsulate collections of constants and

methods

- Modules cannot be instantiated or subclassed, and

they cannot define variables

- Methods defined in a module must include the

module’s name

- Access to the contents of a module is requested

with the require method

Copyright © 2018 Pearson. All rights reserved. 1-37

Summary

• The concept of ADTs and their use in program
design was a milestone in the development of
languages

• Two primary features of ADTs are the packaging of
data with their associated operations and
information hiding

• Ada provides packages that simulate ADTs
• C++ data abstraction is provided by classes
• Java’s data abstraction is similar to C++
• C++, Java 5.0, and C# 2005 support

parameterized ADTs
• C++, C#, Java, and Ruby provide naming

encapsulations

