
Chapter 2

Evolution of the 
Major Programming 
Languages



2

History

• Early History : The first programmers

• The 1940s: Von Neumann and Zuse

• The 1950s: The First Programming Language 

• The 1960s: An Explosion in Programming  
languages

• The 1970s: Simplicity, Abstraction, Study

• The 1980s: Consolidation and New Directions

• The 1990s: Internet and the Web

• The 2000s: tbd



3

Early History: The First 

Programmer

• Jacquard loom of early 1800s

• Charles Babbage’s analytical 
engine (1830s & 40s)
Programs were cards with data and operations 

• Ada Lovelace – first programmer

“The engine can arrange and combine 
its numerical quantities exactly as if 
they were letters or any other general 
symbols; And in fact might bring out 
its results in algebraic notation, were 
provision made.”

Source : UMBC CMSC 331



4

Jacquard loom of early 1800s



5

Charles Babbage’s analytical engine (1830s & 40s)



6

Charles Babbage’s analytical engine (1830s & 40s)



7

Ada Lovelace – first programmer



8

The 1940s: Von Neumann and Zuse

John Von 
Neumann led 
a team that built 
computers with 
stored programs 
and a central 
processor

ENIAC, 
however, was 
also 
programmed 
wit patch cords.

Von Neuman with ENIAC



9

ENIAC



10

Old Computers

UNIVAC 1108, circa 1970

IBM 704 (Lawrence Livermore National Laboratory)



11

Konrad Zuse and Plankalkul

Konrad Zuse began work on 
Plankalkul (plan calculus), the 
first algorithmic programming                                      
language, with an aim of creating 
the theoretical preconditions for 
the formulation of problems of a 
general nature. 

Seven years earlier, Zuse had 
developed and built the world's 
first binary digital computer, the 
Z1. He completed the first fully 
functional program-controlled 
electromechanical digital 
computer, the Z3, in 1941. 

Only the Z4, the most 
sophisticated of his creations, 
survived World War II. 



12

The 1940s: Von Neumann and Zuse

• Konrad Zuse (Plankalkul)
– in Germany - in isolation because of the war 

– defined Plankalkul (program calculus) circa 1945 but 
never implemented it. 

– Wrote algorithms in the language, including a program to 
play chess.

– His work finally published in 1972.

– Included some advanced data type features such as

» Floating point, used twos complement and hidden bits

» Arrays

» records (that could be nested)



13

Plankalkul notation

A(7) := 5 * B(6)

|   5  *  B  =>  A

V   |          6         7            (subscripts)

S   |         1.n     1.n           (data types)



14

• Initial computers were programmed in raw 

machine code.

• These were entirely numeric.

• What was wrong with using machine code?  

Everything!

• Poor readability

• Poor modifiability

• Expression coding was tedious

• Inherit deficiencies of hardware, e.g., no 

indexing or floating point numbers

Machine Code (1940’s)



15

• Short Code or SHORTCODE - John Mauchly, 1949. 

• Pseudocode interpreter for math problems, on 

Eckert and Mauchly’s BINAC and later on UNIVAC 

I and II. 

• Possibly the first attempt at a higher level language. 

• Expressions were coded, left to right, e.g.:

X0 = sqrt(abs(Y0))

00 X0 03 20 06 Y0

• Some operations:
01 – 06 abs 1n (n+2)nd power

02 ) 07 + 2n (n+2)nd root

03 = 08 pause 4n if <= n

04 / 09 ( 58 print & tab

Pseudocodes (1949)



16

More Pseudocodes 

Speedcoding; 1953-4
• A pseudocode interpreter for math on IBM 701, IBM 650.

• Developed by John Backus

• Pseudo ops for arithmetic and math functions

• Conditional and unconditional branching

• Autoincrement registers for array access

• Slow but still dominated by slowness of s/w math

• Interpreter left only 700 words left for user program

Laning and Zierler System - 1953
• Implemented on the MIT Whirlwind computer

• First "algebraic" compiler system

• Subscripted variables, function calls, expression translation

• Never ported to any other machine 



17

The 1950s: The First 

Programming Language

• Pseudocodes: interpreters for assembly language 
like 

• Fortran: the first higher level programming 
language

• COBOL: he first business oriented language 

• Algol: one of the most influential programming 
languages ever designed

• LISP: the first language to depart from the 
procedural paradigm

• APL: 



18

Fortran  (1954-57)

• FORmula TRANslator

• Developed at IBM under the 
guidance of John Backus 
primarily for scientific programming

• Dramatically changed forever the 

way computers  used

• Has continued to evolve, adding new features & concepts. 
– FORTRAN II, FORTRAN IV, FORTRAN 66, FORTRAN 77, FORTRAN 90

• Always among the most efficient compilers, producing fast 
code

• Still popular, e.g. for supercomputers



19

Punch Card



20

Fortran  (1954-57)



21

FORTRAN 0 – 1954  (not implemented)

FORTRAN I - 1957

Designed for the new IBM 704, which had index registers and 

floating point hardware

Environment of development:

Computers were small and unreliable

Applications were scientific

No programming methodology or tools

Machine efficiency was most important

Impact of environment on design

• No need for dynamic storage

• Need good array handling and counting loops

• No string handling, decimal arithmetic, or powerful 

input/output (commercial stuff)

Fortran 0 and 1



22

• Names could have up to six characters

• Post-test counting loop (DO)

• Formatted I/O

• User-defined subprograms

• Three-way selection statement (arithmetic IF)

IF (ICOUNT-1) 100, 200, 300

• No data typing statements

variables beginning with i, j, k, l, m or n were 

integers, all else floating point

• No separate compilation

• Programs larger than 400 lines rarely compiled 

correctly, mainly due to IBM 704’s poor reliability 

• Code was very fast

• Quickly became widely used

Fortran I Features



23

C AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION 

C INPUT - CARD READER UNIT 5, INTEGER INPUT

C OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT

C INPUT ERROR DISPAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING

READ INPUT TAPE 5, 501, IA, IB, IC

501 FORMAT (3I5)

IF (IA) 777, 777, 701

701 IF (IB) 777, 777, 702

702 IF (IC) 777, 777, 703

703 IF (IA+IB-IC) 777,777,704

704 IF (IA+IC-IB) 777,777,705

705 IF (IB+IC-IA) 777,777,799

777 STOP 1

799 S = FLOATF (IA + IB + IC) / 2.0

AREA = SQRT( S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *

+     (S - FLOATF(IC)))

WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA

601 FORMAT (4H A= ,I5,5H  B= ,I5,5H  C= ,I5,8H  AREA= ,F10.2, 

+        13H SQUARE UNITS)

STOP

END



24

Fortran II, IV and 77

FORTRAN II - 1958

• Independent compilation

• Fix the bugs

FORTRAN IV - 1960-62
• Explicit type declarations

• Logical selection (IF) statement

• Subprogram names could be parameters

• ANSI standard in 1966

FORTRAN 77 - 1978
• Character string handling

• Logical loop control (WHILE) statement

• IF-THEN-ELSE statement



25

Fortran 77 Bubble Sort

SUBROUTINE SSORT (X, IY, N, KFLAG)
IMPLICIT NONE

c
c    Example of a Bubble Sort

JMAX=N-1
DO 200 I=1,N-1

TEMP=1.E38
DO 100 J=1,JMAX

IF(X(J).GT.X(J+1)) GO TO 100
TEMP=X(J)
X(J)=X(J+1)
X(J+1)=TEMP
ITEMP=IY(J)
IY(J)=IY(J+1)
IY(J+1)=ITEMP

100    CONTINUE
IF(TEMP.EQ.1.E38) GO TO 300
JMAX=JMAX-1

200 CONTINUE
300 RETURN

END



26

Added many features of more modern 
programming languages, including

• Pointers 

• Recursion

• CASE statement

• Parameter type checking

• A collection of array operations, DOTPRODUCT, 
MATMUL, TRANSPOSE,  etc

• dynamic allocations and deallocation of arrays

• a form of records (called derived types)

• Module facility (similar Ada’s package) 

Fortran 90 (1990)



27

FORTRAN 90 Examples
! EXAMPLE 1
!
real,dimension(1000)::a=(/(i,i=1,1000)/)
real,dimension(1000)::b,c
b=a
c=a+b
print *, c
end

! EXAMPLE 2
!
real,dimension(10,10)::a=(/((i+j,i=1,10),j=1,10)/)
real,dimension(10,10)::b,c
b=a
c=a+b
print *, c
end



28

COBOL
• COmmon Business Oriented Language

• Principal mentor: (Rear Admiral Dr.) 

Grace Murray Hopper (1906-1992)

• Based on FLOW-MATIC which had such 

features as:

• Names up to 12 characters, with 

embedded hyphens

• English names for arithmetic operators

• Data and code were completely separate

• Verbs were first word in every statement

• CODASYL committee (Conference on Data 

Systems Languages) developed a 

programming language by the name of 

COBOL



29

COBOL



30

First CODASYL Design Meeting - May 1959

Design goals:

• Must look like simple English

• Must be easy to use, even if that means it will be less 

powerful

• Must broaden the base of computer users

• Must not be biased by current compiler  problems

Design committee were all from computer manufacturers 

and DoD branches

Design Problems: arithmetic expressions?  subscripts? 

Fights among manufacturers     

COBOL



31

COBOL

Contributions:

- First macro facility in a high-level language

- Hierarchical data structures (records)

- Nested selection statements

- Long names (up to 30 characters), with hyphens

- Data Division

Comments:

• First language required by DoD; would have 

failed without DoD

• Still the most widely used business applications 

language



32

COBOL Example
• Description : This program takes all input records of salesperson data 

and writes it to an output file reformatted. 

000100 ID DIVISION.
000200 PROGRAM-ID.  SLS02.
000300 FILE-CONTROL.
000400     SELECT SALESPERSON-FILE
000500         ASSIGN TO DISK.
000600     SELECT REPORT-FILE
000700         ASSIGN TO PRINTER.
000800 DATA DIVISION.
000900 FILE SECTION.
001000 FD  SALESPERSON-FILE.
001100 01  SALESPERSON-RECORD.
001200     05  FILLER              PIC XX.
001300     05  SP-NUMBER           PIC X(4).
001400     05  SP-NAME             PIC X(18).
001500     05  FILLER              PIC X(21).
001600     05  SP-CURRENT-SALES    PIC 9(5)V99.
001700     05  SP-CURRENT-RETURNS  PIC 9(4)V99.
001800 FD  REPORT-FILE.
001900 01  REPORT-RECORD.
002000     05  FILLER              PIC X(10).
002100     05  RT-NUMBER           PIC X(4).
002200     05  FILLER              PIC X(6).
002300     05  RT-NAME             PIC X(18).
002400     05  FILLER              PIC X(6).
002500     05  RT-CURRENT-SALES    PIC ZZ,ZZZ.99.
002600     05  FILLER              PIC X(6).
002700     05  RT-CURRENT-RETURNS  PIC Z,ZZZ.99.
002800     05  FILLER              PIC X(65).



33

COBOL Example
002900 WORKING-STORAGE SECTION.
003000 01  WS-EOF-FLAG             PIC X.
003100*
003200 PROCEDURE DIVISION.
003300*
003400 MAIN-ROUTINE.
003500     OPEN INPUT SALESPERSON-FILE
003600         OUTPUT REPORT-FILE
003700     MOVE "N" TO WS-EOF-FLAG
003800     READ SALESPERSON-FILE
003900         AT END MOVE "Y" TO WS-EOF-FLAG
004000     END-READ
004100*
004200 PERFORM UNTIL WS-EOF-FLAG IS EQUAL TO "Y"
004300     MOVE SPACES TO REPORT-RECORD
004400     MOVE SP-NUMBER TO RT-NUMBER
004500     MOVE SP-NAME TO RT-NAME
004600     MOVE SP-CURRENT-SALES TO RT-CURRENT-SALES
004700     MOVE SP-CURRENT-RETURNS TO RT-CURRENT-RETURNS
004800     WRITE REPORT-RECORD
004900     READ SALESPERSON-FILE
005000         AT END MOVE "Y" TO WS-EOF-FLAG
005100     END-READ
005200 END-PERFORM
005300*
005400 CLOSE SALESPERSON-FILE, REPORT-FILE
005500 STOP RUN.
--------------------------------------------------------------------------------
Sample Run

0005      BENNETT ROBERT           1,600.35         12.50
0016      LOCK ANDREW S              357.72         79.85
0080      PARKER JAMES E          18,200.00        165.00



34

• Beginner's All purpose Symbolic Instruction Code

• Designed by Kemeny & Kurtz at Dartmouth for the  GE 

225 with the goals:

• Easy to learn and use for non-science students and as a path to 
Fortran and Algol

• Must be ”pleasant and friendly"

• Fast turnaround for homework

• Free and private access

• User time is more important than computer time

• Well-suited for implementation on first PCs, e.g., Gates 

and Allen’s 4K Basic interpreter for the MITS  Altair 

personal computer (circa 1975)

• Current popular dialects: Visual BASIC      

BASIC (1964)



35

BASIC Example
• Description : This program performs basic arithmetic 

operations. 

Source Code
10 INPUT "ENTER TWO NUMBERS SEPARATED BY A COMMA:
20 LET S = N1 + N2
30 LET D = N1 - N2
40 LET P = N1 * N2
50 LET Q = N1 / N2
60 PRINT "THE SUM IS ", S
70 PRINT "THE DIFFERENCE IS ", D
80 PRINT "THE PRODUCT IS ", P
90 PRINT "THE QUOTIENT IS ", Q
100 END

--------------------------------------------------------------------------------

Sample Run
ENTER TWO NUMBERS SEPARATED BY A COMMA:
4 2
THE SUM IS 6
THE DIFFERENCE IS 2
THE PRODUCT IS 8
THE QUOTIENT IS 2



36

LISP (1959)
• LISt Processing language (Designed at MIT by McCarthy)

• AI research needed a language that:

• Process data in lists (rather than arrays)

• Handles symbolic computation (rather than numeric)

• One universal, recursive data type: the s-expression

• An s-expression is either an atom or a list of zero or more 

s-expressions

• Syntax is based on the lambda calculus

• Pioneered functional programming

• No need for variables or assignment

• Control via recursion and conditional expressions

• Status

• Still the dominant language for AI

• COMMON LISP and Scheme are contemporary dialects

• ML, Miranda, and Haskell are related languages



37

Representation of Two LISP Lists



38

LISP Example

Source Code
;;; This function, given a specific degree in Farhrenheit,
;;;      presents the user with equivalent Celsius degree.

(defun convert ()
(format t "Enter Fahrenheit ")
(LET (fahr)

(SETQ fahr (read fahr))
(APPEND '(celsisus is) (*(- fahr 32)(/ 5 9)) )

)
)

Ref: http://www.engin.umd.umich.edu/CIS/course.des/cis400/

http://www.engin.umd.umich.edu/CIS/course.des/cis400/


39

Environment of development:  

1. FORTRAN had (barely) arrived for IBM 70x

2. Many other languages were being developed, all for 

specific machines

3. No portable language; all were machine-dependent

4. No universal language for communicating    

algorithms

ACM and GAMM met for four days for design

- Goals of the language:

1. Close to mathematical notation

2. Good for describing algorithms

3. Must be translatable to machine code

Algol



40

Algol 58 Features
• Concept of type was formalized 

• Names could have any length

• Arrays could have any number of subscripts

• Parameters were separated by mode (in & out)

• Subscripts were placed in brackets

• Compound statements (begin ... end)

• Semicolon as a statement separator

• Assignment operator was :=

• if had an else-if clause

Comments:

•Not meant to be implemented, but variations of it were 

(MAD, JOVIAL)

•Although IBM was initially enthusiastic, all support was 

dropped by mid-1959



41

Algol 60
Modified ALGOL 58 at 6-day meeting in Paris adding such 

new features as:

• Block structure (local scope)

• Two parameter passing methods

• Subprogram recursion

• Stack-dynamic arrays

• Still no I/O and no string handling

Successes:

• The standard way to publish algorithms for over 20 

years

• All subsequent imperative languages are based on it

• First machine-independent language

• First language whose syntax was formally defined 

(BNF)



42

Failure: Never widely used, especially in U.S., 

mostly because

1. No I/O and the character set made                   

programs nonportable

2. Too flexible--hard to implement

3. Entrenchment of FORTRAN

4. Formal syntax description

5. Lack of support by IBM

Algol 60 (1960)



43

Sample ALGOL
• Description : This program computes the mean (average) of the absolute value 

of an array. Block structures, a dynamic array, and iterative statements are 
featured in this program. The bold type print represent keywords. 

// the main program (this is a comment)

begin
integer N;
Read Int(N);

begin
real array Data[1:N];
real sum, avg;
integer i;
sum:=0;

for i:=1 step 1 until N do
begin real val;
Read Real(val);
Data[i]:=if val<0 then -val else val

end;

for i:=1 step 1 until N do
sum:=sum + Data[i];

avg:=sum/N;
Print Real(avg)

end
end



44

APL

• A Programming Language 

• Designed by K.Iverson at Harvard in late 
1950’s

• A language for programming mathematical 
computations
– especially those using matrices

• Functional style and many whole array 
operations

• Drawback is requirement of special keyboard



45

The 1960s: An Explosion in 

Programming Languages

• The development of hundreds of programming 
languages

• PL/I designed in 1963-4
– supposed to be all purpose

– combined features of FORTRAN, COBOL and Algol 60 and more!

– translators were slow, huge and unreliable

– some say it was ahead of its time......

• Algol 68

• SNOBOL

• Simula

• BASIC



46

PL/I
• Computing situation in 1964 (IBM's point of view)

Scientific computing

• IBM 1620 and 7090 computers

• FORTRAN

• SHARE user group

Business computing

• IBM 1401, 7080 computers

• COBOL

• GUIDE user group

• IBM’s goal: develop a single computer (IBM 360) and a 

single programming language (PL/I) that would be good 

for scientific and business applications.

• Eventually grew to include virtually every idea in current 

practical programming languages. 



47

PL/I
PL/I contributions:

1. First unit-level concurrency

2. First exception handling

3. Switch-selectable recursion

4. First pointer data type

5. First array cross sections

Comments:

• Many new features were poorly designed

• Too large and too complex

• Was (and still is) actually used for both scientific 

and business applications

• Subsets (e.g. PL/C) developed which were more 

manageable



48

Simula (1962-67)

• Designed and built by Ole-Johan Dahl and Kristen 

Nygaard at the Norwegian Computing Centre (NCC) in 

Oslo between 1962 and 1967

• Originally designed and implemented as a language for 

discrete event simulation

• Based on ALGOL 60

Primary Contributions:

• Coroutines - a kind of subprogram

• Classes (data plus methods) and objects

• Inheritance

• Dynamic binding

=> Introduced the basic ideas that developed into object-

oriented programming.



49

From the continued development of ALGOL 60,  but it is not 

a superset of that language

• Design is based on the concept of orthogonality

• Contributions:

• User-defined data structures

• Reference types

• Dynamic arrays (called flex arrays)

• Comments:

• Had even less usage than ALGOL 60

• Had strong influence on subsequent languages, 

especially Pascal, C, and Ada

Algol 68



50

The 1970s: Simplicity, 

Abstraction, Study

• Algol-W - Nicklaus Wirth and C.A.R.Hoare
– reaction against 1960s

– simplicity 

• Pascal
– small, simple, efficient structures

– for teaching program

• C - 1972 - Dennis Ritchie
– aims for simplicity by reducing restrictions of the type system

– allows access to underlying system

– interface with O/S - UNIX



51

Pascal (1971)

• Designed by Wirth, who quit the ALGOL 68  

committee (didn't like the direction of that 

work)

• Designed for teaching structured programming

• Small, simple

• Introduces some modest improvements, such as 

the case statement

• Was widely used for teaching programming ~ 

1980-1995.



52

Pascal Sample

(********************************************************************
* A simple bubble sort program.  Reads integers, one per line, and prints   *
* them out in sorted order.  Blows up if there are more than 49.            *
********************************************************************)
PROGRAM Sort(input, output);

CONST
(* Max array size. *)
MaxElts = 50;

TYPE 
(* Type of the element array. *)
IntArrType = ARRAY [1..MaxElts] OF Integer;

VAR
(* Indexes, exchange temp, array size. *)
i, j, tmp, size: integer;

(* Array of ints *)
arr: IntArrType;

(* Read in the integers. *)
PROCEDURE ReadArr(VAR size: Integer; VAR a: IntArrType);

BEGIN
size := 1;
WHILE NOT eof DO BEGIN

readln(a[size]);
IF NOT eof THEN 

size := size + 1
END

END;

BEGIN
(* Read *)
ReadArr(size, arr);

(* Sort using bubble sort. *)
FOR i := size - 1 DOWNTO 1 DO

FOR j := 1 TO i DO 
IF arr[j] > arr[j + 1] THEN BEGIN

tmp := arr[j];
arr[j] := arr[j + 1];
arr[j + 1] := tmp;

END;

(* Print. *)
FOR i := 1 TO size DO

writeln(arr[i])
END.



53

C (1972-)

• Designed for systems programming at Bell 

Labs by Dennis Ritchie and colleagues.

• Evolved primarily from B, but also 

ALGOL 68

• Powerful set of operators, but poor type 

checking

• Initially spread through UNIX and the 

availability of high quality, free compilers, 

especially gcc.



54

Other descendants of ALGOL

• Modula-2 (mid-1970s by Niklaus Wirth at ETH)

• Pascal plus modules and some low-level 

features designed for systems programming

• Modula-3 (late 1980s at Digital & Olivetti)

• Modula-2 plus classes, exception handling, 

garbage collection, and concurrency

• Oberon (late 1980s by Wirth at ETH)

• Adds support for OOP to Modula-2 

• Many Modula-2 features were deleted (e.g., for

statement, enumeration types, with statement, 

non-integer array indices)



55

The 1980s: Consolidation 

and New Paradigms
• Ada

– US Department of Defence

– European team lead by Jean Ichbiah.  (Sam Lomonaco 
was also on the ADA team :-)

• Functional programming
– Scheme, ML, Haskell

• Logic programming
– Prolog

• Object-oriented programming
– Smalltalk, C++, Eiffel



56

Ada

• In study done in 73-74 it was determined that the 
DoD was spending $3B annually on software, over 
half on embedded computer systems. 

• The Higher Order Language Working Group was 
formed and initial language requirements compiled 
and refined in 75-76 and existing languages 
evaluated.

• In 1997, it was concluded that none were suitable, 
though Pascal, ALGOL 68 or PL/I would be a good 
starting point. 

• Language DoD-1 was developed through a series of 
competitive contracts.



57

Ada

• Renamed Ada in May 1979. 

• Reference manual, Mil. Std. 1815 approved 10 
December 1980. (Ada Bryon was  born 
10/12/1815) 

• “mandated” for use in DoD work during late 80’s 
and early 90’s.

• Ada95, a joint ISO and ANSI standard, accepted in 
February 1995 and included many new features.

• The Ada Joint Program Office (AJPO) closed 1 

October 1998 (Same day as ISO/IEC 14882:1998 

(C++) published!)



58

Ada

Contributions:

1. Packages - support for data abstraction

2. Exception handling - elaborate 

3. Generic program units

4. Concurrency - through the tasking model

Comments:

• Competitive design

• Included all that was then known about software 

engineering and language design

• First compilers were very difficult; the first really 

usable compiler came nearly five years after the 

language design was completed

• Very difficult to mandate programming technology



59

• Developed at the University of Aix Marseille, by Comerauer and 

Roussel, with some help from Kowalski at the University of 

Edinburgh

• Based on formal logic

• Non-procedural

• Can be summarized as being an intelligent   database system that 

uses an inferencing process to infer the truth of given queries

Logic Programming: Prolog

sibling(X, Y)      :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).



60

Functional Programming

• Common Lisp: consolidation of LISP dialects 
spurred practical use, as did the development of 
Lisp Machines.

• Scheme: a simple and pure LISP like language 
used for teaching programming.

• Logo: Used for teaching young children how to 
program.

• ML: (Meta Language) a strongly-typed functional 
language first developed by Robin Milner in the 
70’s 

• Haskell: polymorphicly typed, lazy, purely 
functional language.



61

Smalltalk (1972-80)

• Developed at Xerox PARC by Alan Kay and 

colleagues (esp. Adele Goldberg) inspired by 

Simula 67

• First compilation in 1972 was written on a bet to 

come up with "the most powerful language in the 

world" in "a single page of code". 

• In 1980, Smalltalk 80, a uniformly object-oriented 

programming environment became available as the 

first commercial release of the Smalltalk language

• Pioneered the graphical user interface everyone 

now uses

• Industrial use continues to the present day



62

• Developed at Bell Labs by Stroustrup

• Evolved from C and SIMULA 67 

• Facilities for object-oriented programming, taken 

partially from SIMULA 67, added to C

• Also has exception handling

• A large and complex language, in part because it 

supports both procedural and OO programming

• Rapidly grew in popularity, along with OOP

• ANSI standard approved in November, 1997

Combining Imperative and Object-Oriented 

Programming: C++ (1985)



63

Copyright © 2012 Addison-Wesley. All rights reserved. 1-63

Related OOP Languages
• Objective-C (designed by Brad Cox – early 

1980s)
– C plus support for OOP based on Smalltalk

– Uses Smalltalk’s method calling syntax

– Used by Apple for systems programs

• Delphi (Borland)
– Pascal plus features to support OOP

– More elegant and safer than C++

• Go (designed at Google - 2009)
– Loosely based on C, but also quite different

– Does not support traditional OOP



64

Copyright © 2012 Addison-Wesley. All rights reserved. 1-64

An Imperative-Based Object-Oriented 

Language: Java

• Developed at Sun in the early 1990s with original goal 
of a language for 
embedded computers
– C and C++ were not satisfactory for embedded electronic devices

• Principals: Bill Joy, James Gosling, Mike 
Sheradin, Patrick Naughton

• Original name, Oak, changed for copyright reasons

• Based on C++
– Significantly simplified (does not include struct, union, enum, 

pointer arithmetic, and half of the assignment coercions of C++) 

– Supports only OOP

– Has references, but not pointers

– Includes support for applets and a form of  concurrency



65

Java 

• Libraries for applets, GUIs, database 
access

• Portable: Java Virtual Machine concept, 
JIT compilers

• Widely used for Web programming

• Use increased faster than any previous 
language



66

1990’s: the Internet and Web

During the 90’s, Object-oriented languages 
(mostly C++) became widely used in 
practical applications

The Internet and Web drove several 
phenomena:

– Adding concurrency and threads to existing 
languages

– Increased use of scripting languages such as Perl 
and Tcl/Tk

– Java as a new programming language 



67

Copyright © 2012 Addison-Wesley. All rights reserved. 1-67

Scripting Languages for the Web
• Perl

– Designed by Larry Wall—first released in 1987

– Variables are statically typed but implicitly declared

– Three distinctive namespaces, denoted by the first character of a 

variable’s name

– Powerful, but somewhat dangerous

– Gained widespread use for CGI programming on the Web

– Also used for a replacement for UNIX system administration language

• JavaScript
– Began at Netscape, but later became a joint venture of Netscape and Sun 

Microsystems

– A client-side HTML-embedded scripting language, often used to create dynamic 
HTML documents

– Purely interpreted

– Related to Java only through similar syntax

• PHP
– PHP: Hypertext Preprocessor, designed by Rasmus Lerdorf

– A server-side HTML-embedded scripting language, often used for form processing 
and database access through the Web

– Purely interpreted



68

Scripting Languages for the Web

• Python

– An OO interpreted scripting language

– Type checked but dynamically typed

– Used for CGI programming and form processing

– Dynamically typed, but type checked

– Supports lists, tuples, and hashes

• Ruby

– Designed in Japan by Yukihiro Matsumoto (a.k.a, “Matz”)

– Began as a replacement for Perl and Python

– A pure object-oriented scripting language

- All data are objects

– Most operators are implemented as methods, which can be redefined by user code

– Purely interpreted

Copyright © 2012 Addison-Wesley. All rights reserved. 1-68



69

Copyright © 2012 Addison-Wesley. All rights reserved. 1-69

Scripting Languages for the Web

• Lua

– An OO interpreted scripting language

– Type checked but dynamically typed

– Used for CGI programming and form processing

– Dynamically typed, but type checked

– Supports lists, tuples, and hashes, all with its single data structure, 

the table

– Easily extendable



70

The Flagship .NET Language: C#

• Part of the .NET development platform

• Based on C++ and Java

• Provides a language for component-based 
software development

• All .NET languages (C#, Visual 
BASIC.NET, Managed C++, J#.NET, and 
Jscript.NET) use Common Type System 
(CTS), which provides a common class 
library

• Likely to become widely used



71

Markup/Programming 

Hybrid Languages
• XML, XSLT

– eXtensible Markup Language (XML): a metamarkup language

– eXtensible Stylesheet Language Transformation (XSLT) transforms 
XML documents for display

– Programming constructs (e.g., looping)

• JSP
– Java Server Pages: a collection of technologies to support dynamic 

Web documents

– servlet: a Java program that resides on a Web server; servlet’s output 
is displayed by the browser



72

Programming Paradigms

• Imperative

• Object Oriented

• Functional

• Logic

• Parallel/Concurrent

• Distributed

• Constraint (declarative based on specifying constraints)

• Data flow (model as a directed graph of the data flowing
between operations)

• Aspect Oriented (separation of cross-cutting concerns, built 
on top of OO, is it a new paradigm?)

• Generic (sometimes considered as a new paradigm)



73

Multiparadigm languages

• 1 paradigm:

– Imperative: C, Pascal, Basic

• 2 paradigms

– Imperative + OO: C++

– Functional + imperative: scheme

• 3 paradigms

– Functional + imperative + OO: Perl, Python, Tcl

– Imperative + concurrent + OO: Java, C#

• 4 paradigms

– Functional + imperative + concurrent + OO: Ruby

– Functional + imperative + logic + OO: Leda

• 8 paradigms

– Concurrent + constraint + dataflow + distributed + functional + 
imperative + logic + OO: Mozart



74

Genealogy of Common Languages



75

The future 

• In the 60’s, the dream was a single all-purpose 
language (e.g., PL/I, Algol)

• The 70s and 80s dream expressed by 
Winograd (1979)

“Just as high-level languages allow the programmer to 
escape the intricacies of the machine, higher level 
programming systems can provide for manipulating 
complex systems. We need to shift away from algorithms 
and  towards the description of the properties of the 
packages that we build. Programming systems will be 
declarative not imperative”

• Will that dream be realised?

• Programming is not yet obsolete


