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Chapter 3

Describing Syntax 

and Semantics
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We usually break down the problem of defining a 

programming language into two parts.

• Defining the PL’s syntax

• Defining the PL’s semantics

Syntax - the form or structure of the expressions, 

statements, and program units

Semantics - the meaning of the expressions, 

statements, and program units.

The boundary between the two is not always clear.

Introduction
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Why and How

Why? We want specifications for several 

communities:

• Other language designers 

• Implementors

• Programmers (the users of the language)

How?  One way is via natural language descriptions 

(e.g., users’ manuals, textbooks) but there are a 

number of techniques for specifying the syntax and 

semantics that are more formal.
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Syntax Overview

• Language preliminaries

• Context-free grammars and BNF

• Syntax diagrams
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A sentence is a string of characters over some 

alphabet.

A language is a set of sentences.

A lexeme is the lowest level syntactic unit of a  

language (e.g., *, sum, begin).

A token is a category of lexemes (e.g., identifier).

Formal approaches to describing syntax:

1. Recognizers - used in compilers

2. Generators - what we'll study

Introduction
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Lexical Structure of 

Programming Languages
• The structure of its lexemes (words or tokens)

– token is a category of lexeme

• The scanning phase (lexical analyser) collects characters into 
tokens

• Parsing phase (syntactic analyser) determines (validity of) 
syntactic structure

Stream of
characters

Result of 
parsing

tokens and 
values

lexical 
analyser

Syntactic 
analyser
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Grammars

Context-Free Grammars (CFG)
• Developed by Noam Chomsky in the mid-1950s.

• Language generators, meant to describe the syntax 

of natural languages.

• Define a class of languages called context-free 

languages.
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CFG

Null String (  )
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Backus Normal/Naur Form (1959)
•Invented by John Backus to describe Algol 58 and refined by Peter Naur for 

Algol 60.

•BNF is equivalent to context-free grammars

- A metalanguage is a language used to describe another language.

- In BNF, abstractions are used to represent classes of syntactic 

structures--they act like syntactic variables (also called 

nonterminal symbols), e.g.

<while_stmt> ::= while <logic_expr> do <stmt>

- This is a rule which describes the structure of a while statement.  

Which symbols are nonterminals?

BNF 
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BNF 

• A rule has a left-hand side (LHS) which is a single non-

terminal symbol and a right-hand side (RHS), one or more 

terminal or nonterminal symbols.

• A grammar is a 4-tuple containing a set of tokens, a set of 

nonterminals, a designated nonterminal start symbol, and a 

finite nonempty set of rules

• A non-terminal symbol is “defined” by one or more rules.

• Multiple rules can be combined with the | symbol so that
<stmts> ::= <stmt>

<stmts> ::= <stmnt> ; <stmnts>

is equivalent to

<stmts> ::= <stmt> | <stmnt> ; <stmnts>
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Syntactic lists are described in BNF using 

recursion 

<ident_list> -> ident

| ident, <ident_list>

A  derivation is a repeated application of rules, 

starting with the start symbol and ending with a 

sentence (all terminal symbols)

BNF
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BNF Example 

Here is an example of a simple grammar for a subset of English.  

A sentence is noun phrase and verb phrase followed by a period.

<sentence>    ::= <noun-phrase><verb-phrase>.

<noun-phrase> ::= <article><noun>

<article>     ::= a | the

<noun>        ::= man | apple | worm | penguin

<verb-phrase> ::= <verb> | <verb><noun-phrase>

<verb>        ::= eats | throws | sees | is
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Derivation using BNF

<sentence> -> <noun-phrase><verb-phrase>.

<article><noun><verb_phrase>.

the<noun><verb_phrase>.

the man <verb_phrase>.

the man <verb><noun-phrase>.

the man eats <noun-phrase>.

the man eats <article> < noun>.

the man eats the <noun>.

the man eats the apple.     
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Another BNF  Example

<program> -> <stmts>

<stmts> -> <stmt> 

| <stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term> | <term> - <term>

<term> -> <var> | const

Here is a  derivation:
<program> => <stmts> => <stmt> 

=> <var> = <expr> => a = <expr> 

=> a = <term> + <term>

=> a = <var> + <term> 

=> a = b + <term>

=> a = b + const

Note: There is some 
variation in notation 
for BNF grammars.  
Here we are using ->
in the rules instead of 
::= .
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Every string of symbols in the derivation is a 

sentential form.

A sentence is a sentential form that has only  

terminal symbols.

A leftmost derivation is one in which the 

leftmost nonterminal in each sentential form is 

the one that is expanded.

A derivation may be neither leftmost nor 

rightmost (or something else)

Derivation 
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Parse Tree

<program>

<stmts>

<stmt>

<var>  =     <expr>

a      <term>  +   <term>

<var>       const

b

A parse tree is a hierarchical representation of
a derivation
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Another Parse Tree

<sentence>

<noun-phrase> <verb_phrase>

<article> <noun> <verb> <noun-phrase> 

<article> <noun>
the man eats

the apple
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A grammar is ambiguous if and only if it 

generates a sentential form that has two or 

more distinct parse trees.

Ambiguous grammars are, in general, 

undesirable in formal languages.

We can usually eliminate ambiguity by 

revising the grammar.

Grammar 
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Grammar

Here is a simple grammar for expressions.  This grammar is 

ambiguous

<expr> -> <expr> <op> <expr>

<expr> -> int

<op> -> +|-|*|/

The sentence 1+2*3 can lead to two different parse trees 

corresponding to 1+(2*3) and (1+2)*3
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Grammar

Issue of Ambiguity
• A grammar is ambiguous if there exists a string which gives rise to more 

than one parse tree.

• Most common cause is due to infix binary operations.

<expr> ::= <num> | <expr> – <expr>Grammar 1 – 2 – 3String

<expr>

<expr> – <expr>

<expr> – <expr> <num>

<num> <num>

1 2

3

<expr>

<expr> – <expr>

<expr> – <expr><num>

<num> <num>

2 3

1

(1-2)-3 1-(2-3)

Parse

Which One?
Different Parse Trees, 

Different Meaning!
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If we use the parse tree to indicate precedence 

levels of the operators, we cannot have 

ambiguity.

An unambiguous expression grammar:
<expr> -> <expr> - <term>  |  <term>

<term> -> <term> / const  |  const

<expr>

<expr>     - <term>

<term>         <term>   /      const

const          const

Grammar
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Grammar (continued)
<expr> => <expr> - <term> => <term> - <term> 

=> const - <term> 

=> const - <term> / const

=> const - const / const

Operator associativity can also be indicated by a 

grammar

<expr> -> <expr> + <expr>  |  const  (ambiguous)

<expr> -> <expr> + const  |  const  (unambiguous)

<expr>

<expr>        +     const

<expr> +  const

const
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An Expression Grammar

Here’s a  grammar to define simple arithmetic expressions over 
variables and numbers. 

Exp ::= num

Exp ::= id

Exp ::= UnOp Exp

Exp := Exp BinOp Exp

Exp ::= '(' Exp ')'

UnOp ::= '+'

UnOp ::= '-'

BinOp ::= '+' | '-' | '*' | '/'

Here’s another common 
notation variant where 
single quotes are used to 
indicate terminal symbols 
and unquoted symbols are 
taken as non-terminals.
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A derivation

Here’s a derivation of a+b*2 using the expression grammar: 

Exp =>                 // Exp ::= Exp BinOp Exp

Exp BinOp Exp =>      // Exp ::= id

id BinOp Exp =>       // BinOp ::= '+'

id + Exp =>           // Exp ::= Exp BinOp Exp

id + Exp BinOp Exp => // Exp ::= num

id + Exp BinOp num => // Exp ::= id

id + id BinOp num =>  // BinOp ::= '*'

id + id * num

a  + b  * 2
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A parse tree

A parse tree for a+b*2: 

__Exp__

/   |   \

Exp  BinOp   Exp

|     |   /  |    \

identifier + Exp BinOp Exp

|     |   |

identifier * number
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Precedence

• Precedence refers to the order in which operations are evaluated.  The 
convention is: exponents, mult div, add sub. 

• Deal with operations in categories: exponents, mulops, addops. 

Here’s a revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp

Exp ::= Term

Term ::= Term MulOp Term

Term ::= Factor

Factor ::= '(' + Exp + ')‘

Factor ::= num | id

AddOp ::= '+' | '-’

MulOp ::= '*' | '/'
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Associativity

• Associativity refers to the order in which two of the same operation 
should be computed 

– 3+4+5 = (3+4)+5, left associative (all BinOps) 

– 3^4^5 = 3^(4^5), right associative 

– 'if x then if x then y else y' = 'if x then (if x then y else y)',  else associates with closest 
unmatched if (matched if has an else) 

• Adding associativity to the BinOp expression grammar

Exp    ::= Exp AddOp Term

Exp    ::= Term           

Term   ::= Term MulOp Factor

Term   ::= Factor           

Factor ::= '(' Exp ')'

Factor ::= num | id

AddOp  ::= '+' | '-'

MulOp  ::= '*' | '/'
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Another example: conditionals

• Goal: to create a correct grammar for conditionals. 

• It needs to be unambiguous and the precedence is else with 
nearest unmatched if. 

Statement    ::= Conditional | 'whatever'

Conditional ::= 'if' test 'then' Statement 'else' Statement

Conditional ::= 'if' test 'then' Statement

• The grammar is ambiguous. The first Conditional allows 
unmatched 'if's to be Conditionals. 

if test then (if test then whatever else whatever) = correct

if test then (if test then whatever) else whatever = incorrect
• The final unambiguous grammar.

Statement ::= Matched | Unmatched

Matched ::= 'if' test 'then' Matched 'else' Matched | 'whatever'

Unmatched ::= 'if' test 'then' Statement

| 'if' test 'then' Matched else Unmatched
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•Syntactic sugar: doesn’t extend the expressive power of the 

formalism, but does make it easier to use.

•Optional parts are placed in brackets ([])

<proc_call> -> ident [ ( <expr_list>)]

•Put alternative parts of RHSs in parentheses and 

separate them with vertical bars  

<term> -> <term> (+ | -) const

•Put repetitions (0 or more) in braces ({})

<ident> -> letter {letter | digit}

Extended BNF
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BNF:

<expr> -> <expr> + <term>

| <expr> - <term>

| <term>

<term> -> <term> * <factor>

| <term> / <factor>

| <factor>

EBNF:

<expr> -> <term> {(+ | -) <term>}

<term> -> <factor> {(* | /) <factor>}

BNF
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Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses and 

put the nonterminals in rectangles; connect with lines with 

arrowheads

e.g., Pascal type declarations

..

type_identifier

( identifier )

,

constant constant
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Parsing 

• A grammar describes the strings of tokens that are 
syntactically legal in a PL

• A recogniser simply accepts or rejects strings. 

• A parser constructs a derivation or parse tree.

• Two common types of parsers:
– bottom-up or data driven

– top-down or hypothesis driven

• A recursive descent parser is a way to implement a 
top-down parser that is particularly simple.
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• Each nonterminal in the grammar has a      
subprogram associated with it; the 
subprogram parses all sentential forms that 
the nonterminal can generate

• The recursive descent parsing subprograms 
are built directly from the grammar rules 

• Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Recursive Descent Parsing
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Recursive Descent Parsing Example

Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (this one is 
written in C)

void term() { 

factor();     /* parse first factor*/

while (next_token == ast_code || 

next_token == slash_code) {

lexical();  /* get next token */

factor();   /* parse next factor */

}

} 



COME 214 53

Semantics
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Semantics Overview
• Syntax is about “form” and semantics about 

“meaning”.

• The boundary between syntax and semantics is not 
always clear.

• First we’ll look at issues close to the syntax end, 
what Sebesta calls “static semantics”, and the 
technique of  attribute grammars.

• Then we’ll sketch three approaches to defining 
“deeper” semantics
– Operational semantics

– Axiomatic semantics

– Denotational semantics
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Static semantics  covers some language features that 

are difficult or impossible to handle in a BNF/CFG.

It is also a mechanism for building a parser which 

produces a “abstract syntax tree” of its input. 

Categories attribute grammars can handle:

• Context-free but cumbersome (e.g. type            

checking)

• Noncontext-free (e.g. variables must be            

declared before they are used)

Static Semantics
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Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)

• CFGs cannot describe all of the syntax of 

programming languages

• Additions to CFGs to carry some 

“semantic” info along through parse trees

Primary value of AGs:
• Static semantics specification

• Compiler design (static semantics checking)
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Attribute Grammar Example

In Ada we have the following rule to describe procedure 
definitions:

<proc>  -> procedure <procName> <procBody> end <procName> ;

But, of course, the name after “procedure” has to be the same as 
the name after “end”.

This is not possible to capture in a CFG (in practice) because 
there are too many names.

Solution: associate simple attributes with nodes in the parse tree 
and add a “semantic” rules or constraints to the syntactic rule 
in the grammar.

<proc>  -> procedure <procName>[1] <procBody> end <procName>[2] ;

<procName][1].string = <procName>[2].string
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Attribute Grammars

Definition: An attribute grammar is a CFG 

G=(S,N,T,P)

with the following additions:
– For each grammar symbol x there is a set A(x) of attribute 

values.

– Each rule has a set of functions that define certain 

attributes of the nonterminals in the rule.

– Each rule has a (possibly empty) set of predicates to check 

for attribute consistency
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Attribute Grammars

Let   X0 -> X1 ... Xn be a rule.

Functions of the form S(X0) = f(A(X1), ... A(Xn)) define 

synthesized attributes

Functions of the form I(Xj) = f(A(X0), ... , A(Xn)) for i 

<= j <= n define inherited attributes

Initially, there are intrinsic attributes on the leaves
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Example: expressions of the form  id + id

•ids can be either int_type or real_type

• types of the two ids must be the same

• type of the expression must match its expected type

BNF: <expr> -> <var> + <var>

<var> -> id

Attributes:

actual_type - synthesized for <var> and <expr>

expected_type - inherited for <expr>

Attribute Grammars
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Attribute Grammars

Attribute Grammar:

1. Syntax rule:  <expr> -> <var>[1] + <var>[2]

Semantic rules: 
<expr>.actual_type  <var>[1].actual_type

Predicate: 

<var>[1].actual_type = <var>[2].actual_type

<expr>.expected_type = <expr>.actual_type

2. Syntax rule: <var> -> id

Semantic rule:

<var>.actual_type  lookup (id, <var>)
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How are attribute values computed?

•If all attributes were inherited, the tree could 

be decorated in top-down order.

•If all attributes were synthesized, the tree 

could be decorated in bottom-up order.

•In many cases, both kinds of attributes are 

used, and it is some combination of top-down 

and bottom-up that must be used.

Attribute Grammars (continued)
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Attribute Grammars (continued)

<expr>.expected_type  inherited from parent

<var>[1].actual_type  lookup (A, <var>[1])

<var>[2].actual_type  lookup (B, <var>[2])

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type  <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type
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No single widely acceptable notation or formalism for 

describing semantics.

The general approach to defining the semantics of any 

language L is to specify a general mechanism to 

translate any sentence in L into a set of sentences in 

another language or system that we take to be well 

defined.

Here are three approaches we’ll briefly look at:
– Operational semantics

– Axiomatic semantics

– Denotational semantics

Dynamic Semantics
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Operational Semantics

• Idea: describe the meaning of a program in language L by 

specifying how statements effect the state of a machine, 

(simulated or actual) when executed.

• The change in the state of the machine (memory, registers, 

stack, heap, etc.) defines the meaning of  the statement.

• Similar in spirit to the notion of a Turing Machine and also

used informally to explain higher-level constructs in terms 

of simpler ones, as in:
c statement operational semantics

for(e1;e2;e3) e1;

{<body>} loop: if e2=0 goto exit

<body>

e3;

goto loop

exit:
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Operational Semantics

• To use operational semantics for a high-level 

language,  a virtual machine in needed

• A hardware pure interpreter would be too 

expensive

• A software pure interpreter also has problems:

• The detailed characteristics of the particular

• computer would make actions difficult to 

understand

• Such a semantic definition would be machine-

dependent
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Operational Semantics

A better alternative: A complete computer simulation

• Build a translator (translates source code to the machine 

code of an idealized computer)

• Build a simulator for the idealized computer

Evaluation of operational semantics:

• Good if used informally

• Extremely complex if used formally (e.g. VDL)
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Vienna Definition Language

• VDL was a language developed at  IBM Vienna Labs as  a 
language for formal, algebraic definition via operational 
semantics. 

• VDL was used to specify the semantics of PL/I. 

• See: The Vienna Definition Language, P. Wegner, ACM Comp 
Surveys 4(1):5-63 (Mar 1972)

• The VDL specification of PL/I was very large, very 
complicated, a remarkable technical accomplishment, and of 
little practical use. 
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Axiomatic Semantics

• Based on formal logic (first order predicate calculus)

• Original purpose: formal program verification

• Approach: Define axioms and inference rules in logic 

for each statement type in the language (to allow 

transformations of expressions to other expressions)

• The expressions are called assertions and are either

• Preconditions: An assertion before a statement states 

the relationships and constraints among variables that 

are true at that point in execution

• Postconditions: An assertion following a statement
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Logic 101

Propositional logic:

Logical constants: true, false 

Propositional symbols: P, Q, S, ... that are either true or false

Logical connectives:  (and) ,  (or),  (implies),  (is equivalent),  (not) which are 
defined by the truth tables below.

Sentences are formed by combining propositional symbols, connectives and parentheses 
and are either true or false. e.g.: PQ   (P  Q)

First order logic adds

Variables which can range over objects in the domain of discourse

Quantifiers including:   (forall) and  (there exists)

Example sentences: 

(p) (q) pq   (p  q)

x prime(x)  y prime(y)  y>x
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• A weakest precondition is the least restrictive 

precondition that will guarantee the postcondition

Notation:  {P} Statement {Q}

precondition               postcondition

Example:

{?} a := b + 1  {a > 1}

We often need to infer what the precondition must be for a 

given postcondition

One possible precondition: {b > 10}

Weakest precondition: {b > 0}

Axiomatic Semantics
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Axiomatic Semantics

Program proof process:

• The postcondition for the whole program is 

the desired results.  

• Work back through the program to the first 

statement.  

• If the precondition on the first statement is 

the same as the program spec, the program is 

correct.
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Example: Assignment Statements

Here’s how we might define a simple 

assignment statement of the form x := e in a 

programming language. 

• {Qx->E} x := E {Q}

• Where Qx->E means the result of replacing all 

occurrences of x with E in Q

So from

{Q} a := b/2-1 {a<10}

We can infer that the weakest precondition Q is

b/2-1<10 or b<22 
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•The Rule of Consequence:

{P} S {Q},  P’ => P,  Q => Q’

{P'} S {Q'}

•An inference rule for sequences

•For a sequence S1;S2:

{P1} S1 {P2}

{P2} S2 {P3}

the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}

{P1} S1; S2 {P3}

Axiomatic Semantics

A notation from 
symbolic logic for 
specifying a rule of 
inference with premise P 
and consequence Q is 

P
Q

For example, Modus 
Ponens can be specified 
as:

P, P=>Q
Q
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Conditions

Here’s a rule for a conditional statement
{B  P} S1 {Q}, {B  P} S2 {Q}

{P} if B then S1 else S2 {Q}

And an example of its use for the statement

{P} if x>0 then y=y-1 else y=y+1 {y>0}

So the weakest precondition P can be deduced as follows:
The postcondition of S1 and S2 is Q.

The weakest precondition of S1 is x>0  y>1 and for S2 is x>0  y>-1

The rule of consequence and the fact that y>1  y>-1supports the conclusion

That the weakest precondition for the entire conditional is y>1 .
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Loops 

For the loop construct {P} while B do S end {Q}

the inference rule is:

{I  B}  S   {I}           _ 

{I} while B do S {I  B}

where I is the loop invariant, a proposition 

necessarily true throughout the loop’s execution.
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A loop invariant I must meet the following conditions:

1. P => I    (the loop invariant must be true initially) 

2. {I} B {I}    (evaluation of the Boolean must not change the validity of I)

3. {I and B} S {I}    (I is not changed by executing the body of the loop)

4. (I and (not B)) => Q     (if I is true and B is false, Q is implied)

5. The loop terminates     (this can be difficult to prove)

• The loop invariant I is a weakened version of the  loop 

postcondition, and it is also a precondition.

• I must be weak enough to be satisfied prior to the beginning of the 

loop, but when combined with the loop exit condition, it must be 

strong enough to force the truth of the postcondition

Loop Invariants
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Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of  the 

statements in a language is difficult

• It is a good tool for correctness proofs, and an excellent 

framework for reasoning about programs

• It is much less useful for language users and compiler 

writers
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• A technique for describing the meaning of programs 

in terms of mathematical functions on programs and 

program components.

• Programs are translated into functions about which 

properties can be proved using the standard 

mathematical theory of functions, and especially 

domain theory. 

• Originally developed by Scott and Strachey (1970) 

and based on recursive function theory

• The most abstract semantics description method

Denotational Semantics
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Denotational Semantics

• The process of building a denotational specification 

for a language:

1. Define a mathematical object for each language 

entity

2. Define a function that maps instances of the 

language entities onto instances of the 

corresponding mathematical objects

• The meaning of language constructs are defined by 

only the values of the program's variables
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Example: Decimal Numbers

<dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| <dec_num> (0|1|2|3|4|5|6|7|8|9)

Mdec('0') = 0,  Mdec ('1') = 1, …,  Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9
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The difference between denotational and operational semantics: 

In operational semantics, the state changes are defined by 

coded algorithms; in denotational semantics, they are defined 

by rigorous mathematical functions

• The state of a program is the values of all its current variables

s = {<i1, v1>, <i2, v2>, …, <in, vn>}

• Let VARMAP be a function that, when given a variable name 

and a state, returns the current value of the variable

VARMAP(ij, s) = vj

Denotational Semantics (continued)
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Expressions
Me(<expr>, s) =

case <expr> of

<dec_num> => Mdec(<dec_num>, s)

<var> => 

if VARMAP(<var>, s) = undef

then error

else VARMAP(<var>, s)

<binary_expr> => 

if (Me(<binary_expr>.<left_expr>, s) = undef

OR Me(<binary_expr>.<right_expr>, s) =

undef)

then error

else

if (<binary_expr>.<operator> = ‘+’ then

Me(<binary_expr>.<left_expr>, s) + 

Me(<binary_expr>.<right_expr>, s)

else Me(<binary_expr>.<left_expr>, s) * 

Me(<binary_expr>.<right_expr>, s)
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Assignment Statements

Ma(x := E, s) =

if Me(E, s) = error

then error

else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>},

where for j = 1, 2, ..., n,

vj’ = VARMAP(ij, s) if ij <> x

= Me(E, s) if ij = x
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Ml(while B do L, s) =

if Mb(B, s) = undef

then error

else if Mb(B, s) = false

then s

else if Msl(L, s) = error

then error

else Ml(while B do L, Msl(L, s))

Logical Pretest Loops
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Logical Pretest Loops

• The meaning of the loop is the value of the    

program variables after the statements in the loop   

have been executed the prescribed number of    

times, assuming there have been no errors

• In essence, the loop has been converted from 

iteration to recursion, where the recursive control   is 

mathematically defined by other recursive state  

mapping functions

• Recursion, when compared to iteration, is easier to 

describe with mathematical rigor
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Evaluation of denotational semantics:

• Can be used to prove the correctness of 

programs

• Provides a rigorous way to think about 

programs

• Can be an aid to language design

• Has been used in compiler generation systems

Denotational Semantics
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Summary

This chapter covered the following

• Backus-Naur Form and Context Free 
Grammars

• Syntax Graphs and Attribute Grammars
• Semantic Descriptions: Operational, Axiomatic 

and Denotational


