
COME 214 4

Chapter 3

Describing Syntax

and Semantics

COME 214 5

We usually break down the problem of defining a

programming language into two parts.

• Defining the PL’s syntax

• Defining the PL’s semantics

Syntax - the form or structure of the expressions,

statements, and program units

Semantics - the meaning of the expressions,

statements, and program units.

The boundary between the two is not always clear.

Introduction

COME 214 6

Why and How

Why? We want specifications for several

communities:

• Other language designers

• Implementors

• Programmers (the users of the language)

How? One way is via natural language descriptions

(e.g., users’ manuals, textbooks) but there are a

number of techniques for specifying the syntax and

semantics that are more formal.

COME 214 7

Syntax Overview

• Language preliminaries

• Context-free grammars and BNF

• Syntax diagrams

COME 214 8

A sentence is a string of characters over some

alphabet.

A language is a set of sentences.

A lexeme is the lowest level syntactic unit of a

language (e.g., *, sum, begin).

A token is a category of lexemes (e.g., identifier).

Formal approaches to describing syntax:

1. Recognizers - used in compilers

2. Generators - what we'll study

Introduction

COME 214 9

Lexical Structure of

Programming Languages
• The structure of its lexemes (words or tokens)

– token is a category of lexeme

• The scanning phase (lexical analyser) collects characters into
tokens

• Parsing phase (syntactic analyser) determines (validity of)
syntactic structure

Stream of
characters

Result of
parsing

tokens and
values

lexical
analyser

Syntactic
analyser

COME 214 10

Grammars

Context-Free Grammars (CFG)
• Developed by Noam Chomsky in the mid-1950s.

• Language generators, meant to describe the syntax

of natural languages.

• Define a class of languages called context-free

languages.

COME 214 11

CFG

Null String ()

COME 214 12

CFG

COME 214 13

CFG

COME 214 14

CFG

COME 214 15

CFG

COME 214 16

CFG

COME 214 17

CFG

COME 214 18

CFG

COME 214 19

CFG

COME 214 20

CFG

COME 214 21

CFG

COME 214 22

CFG

COME 214 23

CFG

COME 214 24

CFG

COME 214 25

CFG

COME 214 26

CFG

COME 214 27

Backus Normal/Naur Form (1959)
•Invented by John Backus to describe Algol 58 and refined by Peter Naur for

Algol 60.

•BNF is equivalent to context-free grammars

- A metalanguage is a language used to describe another language.

- In BNF, abstractions are used to represent classes of syntactic

structures--they act like syntactic variables (also called

nonterminal symbols), e.g.

<while_stmt> ::= while <logic_expr> do <stmt>

- This is a rule which describes the structure of a while statement.

Which symbols are nonterminals?

BNF

COME 214 28

BNF

• A rule has a left-hand side (LHS) which is a single non-

terminal symbol and a right-hand side (RHS), one or more

terminal or nonterminal symbols.

• A grammar is a 4-tuple containing a set of tokens, a set of

nonterminals, a designated nonterminal start symbol, and a

finite nonempty set of rules

• A non-terminal symbol is “defined” by one or more rules.

• Multiple rules can be combined with the | symbol so that
<stmts> ::= <stmt>

<stmts> ::= <stmnt> ; <stmnts>

is equivalent to

<stmts> ::= <stmt> | <stmnt> ; <stmnts>

COME 214 29

Syntactic lists are described in BNF using

recursion

<ident_list> -> ident

| ident, <ident_list>

A derivation is a repeated application of rules,

starting with the start symbol and ending with a

sentence (all terminal symbols)

BNF

COME 214 30

BNF Example

Here is an example of a simple grammar for a subset of English.

A sentence is noun phrase and verb phrase followed by a period.

<sentence> ::= <noun-phrase><verb-phrase>.

<noun-phrase> ::= <article><noun>

<article> ::= a | the

<noun> ::= man | apple | worm | penguin

<verb-phrase> ::= <verb> | <verb><noun-phrase>

<verb> ::= eats | throws | sees | is

COME 214 31

Derivation using BNF

<sentence> -> <noun-phrase><verb-phrase>.

<article><noun><verb_phrase>.

the<noun><verb_phrase>.

the man <verb_phrase>.

the man <verb><noun-phrase>.

the man eats <noun-phrase>.

the man eats <article> < noun>.

the man eats the <noun>.

the man eats the apple.

COME 214 32

Another BNF Example

<program> -> <stmts>

<stmts> -> <stmt>

| <stmt> ; <stmts>

<stmt> -> <var> = <expr>

<var> -> a | b | c | d

<expr> -> <term> + <term> | <term> - <term>

<term> -> <var> | const

Here is a derivation:
<program> => <stmts> => <stmt>

=> <var> = <expr> => a = <expr>

=> a = <term> + <term>

=> a = <var> + <term>

=> a = b + <term>

=> a = b + const

Note: There is some
variation in notation
for BNF grammars.
Here we are using ->
in the rules instead of
::= .

COME 214 33

Every string of symbols in the derivation is a

sentential form.

A sentence is a sentential form that has only

terminal symbols.

A leftmost derivation is one in which the

leftmost nonterminal in each sentential form is

the one that is expanded.

A derivation may be neither leftmost nor

rightmost (or something else)

Derivation

COME 214 34

Parse Tree

<program>

<stmts>

<stmt>

<var> = <expr>

a <term> + <term>

<var> const

b

A parse tree is a hierarchical representation of
a derivation

COME 214 35

Another Parse Tree

<sentence>

<noun-phrase> <verb_phrase>

<article> <noun> <verb> <noun-phrase>

<article> <noun>
the man eats

the apple

COME 214 36

A grammar is ambiguous if and only if it

generates a sentential form that has two or

more distinct parse trees.

Ambiguous grammars are, in general,

undesirable in formal languages.

We can usually eliminate ambiguity by

revising the grammar.

Grammar

COME 214 37

Grammar

Here is a simple grammar for expressions. This grammar is

ambiguous

<expr> -> <expr> <op> <expr>

<expr> -> int

<op> -> +|-|*|/

The sentence 1+2*3 can lead to two different parse trees

corresponding to 1+(2*3) and (1+2)*3

COME 214 38

Grammar

Issue of Ambiguity
• A grammar is ambiguous if there exists a string which gives rise to more

than one parse tree.

• Most common cause is due to infix binary operations.

<expr> ::= <num> | <expr> – <expr>Grammar 1 – 2 – 3String

<expr>

<expr> – <expr>

<expr> – <expr> <num>

<num> <num>

1 2

3

<expr>

<expr> – <expr>

<expr> – <expr><num>

<num> <num>

2 3

1

(1-2)-3 1-(2-3)

Parse

Which One?
Different Parse Trees,

Different Meaning!

COME 214 39

If we use the parse tree to indicate precedence

levels of the operators, we cannot have

ambiguity.

An unambiguous expression grammar:
<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

<expr>

<expr> - <term>

<term> <term> / const

const const

Grammar

COME 214 40

Grammar (continued)
<expr> => <expr> - <term> => <term> - <term>

=> const - <term>

=> const - <term> / const

=> const - const / const

Operator associativity can also be indicated by a

grammar

<expr> -> <expr> + <expr> | const (ambiguous)

<expr> -> <expr> + const | const (unambiguous)

<expr>

<expr> + const

<expr> + const

const

COME 214 41

An Expression Grammar

Here’s a grammar to define simple arithmetic expressions over
variables and numbers.

Exp ::= num

Exp ::= id

Exp ::= UnOp Exp

Exp := Exp BinOp Exp

Exp ::= '(' Exp ')'

UnOp ::= '+'

UnOp ::= '-'

BinOp ::= '+' | '-' | '*' | '/'

Here’s another common
notation variant where
single quotes are used to
indicate terminal symbols
and unquoted symbols are
taken as non-terminals.

COME 214 42

A derivation

Here’s a derivation of a+b*2 using the expression grammar:

Exp => // Exp ::= Exp BinOp Exp

Exp BinOp Exp => // Exp ::= id

id BinOp Exp => // BinOp ::= '+'

id + Exp => // Exp ::= Exp BinOp Exp

id + Exp BinOp Exp => // Exp ::= num

id + Exp BinOp num => // Exp ::= id

id + id BinOp num => // BinOp ::= '*'

id + id * num

a + b * 2

COME 214 43

A parse tree

A parse tree for a+b*2:

__Exp__

/ | \

Exp BinOp Exp

| | / | \

identifier + Exp BinOp Exp

| | |

identifier * number

COME 214 44

Precedence

• Precedence refers to the order in which operations are evaluated. The
convention is: exponents, mult div, add sub.

• Deal with operations in categories: exponents, mulops, addops.

Here’s a revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp

Exp ::= Term

Term ::= Term MulOp Term

Term ::= Factor

Factor ::= '(' + Exp + ')‘

Factor ::= num | id

AddOp ::= '+' | '-’

MulOp ::= '*' | '/'

COME 214 45

Associativity

• Associativity refers to the order in which two of the same operation
should be computed

– 3+4+5 = (3+4)+5, left associative (all BinOps)

– 3^4^5 = 3^(4^5), right associative

– 'if x then if x then y else y' = 'if x then (if x then y else y)', else associates with closest
unmatched if (matched if has an else)

• Adding associativity to the BinOp expression grammar

Exp ::= Exp AddOp Term

Exp ::= Term

Term ::= Term MulOp Factor

Term ::= Factor

Factor ::= '(' Exp ')'

Factor ::= num | id

AddOp ::= '+' | '-'

MulOp ::= '*' | '/'

COME 214 46

Another example: conditionals

• Goal: to create a correct grammar for conditionals.

• It needs to be unambiguous and the precedence is else with
nearest unmatched if.

Statement ::= Conditional | 'whatever'

Conditional ::= 'if' test 'then' Statement 'else' Statement

Conditional ::= 'if' test 'then' Statement

• The grammar is ambiguous. The first Conditional allows
unmatched 'if's to be Conditionals.

if test then (if test then whatever else whatever) = correct

if test then (if test then whatever) else whatever = incorrect
• The final unambiguous grammar.

Statement ::= Matched | Unmatched

Matched ::= 'if' test 'then' Matched 'else' Matched | 'whatever'

Unmatched ::= 'if' test 'then' Statement

| 'if' test 'then' Matched else Unmatched

COME 214 47

•Syntactic sugar: doesn’t extend the expressive power of the

formalism, but does make it easier to use.

•Optional parts are placed in brackets ([])

<proc_call> -> ident [(<expr_list>)]

•Put alternative parts of RHSs in parentheses and

separate them with vertical bars

<term> -> <term> (+ | -) const

•Put repetitions (0 or more) in braces ({})

<ident> -> letter {letter | digit}

Extended BNF

COME 214 48

BNF:

<expr> -> <expr> + <term>

| <expr> - <term>

| <term>

<term> -> <term> * <factor>

| <term> / <factor>

| <factor>

EBNF:

<expr> -> <term> {(+ | -) <term>}

<term> -> <factor> {(* | /) <factor>}

BNF

COME 214 49

Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses and

put the nonterminals in rectangles; connect with lines with

arrowheads

e.g., Pascal type declarations

..

type_identifier

(identifier)

,

constant constant

COME 214 50

Parsing

• A grammar describes the strings of tokens that are
syntactically legal in a PL

• A recogniser simply accepts or rejects strings.

• A parser constructs a derivation or parse tree.

• Two common types of parsers:
– bottom-up or data driven

– top-down or hypothesis driven

• A recursive descent parser is a way to implement a
top-down parser that is particularly simple.

COME 214 51

• Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

• The recursive descent parsing subprograms
are built directly from the grammar rules

• Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

Recursive Descent Parsing

COME 214 52

Recursive Descent Parsing Example

Example: For the grammar:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (this one is
written in C)

void term() {

factor(); /* parse first factor*/

while (next_token == ast_code ||

next_token == slash_code) {

lexical(); /* get next token */

factor(); /* parse next factor */

}

}

COME 214 53

Semantics

COME 214 54

Semantics Overview
• Syntax is about “form” and semantics about

“meaning”.

• The boundary between syntax and semantics is not
always clear.

• First we’ll look at issues close to the syntax end,
what Sebesta calls “static semantics”, and the
technique of attribute grammars.

• Then we’ll sketch three approaches to defining
“deeper” semantics
– Operational semantics

– Axiomatic semantics

– Denotational semantics

COME 214 55

Static semantics covers some language features that

are difficult or impossible to handle in a BNF/CFG.

It is also a mechanism for building a parser which

produces a “abstract syntax tree” of its input.

Categories attribute grammars can handle:

• Context-free but cumbersome (e.g. type

checking)

• Noncontext-free (e.g. variables must be

declared before they are used)

Static Semantics

COME 214 56

Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)

• CFGs cannot describe all of the syntax of

programming languages

• Additions to CFGs to carry some

“semantic” info along through parse trees

Primary value of AGs:
• Static semantics specification

• Compiler design (static semantics checking)

COME 214 57

Attribute Grammar Example

In Ada we have the following rule to describe procedure
definitions:

<proc> -> procedure <procName> <procBody> end <procName> ;

But, of course, the name after “procedure” has to be the same as
the name after “end”.

This is not possible to capture in a CFG (in practice) because
there are too many names.

Solution: associate simple attributes with nodes in the parse tree
and add a “semantic” rules or constraints to the syntactic rule
in the grammar.

<proc> -> procedure <procName>[1] <procBody> end <procName>[2] ;

<procName][1].string = <procName>[2].string

COME 214 58

Attribute Grammars

Definition: An attribute grammar is a CFG

G=(S,N,T,P)

with the following additions:
– For each grammar symbol x there is a set A(x) of attribute

values.

– Each rule has a set of functions that define certain

attributes of the nonterminals in the rule.

– Each rule has a (possibly empty) set of predicates to check

for attribute consistency

COME 214 59

Attribute Grammars

Let X0 -> X1 ... Xn be a rule.

Functions of the form S(X0) = f(A(X1), ... A(Xn)) define

synthesized attributes

Functions of the form I(Xj) = f(A(X0), ... , A(Xn)) for i

<= j <= n define inherited attributes

Initially, there are intrinsic attributes on the leaves

COME 214 60

Example: expressions of the form id + id

•ids can be either int_type or real_type

• types of the two ids must be the same

• type of the expression must match its expected type

BNF: <expr> -> <var> + <var>

<var> -> id

Attributes:

actual_type - synthesized for <var> and <expr>

expected_type - inherited for <expr>

Attribute Grammars

COME 214 61

Attribute Grammars

Attribute Grammar:

1. Syntax rule: <expr> -> <var>[1] + <var>[2]

Semantic rules:
<expr>.actual_type  <var>[1].actual_type

Predicate:

<var>[1].actual_type = <var>[2].actual_type

<expr>.expected_type = <expr>.actual_type

2. Syntax rule: <var> -> id

Semantic rule:

<var>.actual_type  lookup (id, <var>)

COME 214 62

How are attribute values computed?

•If all attributes were inherited, the tree could

be decorated in top-down order.

•If all attributes were synthesized, the tree

could be decorated in bottom-up order.

•In many cases, both kinds of attributes are

used, and it is some combination of top-down

and bottom-up that must be used.

Attribute Grammars (continued)

COME 214 63

Attribute Grammars (continued)

<expr>.expected_type  inherited from parent

<var>[1].actual_type  lookup (A, <var>[1])

<var>[2].actual_type  lookup (B, <var>[2])

<var>[1].actual_type =? <var>[2].actual_type

<expr>.actual_type  <var>[1].actual_type

<expr>.actual_type =? <expr>.expected_type

COME 214 64

No single widely acceptable notation or formalism for

describing semantics.

The general approach to defining the semantics of any

language L is to specify a general mechanism to

translate any sentence in L into a set of sentences in

another language or system that we take to be well

defined.

Here are three approaches we’ll briefly look at:
– Operational semantics

– Axiomatic semantics

– Denotational semantics

Dynamic Semantics

COME 214 65

Operational Semantics

• Idea: describe the meaning of a program in language L by

specifying how statements effect the state of a machine,

(simulated or actual) when executed.

• The change in the state of the machine (memory, registers,

stack, heap, etc.) defines the meaning of the statement.

• Similar in spirit to the notion of a Turing Machine and also

used informally to explain higher-level constructs in terms

of simpler ones, as in:
c statement operational semantics

for(e1;e2;e3) e1;

{<body>} loop: if e2=0 goto exit

<body>

e3;

goto loop

exit:

COME 214 66

Operational Semantics

• To use operational semantics for a high-level

language, a virtual machine in needed

• A hardware pure interpreter would be too

expensive

• A software pure interpreter also has problems:

• The detailed characteristics of the particular

• computer would make actions difficult to

understand

• Such a semantic definition would be machine-

dependent

COME 214 67

Operational Semantics

A better alternative: A complete computer simulation

• Build a translator (translates source code to the machine

code of an idealized computer)

• Build a simulator for the idealized computer

Evaluation of operational semantics:

• Good if used informally

• Extremely complex if used formally (e.g. VDL)

COME 214 68

Vienna Definition Language

• VDL was a language developed at IBM Vienna Labs as a
language for formal, algebraic definition via operational
semantics.

• VDL was used to specify the semantics of PL/I.

• See: The Vienna Definition Language, P. Wegner, ACM Comp
Surveys 4(1):5-63 (Mar 1972)

• The VDL specification of PL/I was very large, very
complicated, a remarkable technical accomplishment, and of
little practical use.

COME 214 69

Axiomatic Semantics

• Based on formal logic (first order predicate calculus)

• Original purpose: formal program verification

• Approach: Define axioms and inference rules in logic

for each statement type in the language (to allow

transformations of expressions to other expressions)

• The expressions are called assertions and are either

• Preconditions: An assertion before a statement states

the relationships and constraints among variables that

are true at that point in execution

• Postconditions: An assertion following a statement

COME 214 70

Logic 101

Propositional logic:

Logical constants: true, false

Propositional symbols: P, Q, S, ... that are either true or false

Logical connectives:  (and) ,  (or),  (implies),  (is equivalent),  (not) which are
defined by the truth tables below.

Sentences are formed by combining propositional symbols, connectives and parentheses
and are either true or false. e.g.: PQ   (P  Q)

First order logic adds

Variables which can range over objects in the domain of discourse

Quantifiers including:  (forall) and  (there exists)

Example sentences:

(p) (q) pq   (p  q)

x prime(x)  y prime(y)  y>x

COME 214 71

• A weakest precondition is the least restrictive

precondition that will guarantee the postcondition

Notation: {P} Statement {Q}

precondition postcondition

Example:

{?} a := b + 1 {a > 1}

We often need to infer what the precondition must be for a

given postcondition

One possible precondition: {b > 10}

Weakest precondition: {b > 0}

Axiomatic Semantics

COME 214 72

Axiomatic Semantics

Program proof process:

• The postcondition for the whole program is

the desired results.

• Work back through the program to the first

statement.

• If the precondition on the first statement is

the same as the program spec, the program is

correct.

COME 214 73

Example: Assignment Statements

Here’s how we might define a simple

assignment statement of the form x := e in a

programming language.

• {Qx->E} x := E {Q}

• Where Qx->E means the result of replacing all

occurrences of x with E in Q

So from

{Q} a := b/2-1 {a<10}

We can infer that the weakest precondition Q is

b/2-1<10 or b<22

COME 214 74

•The Rule of Consequence:

{P} S {Q}, P’ => P, Q => Q’

{P'} S {Q'}

•An inference rule for sequences

•For a sequence S1;S2:

{P1} S1 {P2}

{P2} S2 {P3}

the inference rule is:

{P1} S1 {P2}, {P2} S2 {P3}

{P1} S1; S2 {P3}

Axiomatic Semantics

A notation from
symbolic logic for
specifying a rule of
inference with premise P
and consequence Q is

P
Q

For example, Modus
Ponens can be specified
as:

P, P=>Q
Q

COME 214 75

Conditions

Here’s a rule for a conditional statement
{B  P} S1 {Q}, {B  P} S2 {Q}

{P} if B then S1 else S2 {Q}

And an example of its use for the statement

{P} if x>0 then y=y-1 else y=y+1 {y>0}

So the weakest precondition P can be deduced as follows:
The postcondition of S1 and S2 is Q.

The weakest precondition of S1 is x>0  y>1 and for S2 is x>0  y>-1

The rule of consequence and the fact that y>1  y>-1supports the conclusion

That the weakest precondition for the entire conditional is y>1 .

COME 214 76

Loops

For the loop construct {P} while B do S end {Q}

the inference rule is:

{I  B} S {I} _

{I} while B do S {I  B}

where I is the loop invariant, a proposition

necessarily true throughout the loop’s execution.

COME 214 77

A loop invariant I must meet the following conditions:

1. P => I (the loop invariant must be true initially)

2. {I} B {I} (evaluation of the Boolean must not change the validity of I)

3. {I and B} S {I} (I is not changed by executing the body of the loop)

4. (I and (not B)) => Q (if I is true and B is false, Q is implied)

5. The loop terminates (this can be difficult to prove)

• The loop invariant I is a weakened version of the loop

postcondition, and it is also a precondition.

• I must be weak enough to be satisfied prior to the beginning of the

loop, but when combined with the loop exit condition, it must be

strong enough to force the truth of the postcondition

Loop Invariants

COME 214 78

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all of the

statements in a language is difficult

• It is a good tool for correctness proofs, and an excellent

framework for reasoning about programs

• It is much less useful for language users and compiler

writers

COME 214 79

• A technique for describing the meaning of programs

in terms of mathematical functions on programs and

program components.

• Programs are translated into functions about which

properties can be proved using the standard

mathematical theory of functions, and especially

domain theory.

• Originally developed by Scott and Strachey (1970)

and based on recursive function theory

• The most abstract semantics description method

Denotational Semantics

COME 214 80

Denotational Semantics

• The process of building a denotational specification

for a language:

1. Define a mathematical object for each language

entity

2. Define a function that maps instances of the

language entities onto instances of the

corresponding mathematical objects

• The meaning of language constructs are defined by

only the values of the program's variables

COME 214 81

Example: Decimal Numbers

<dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| <dec_num> (0|1|2|3|4|5|6|7|8|9)

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

COME 214 82

The difference between denotational and operational semantics:

In operational semantics, the state changes are defined by

coded algorithms; in denotational semantics, they are defined

by rigorous mathematical functions

• The state of a program is the values of all its current variables

s = {<i1, v1>, <i2, v2>, …, <in, vn>}

• Let VARMAP be a function that, when given a variable name

and a state, returns the current value of the variable

VARMAP(ij, s) = vj

Denotational Semantics (continued)

COME 214 83

Expressions
Me(<expr>, s) =

case <expr> of

<dec_num> => Mdec(<dec_num>, s)

<var> =>

if VARMAP(<var>, s) = undef

then error

else VARMAP(<var>, s)

<binary_expr> =>

if (Me(<binary_expr>.<left_expr>, s) = undef

OR Me(<binary_expr>.<right_expr>, s) =

undef)

then error

else

if (<binary_expr>.<operator> = ‘+’ then

Me(<binary_expr>.<left_expr>, s) +

Me(<binary_expr>.<right_expr>, s)

else Me(<binary_expr>.<left_expr>, s) *

Me(<binary_expr>.<right_expr>, s)

COME 214 84

Assignment Statements

Ma(x := E, s) =

if Me(E, s) = error

then error

else s’ = {<i1’,v1’>,<i2’,v2’>,...,<in’,vn’>},

where for j = 1, 2, ..., n,

vj’ = VARMAP(ij, s) if ij <> x

= Me(E, s) if ij = x

COME 214 85

Ml(while B do L, s) =

if Mb(B, s) = undef

then error

else if Mb(B, s) = false

then s

else if Msl(L, s) = error

then error

else Ml(while B do L, Msl(L, s))

Logical Pretest Loops

COME 214 86

Logical Pretest Loops

• The meaning of the loop is the value of the

program variables after the statements in the loop

have been executed the prescribed number of

times, assuming there have been no errors

• In essence, the loop has been converted from

iteration to recursion, where the recursive control is

mathematically defined by other recursive state

mapping functions

• Recursion, when compared to iteration, is easier to

describe with mathematical rigor

COME 214 87

Evaluation of denotational semantics:

• Can be used to prove the correctness of

programs

• Provides a rigorous way to think about

programs

• Can be an aid to language design

• Has been used in compiler generation systems

Denotational Semantics

COME 214 88

Summary

This chapter covered the following

• Backus-Naur Form and Context Free
Grammars

• Syntax Graphs and Attribute Grammars
• Semantic Descriptions: Operational, Axiomatic

and Denotational

