
Chapter 4

Lexical and Syntax
Analysis

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-2

Chapter 4 Topics

• Introduction

• Lexical Analysis

• The Parsing Problem

• Recursive-Descent Parsing

• Bottom-Up Parsing

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-3

Introduction

• Language implementation systems must analyze

source code, regardless of the specific

implementation approach

• Nearly all syntax analysis is based on a formal

description of the syntax of the source language

(BNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-4

Introduction

• The syntax analysis portion of a language

processor nearly always consists of two parts:

– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a regular

grammar)

– A high-level part called a syntax analyzer, or parser

(mathematically, a push-down automaton based on a

context-free grammar, or BNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-5

Introduction

• Reasons to use BNF to describe syntax:

– Provides a clear and concise syntax description

– The parser can be based directly on the BNF

– Parsers based on BNF are easy to maintain

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-6

Introduction

• Reasons to separate lexical and syntax analysis:

– Simplicity - less complex approaches can be used for

lexical analysis; separating them simplifies the parser

– Efficiency - separation allows optimization of the

lexical analyzer

– Portability - parts of the lexical analyzer may not be

portable, but the parser always is portable

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-7

Lexical Analysis

• A lexical analyzer (Scanner) is a pattern matcher

for character strings

• A lexical analyzer is a “front-end” for the parser

• Identifies substrings of the source program that

belong together - lexemes

– Lexemes match a character pattern, which is associated

with a lexical category called a token

– sum is a lexeme; its token may be IDENT

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-8

Lexemes and Tokens

• Lexeme: smallest unit of syntax

– lexemes identified by lexical analyzers

– e.g.

• Tokens: type of lexeme

O b j e c t o = n e w In t e g e r (2 * b) ;

Identifier Identifier Identifier

Identifier

NewKeyword

EqualSign

LeftParen RightParen

Literal

MulOp

Semicolon

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-9

Lexical Analyzer (Scanner)

• Main task: identify tokens

– Basic building blocks of programs

– E.g. keywords, identifiers, numbers,

punctuation marks

• Desk calculator language example:

read A

sum := A + 3.45e-3

write sum

write sum / 2

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-10

Formal definition of tokens

• A set of tokens is a set of strings over an alphabet

– {read, write, +, -, *, /, :=, 1, 2, …, 10, …, 3.45e-3, …}

• A set of tokens is a regular set that can be defined by comprehension using a

regular expression

• For every regular set, there is a deterministic finite automaton (DFA) that can

recognize it

– (Aka deterministic Finite State Machine (FSM))

– i.e. determine whether a string belongs to the set or not

– Scanners extract tokens from source code in the same way DFAs

determine membership

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-11

Regular Expressions

A regular expression (RE) is:

• A single character

• The empty string,

• The concatenation of two regular expressions
– Notation: RE1 RE2 (i.e. RE1 followed by RE2)

• The union of two regular expressions
– Notation: RE1 | RE2

• The closure of a regular expression
– Notation: RE*

– * is known as the Kleene star

– * represents the concatenation of 0 or more strings

• Caution: notations for regular expressions vary
– Learn the basic concepts and the rest is just syntactic sugar

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-12

Lexical Analysis

• The lexical analyzer is usually a function that is called by

the parser when it needs the next token

• Three approaches to building a lexical analyzer:

– Write a formal description of the tokens and use a software tool

that constructs table-driven lexical analyzers given such a

description

– Design a state diagram that describes the tokens and write a

program that implements the state diagram

– Design a state diagram that describes the tokens and hand-

construct a table-driven implementation of the state diagram

• We only discuss approach 2

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-13

Lexical Analysis

• State diagram design:

– A naïve state diagram would have a transition from

every state on every character in the source language -

such a diagram would be very large!

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-14

Lexical Analysis

• In many cases, transitions can be combined to

simplify the state diagram

– When recognizing an identifier, all uppercase and

lowercase letters are equivalent

• Use a character class that includes all letters

– When recognizing an integer literal, all digits are

equivalent - use a digit class

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-15

Lexical Analysis

• Reserved words and identifiers can be recognized

together (rather than having a part of the diagram

for each reserved word)

– Use a table lookup to determine whether a possible

identifier is in fact a reserved word

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-16

Lexical Analysis

• Convenient utility subprograms:

– getChar - gets the next character of input, puts it in

nextChar, determines its class and puts the class in

charClass

– addChar - puts the character from nextChar into

the place the lexeme is being accumulated, lexeme

– lookup - determines whether the string in lexeme is a

reserved word (returns a code)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-17

State Diagram

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-18

Lexical Analysis

• Implementation (assume initialization):
int lex() {

getChar();

switch (charClass) {

case LETTER:

addChar();

getChar();

while (charClass == LETTER || charClass == DIGIT)

{

addChar();

getChar();

}

return lookup(lexeme);

break;

…

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-19

Lexical Analysis

…

case DIGIT:

addChar();

getChar();

while (charClass == DIGIT) {

addChar();

getChar();

}

return INT_LIT;

break;

} /* End of switch */

} /* End of function lex */

Copyright © 2012 Addison-Wesley. All rights reserved. 1-20

Lexical Analyzer

Implementation:

→ SHOW front.c (pp. 172-177)

- Following is the output of the lexical analyzer of

front.c when used on (sum + 47) / total

Next token is: 25 Next lexeme is (

Next token is: 11 Next lexeme is sum

Next token is: 21 Next lexeme is +

Next token is: 10 Next lexeme is 47

Next token is: 26 Next lexeme is)

Next token is: 24 Next lexeme is /

Next token is: 11 Next lexeme is total

Next token is: -1 Next lexeme is EOF

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-21

Token Definition Example

• Numeric literals in Pascal, e.g.

1, 123, 3.1415, 10e-3, 3.14e4
• Definition of token unsignedNum

DIG → 0|1|2|3|4|5|6|7|8|9

unsignedInt → DIG DIG*

unsignedNum →

unsignedInt

((. unsignedInt) |)

((e (+ | – |) unsignedInt) |)
• Notes:

– Recursion is not allowed!

– Parentheses used to avoid ambiguity

– It’s always possible to rewrite
removing epsilons

DIG

*

*

DIG

DIG

DIG

DIG

.

*DIG

e e

+

-
DIG

• FAs with epsilons are
nondeterministic.

• NFAs are much harder to implement
(use backtracking)

• Every NFA can be rewriten as a DFA
(gets larger, though)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-22

Simple Problem

• Write a C program which reads in a character string, consisting of a’s and b’s,

one character at a time. If the string contains a double aa, then print string

accepted else print string rejected.

• An abstract solution to this can be expressed as a DFA

a
1 3b

b

a
a, b2

Start state
An accepting state

The state transitions of a DFA can

be encoded as a table which

specifies the new state for a given

current state and input

2 1

3 1

3 3

a b

1

2

3

input

current
state

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

#include <stdio.h>

main()

{ enum State {S1, S2, S3};

enum State currentState = S1;

int c = getchar();

while (c != EOF) {

switch(currentState) {

case S1: if (c == ‘a’) currentState = S2;

if (c == ‘b’) currentState = S1;

break;

case S2: if (c == ‘a’) currentState = S3;

if (c == ‘b’) currentState = S1;

break;

case S3: break;

}

c = getchar();

}

if (currentState == S3) printf(“string accepted\n”);

else printf(“string rejected\n”);

}

an approach in C

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

#include <stdio.h>

main()

{ enum State {S1, S2, S3};

enum Label {A, B};

enum State currentState = S1;

enum State table[3][2] = {{S2, S1}, {S3, S1}, {S3, S3}};

int label;

int c = getchar();

while (c != EOF) {

if (c == ‘a’) label = A;

if (c == ‘b’) label = B;

currentState = table[currentState][label];

c = getchar();

}

if (currentState == S3) printf(“string accepted\n”);

else printf(“string rejected\n”);

}

Using a table
simplifies the
program

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

Lex
• Lexical analyzer generator

– It writes a lexical analyzer
• Assumption

– each token matches a regular expression
• Needs

– set of regular expressions

– for each expression an action
• Produces

– A C program

• Automatically handles many tricky problems

• flex is the gnu version of the venerable unix tool lex.

– Produces highly optimized code

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-26

Scanner Generators
• E.g. lex, flex

• These programs take a table as
their input and return a program
(i.e. a scanner) that can extract
tokens from a stream of
characters

• A very useful programming
utility, especially when coupled
with a parser generator (e.g.,
yacc)

• standard in Unix

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-27

Lex example

lex cc foolex
foo.l foolex.c foolex

tokens

input

> flex -ofoolex.c foo.l
> cc -ofoolex foolex.c -lfl

>more input
begin
if size>10

then size * -3.1415
end

> foolex < input
Keyword: begin
Keyword: if
Identifier: size
Operator: >
Integer: 10 (10)
Keyword: then
Identifier: size
Operator: *
Operator: -
Float: 3.1415 (3.1415)
Keyword: end

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

A Lex Program

… definitions …

%%

… rules …

%%

… subroutines …

DIG [0-9]

ID [a-z][a-z0-9]*

%%

{DIG}+ printf("Integer\n”);

{DIG}+"."{DIG}* printf("Float\n”);

{ID} printf("Identifier\n”);

[\t\n]+ /* skip whitespace */

. printf(“Huh?\n");

%%

main(){yylex();}

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-29

RE Syntax

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-30

The Parsing Problem

• Goals of the parser, given an input program:

– Find all syntax errors; for each, produce an appropriate

diagnostic message, and recover quickly

– Produce the parse tree, or at least a trace of the parse

tree, for the program

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-31

The Parsing Problem

• Two categories of parsers

– Top down - produce the parse tree, beginning at the

root

• Order is that of a leftmost derivation

– Bottom up - produce the parse tree, beginning at the

leaves

• Order is that of the reverse of a rightmost derivation

• Parsers look only one token ahead in the input

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-32

The Parsing Problem

• Top-down Parsers

– Given a sentential form, xA , the parser must choose

the correct A-rule to get the next sentential form in the

leftmost derivation, using only the first token produced

by A

• The most common top-down parsing algorithms:

– Recursive descent - a coded implementation

– LL parsers - table driven implementation

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-33

The Parsing Problem

• Bottom-up parsers

– Given a right sentential form, , determine what

substring of is the right-hand side of the rule in the

grammar that must be reduced to produce the previous

sentential form in the right derivation

– The most common bottom-up parsing algorithms are in

the LR family

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-34

Top down vs. bottom up parsing

• The parsing problem is to connect the root node S
with the tree leaves, the input

• Top-down parsers: starts constructing the parse
tree at the top (root) of the parse tree and move
down towards the leaves. Easy to implement
by hand, but work with restricted grammars.
examples:

- Predictive parsers (e.g., LL(k))

• Bottom-up parsers: build the nodes on the bottom of the parse tree first.
Suitable for automatic parser generation, handle a larger class of grammars.
examples:

– shift-reduce parser (or LR(k) parsers)

• Both are general techniques that can be made to work for all languages (but
not all grammars!).

S

A = 1 + 3 * 4 / 5

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-35

• How hard is the parsing task?

• Parsing an arbitrary Context Free Grammar is O(n3), e.g., it can take time

proportional the cube of the number of symbols in the input. This is bad!

• If we constrain the grammar somewhat, we can always parse in linear time. This

is good!

• Compilers use parsers that only work for a subset of all unambiguous grammars,

but do it in linear time (O(n), where n is the length of the input)

• Linear-time parsing

– LL parsers

• Recognize LL grammar

• Use a top-down strategy

– LR parsers

• Recognize LR grammar

• Use a bottom-up strategy

Parsing complexity

• LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

• LR(n) : Left to right,
Right derivation, look
ahead at most n
symbols.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-36

Recursive-Descent Parsing

• Recursive Descent Process

– There is a subprogram for each nonterminal in the

grammar, which can parse sentences that can be

generated by that nonterminal

– EBNF is ideally suited for being the basis for a

recursive-descent parser, because EBNF minimizes the

number of nonterminals

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-37

Recursive-Descent Parsing

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}

<term> → <factor> {(* | /) <factor>}

<factor> → id | (<expr>)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-38

Recursive-Descent Parsing

• Assume we have a lexical analyzer named lex,

which puts the next token code in nextToken

• The coding process when there is only one RHS:

– For each terminal symbol in the RHS, compare it with

the next input token; if they match, continue, else there

is an error

– For each nonterminal symbol in the RHS, call its

associated parsing subprogram

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-39

Recursive-Descent Parsing

/* Function expr

Parses strings in the language

generated by the rule:

<expr> → <term> {(+ | -) <term>}

*/

void expr() {

/* Parse the first term */

term();

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-40

Recursive-Descent Parsing

/* As long as the next token is + or -, call

lex to get the next token, and parse the

next term */

while (nextToken == PLUS_CODE ||

nextToken == MINUS_CODE){

lex();

term();

}

}

• This particular routine does not detect errors

• Convention: Every parsing routine leaves the next token in
nextToken

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-41

Recursive-Descent Parsing

• A nonterminal that has more than one RHS

requires an initial process to determine which

RHS it is to parse

– The correct RHS is chosen on the basis of the next

token of input (the lookahead)

– The next token is compared with the first token that can

be generated by each RHS until a match is found

– If no match is found, it is a syntax error

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-42

Recursive-Descent Parsing

/* Function factor

Parses strings in the language

generated by the rule:

<factor> -> id | (<expr>) */

void factor() {

/* Determine which RHS */

if (nextToken) == ID_CODE)

/* For the RHS id, just call lex */

lex();

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-43

Recursive-Descent Parsing

/* If the RHS is (<expr>) – call lex to pass

over the left parenthesis, call expr, and

check for the right parenthesis */

else if (nextToken == LEFT_PAREN_CODE) {

lex();

expr();

if (nextToken == RIGHT_PAREN_CODE)

lex();

else

error();

} /* End of else if (nextToken == ... */

else error(); /* Neither RHS matches */

}

Copyright © 2012 Addison-Wesley. All rights reserved. 1-44

Recursive-Descent Parsing (continued)

- Trace of the lexical and syntax analyzers on (sum + 47) / total

Next token is: 25 Next lexeme is (Next token is: 11 Next lexeme is total

Enter <expr> Enter <factor>

Enter <term> Next token is: -1 Next lexeme is EOF

Enter <factor> Exit <factor>

Next token is: 11 Next lexeme is sum Exit <term>

Enter <expr> Exit <expr>

Enter <term>

Enter <factor>

Next token is: 21 Next lexeme is +

Exit <factor>

Exit <term>

Next token is: 10 Next lexeme is 47

Enter <term>

Enter <factor>

Next token is: 26 Next lexeme is)

Exit <factor>

Exit <term>

Exit <expr>

Next token is: 24 Next lexeme is /

Exit <factor>

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-45

Recursive-Descent Parsing

• The LL Grammar Class

– The Left Recursion Problem

• If a grammar has left recursion, either direct or indirect, it

cannot be the basis for a top-down parser

– A grammar can be modified to remove left recursion

– Direct

» A → A + B

– Indirect

» A → B a A

» B → A b

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-46

Recursive-Descent Parsing

• The other characteristic of grammars that

disallows top-down parsing is the lack of pairwise

disjointness

– The inability to determine the correct RHS on the basis

of one token of lookahead

– Def: FIRST() = {a | =>* a }

(If =>* , is in FIRST())

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-47

Recursive-Descent Parsing

• Pairwise Disjointness Test:
– For each nonterminal, A, in the grammar that has more

than one RHS, for each pair of rules, A → i and A →
j, it must be true that

FIRST(i) ∩ FIRST(j) =

• Examples:

A → a | bB | cAb

A → a | aB
-The FIRST sets for RHSs of these rules are a, b, and c for

the first example which are disjoint.

-For the second example FIRST sets are a, a which are not
disjoint.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-48

Recursive-Descent Parsing

• Left factoring can resolve the problem

Replace

<variable> → identifier | identifier [<expression>]

with

<variable> → identifier <new>

<new> → | [<expression>]

or

<variable> → identifier [[<expression>]]

(the outer brackets are metasymbols of EBNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-49

Bottom-up Parsing

• Recall the definition of a

derivation and a rightmost

derivation.

• Each of the lines is a (right)

sentential form

• The parsing problem is finding

the correct RHS in a right-

sentential form to reduce to get

the previous right-sentential form

in the derivation

E -> E+T

E -> T

T -> T*F

E -> F

F -> (E)

F -> id

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

g
en

er
at

io
n

p
arsin

g

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-50

Handles
• Intuition: A handle of a string s is a substring a such that :

– a matches the RHS of a production A -> a; and
– replacing a by the LHS A represents a step in the reverse of a

rightmost derivation of s.
• Example : Consider the grammar

S -> aABe
A -> Abc | b
B -> d

• The rightmost derivation for the input abbcde is

S => aABe => aAde => aAbcde => abbcde
• The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde; and
(2) aAbcde => aAbcBe

• But (2) isn’t a rightmost derivation, so Abc is the only handle.
• Note: the string to the right of a handle will only contain non-terminals

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-51

Phrases, simple phrases and handles

• Def: is the handle of the right sentential form = w if and only

if S =>*rm Aw => w

• Def: is a phrase of the right sentential form if and only if S =>*

 = 1A2 =>+ 12

• Def: is a simple phrase of the right sentential form if and only if

S =>* = 1A2 => 12

• The handle of a right sentential form is its leftmost simple phrase

• Given a parse tree, it is now easy to find the handle

• Parsing can be thought of as handle pruning

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-52

Phrases, simple phrases and handles

E
E+T
E+T*F
E+T*id
E+F*id
E+id*id
T+id*id
F+id*id
id+id*id

E -> E+T

E -> T

T -> T*F

T -> F

F -> (E)

F -> id

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-53

Bottom-up Parsing

• Shift-Reduce Algorithms

– Reduce is the action of replacing the handle on the top

of the parse stack with its corresponding LHS

– Shift is the action of moving the next token to the top of

the parse stack

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-54

Bottom-up Parsing

• Advantages of LR parsers:

– They will work for nearly all grammars that describe

programming languages.

– They work on a larger class of grammars than other

bottom-up algorithms, but are as efficient as any other

bottom-up parser.

– They can detect syntax errors as soon as it is possible.

– The LR class of grammars is a superset of the class

parsable by LL parsers.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-55

Bottom-up Parsing

• LR parsers must be constructed with a tool

• Knuth’s insight: A bottom-up parser could use the

entire history of the parse, up to the current point,

to make parsing decisions

– There were only a finite and relatively small number of

different parse situations that could have occurred, so

the history could be stored in a parser state, on the parse

stack

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-56

Bottom-up Parsing

• An LR configuration stores the state of an LR

parser

(S0X1S1X2S2…XmSm, aiai+1…an$)

STACK INPUT

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-57

Bottom-up Parsing

• LR parsers are table driven, where the table has two

components, an ACTION table and a GOTO table

– The ACTION table specifies the action of the parser, given

the parser state and the next token

• Rows are state names; columns are terminals

– The GOTO table specifies which state to put on top of the

parse stack after a reduction action is done

• Rows are state names; columns are nonterminals

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-58

Structure of An LR Parser

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-59

Bottom-up Parsing

• Initial configuration: (S0, a1…an$)

• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next configuration is:

(S0X1S1X2S2…XmSmaiS, ai+1…an$)

– If ACTION[Sm, ai] = Reduce A → and S =

GOTO[Sm-r, A], where r = the length of , the next

configuration is

(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-60

Bottom-up Parsing

• Parser actions (continued):

– If ACTION[Sm, ai] = Accept, the parse is complete and

no errors were found.

– If ACTION[Sm, ai] = Error, the parser calls an error-

handling routine.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-61

LR Parsing Table

E -> E+T

E -> T

T -> T*F

T -> F

F -> (E)

F -> id

S:Shift

R: Reduce

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-62

Parsing Processstate

Go to state 3

Next token

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-63

Bottom-up Parsing

• A parser table can be generated from a given

grammar with a tool, e.g., yacc or bison

Copyright © 2012 Addison-Wesley. All rights reserved. 1-64

Summary

• Syntax analysis is a common part of language
implementation

• A lexical analyzer is a pattern matcher that isolates
small-scale parts of a program
– Detects syntax errors

– Produces a parse tree

• A recursive-descent parser is an LL parser
– EBNF

• Parsing problem for bottom-up parsers: find the
substring of current sentential form

• The LR family of shift-reduce parsers is the most
common bottom-up parsing approach

