Chapter 4

Lexical and Syntax
Analysis

CONCEPTS OF

rogramming
anguages

TENTH EDITION

Chapter 4 Topics

 Introduction

* Lexical Analysis

* The Parsing Problem

* Recursive-Descent Parsing

* Bottom-Up Parsing

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-2

Introduction

« Language implementation systems must analyze
source code, regardless of the specific
implementation approach

* Nearly all syntax analysis 1s based on a formal

description of the syntax of the source language
(BNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-3

Introduction

* The syntax analysis portion of a language
processor nearly always consists of two parts:

— A low-level part called a lexical analyzer
(mathematically, a finite automaton based on a regular
grammar)

— A high-level part called a syntax analyzer, or parser
(mathematically, a push-down automaton based on a
context-free grammar, or BNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-4

Introduction

« Reasons to use BNF to describe syntax:
— Provides a clear and concise syntax description
— The parser can be based directly on the BNF
— Parsers based on BNF are easy to maintain

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-5

Introduction

e Reasons to separate lexical and syntax analysis:

— Simplicity - less complex approaches can be used for
lexical analysis; separating them simplifies the parser

— Efficiency - separation allows optimization of the
lexical analyzer

— Portability - parts of the lexical analyzer may not be
portable, but the parser always 1s portable

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-6

Lexical Analysis

* A lexical analyzer (Scanner) 1s a pattern matcher
for character strings

* A lexical analyzer 1s a “front-end” for the parser

 Identifies substrings of the source program that
belong together - lexemes

— Lexemes match a character pattern, which is associated
with a lexical category called a token

— sum is a lexeme; its token may be IDENT

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-7

L exemes and Tokens

e Lexeme: smallest unit of syntax

— lexemes 1dentified by lexical analyzers
— e.g.

23|l o] g felv] [Tr|tlefsle]r \(\2\ ||

~

v
Identifier Identifier l NewKeyword Identlfler
: MuIOp
EqualSign
Literal Identifier
* Tokens: type of lexeme LeftParen RightParen

Semicolon

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-8

Lexical Analyzer (Scanner)

« Main task: identify tokens
—Basic building blocks of programs

—E.qg. keywords, identifiers, numbers,
punctuation marks

» Desk calculator language example:

read A
sum := A + 3.45e-3

Write sum
writesum/ 2

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-9

Formal definition of tokens

et of tokens is a set of strings over an alphabet
fread, write, +, -, *,/,:=, 1,2, ..., 10, ..., 3.45¢-3, ...}

of tokens is a regular set that can be defined by comprehension using a
Jular expression

f every regular set, there is a deterministic finite automaton (DFA) that can
‘ecognize it

Aka deterministic Finite State Machine (FSM))

~ i.e. determine whether a string belongs to the set or not

Scanners extract tokens from source code in the same way DFAs
determine membership

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-10

Reqgular Expressions

gular expression (RE) is:

single character

e empty string, €

2 concatenation of two regular expressions
otation: RE; RE, (i.e. RE; followed by RE,)

[he union of two regular expressions

closure of a regular expression

otation: RE*

= * Is known as the Kleene star

- * represents the concatenation of 0 or more strings

aution: notations for regular expressions vary

' Learn the basic concepts and the rest is just syntactic sugar

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-11

Lexical Analysis

» The lexical analyzer 1s usually a function that 1s called by
the parser when it needs the next token

« Three approaches to building a lexical analyzer:

— Write a formal description of the tokens and use a software tool
that constructs table-driven lexical analyzers given such a
description

— Design a state diagram that describes the tokens and write a
program that implements the state diagram

— Design a state diagram that describes the tokens and hand-
construct a table-driven implementation of the state diagram

« We only discuss approach 2

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-12

Lexical Analysis

 State diagram design:

— A naive state diagram would have a transition from
every state on every character in the source language -
such a diagram would be very large!

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-13

Lexical Analysis

* In many cases, transitions can be combined to
simplify the state diagram

— When recognizing an 1dentifier, all uppercase and
lowercase letters are equivalent

e Use a character class that includes all letters

— When recognizing an integer literal, all digits are
equivalent - use a digit class

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-14

Lexical Analysis

« Reserved words and 1dentifiers can be recognized
together (rather than having a part of the diagram
for each reserved word)

— Use a table lookup to determine whether a possible
identifier is in fact a reserved word

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-15

Lexical Analysis

* Convenient utility subprograms:

— getChar - gets the next character of input, puts it in
nextChar, determines its class and puts the class in
charClass

— addChar - puts the character from nextChar into
the place the lexeme 1s being accumulated, lexeme

— lookup - determines whether the string in 1lexeme is a
reserved word (returns a code)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-16

State Diagram

Letter/Digit

addChar; getChar

> return lookup (lexeme)

Letter
@ addChar; getChar >

Digit
addChar; getChar

int » return Int Lit

addChar; getChar

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-17

Lexical Analysis

* Implementation (assume 1nitialization):
int lex () {
getChar () ;
switch (charClass) {
case LETTER:
addChar () ;
getChar () ;
while (charClass == LETTER || charClass == DIGIT)
{
addChar () ;
getChar () ;
}
return lookup (lexeme) ;
break;

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-18

Lexical Analysis

case DIGIT:
addChar () ;
getChar () ;
while (charClass == DIGIT) {
addChar () ;
getChar () ;
}
return INT LIT;
break;
} /* End of switch */
} /* End of function lex */

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-19

Lexical Analyzer

Implementation:

> SHOW tront.c (pp. 172-177)

- Following is the output of the lexical analyzer of
front.c when used on (sum + 47) / total

Next token
Next token
Next token
Next token
Next token
Next token
Next token
Next token

is:
is:
is:
is:
is:
is:
is:

is:

25
11
21
10
26
24
11

Next
Next
Next
Next
Next
Next
Next
Next

lexeme
lexeme
lexeme
lexeme
lexeme
lexeme
lexeme

lexeme

is
is
is
is
is
is
is

is

Copyright © 2012 Addison-Wesley. All rights reserved.

sum

47

total
EOF

1-20

ic literals in Pascal, e.g.
3, 3.1415, 10e-3, 3.14e4 -
lon of token unsignedNum DIG %
0[1[2]3|4|5|6|7|8|9 T

signedint - DIG DIG* 617
SignedNum —

—*,
/

unsignedint) | €) DIG l/ﬁe :)DIG
*)

(+|—|¢) unsignedint) |)

ursion is not allowed!
rentheses used to avoid ambiguity - FAs with epsilons are

’s always possible to rewrite nondeterministic.

moving epsilons « NFAs are much harder to implement
(use backtracking)

« Every NFA can be rewriten as a DFA
(gets larger, though)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-21

Simple Problem

Vrite a C program which reads in a character string, consisting of a’s and b’s,
ne character at a time. If the string contains a double aa, then print string
pted else print string rejected.

abstract solution to this can be expressed as a DFA

e ’ega, b

An accepting state

a™" b
1
1
3

b

The state transitions of a DFA can 1
be encoded as a table which current

specifies the new state for a given state 2
current state and input 3

N

00

00

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

clude <stdio.h>

anum State currentState = S1;
t c = getchar();
vhile (c 1= EOF) {
switch(currentState) {
case S1: if (c == ‘@’) currentState = S2;
if (c == ‘b’) currentState = S1;
break;
case S2: if (c == ‘@’) currentState = S3;
if (c == ‘b’) currentState = S1;
break;
case S3: break;

}
c = getchar();

if (currentState == S3) printf(“string accepted\n”);
_else printf(“string rejected\n”);

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

eirr]18m State {S1, S2, S3}; an apprOaCh In C

lude <stdio.h> USIﬂg ad table

B state {S1, S2, S3); simplifies the
Label {A, B};
um S?atee éurreiltState = 51, p rOg ram

um State table[3][2] = {{S2, S1}, {S3, S1}, {S3, S3}};

‘Int ¢ = getchar();
hile (c I= EOF) {
if (c == "a’) label = A;
if (c =="Db’) label = B;
~ currentState = table[currentState][label];
c = getchar();

(currentState == S3) printf(“string accepted\n”);
se printf(“string rejected\n”);

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

ical analyzer generator

t writes a lexical analyzer
Imption
ach token matches a regular expression

et of regular expressions

A C program

tomatically handles many tricky problems
s the gnu version of the venerable unix tool lex.

roduces highly optimized code

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

Scanner Generators

' '4! 3 IeX’ erX (R L e I]]

ese programs take a table as
r input and return a program
. @ scanner) that can extract
ens from a stream of

racters

~ * Avery usefu] programming
~ utility, especially when coupled

W)a parser generator (e.g.,
;‘L

tandard in Unix

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-26

B

oolex.c

B

foolex

hen size * -3.1415

> foolex < input
Keyword: begin
Keyword: if
Identifier: size
Operator: >
Integer: 10 (10)
Keyword: then
Identifier: size
Operator: *
Operator: -
Float: 3.1415 (3.1415)
Keyword: end

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-27

A Lex Program

o DIG [0-9]
... definitions ... D [a-z][a-20-9]*
%%
040
&L {DIG}+ printf(*'Integer\n”);
. rules ... {DIG}+"."{DIG}* printf(*'Float\n”);
{ID} printf(*'Identifier\n”);
040
/0% [\t\n]+ [* skip whitespace */
... Subroutines ... printf(“Huh?\n");
%%
main(){yylex();}

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

RE Syntax

x character _ Flex’s RE syntax
any character except newline

[xvZ] character class, in this case, matches either an 'x'. a'yv', ora 'z’

[abj-0Z] character class with a range 1n it; matches 'a’, 'b', any letter
from "' through 'o'. or 'Z'

[A-Z] negated character class, 1.e., any character but those in the
class, e.g. any character except an uppercase letter.

[“A-Z'\n] any character EXCEPT an uppercase letter or a newline

| zero or more 1's, where r 1s any regular expression
1+ One Or more r's
r? zero or one 1's (1.e., an optional 1)

{name} expansion of the "name" definition (see above)
"|x¥]\"foo" the literal string: '[xy]"foo' (note escaped =)

"X ifxi1san'a. b, 'f.'n'. 1. 't". orv', then the ANSI-C
interpretation of 'x. Otherwise, a literal 'x' (e.g.. escape)

rs RE r followed by RE s (e.g.. concatenation)

rls eitheranr or an s

<<EQF== end-of-file

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-29

The Parsing Problem

* Goals of the parser, given an input program:

— Find all syntax errors; for each, produce an appropriate
diagnostic message, and recover quickly

— Produce the parse tree, or at least a trace of the parse
tree, for the program

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-30

The Parsing Problem

* Two categories of parsers

— Top down - produce the parse tree, beginning at the
root

e Order 1s that of a leftmost derivation

— Bottom up - produce the parse tree, beginning at the
leaves

 Order 1s that of the reverse of a rightmost derivation

 Parsers look only one token ahead in the input

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-31

The Parsing Problem

* Top-down Parsers

— @Given a sentential form, xAa , the parser must choose
the correct A-rule to get the next sentential form 1in the
leftmost derivation, using only the first token produced

by A
* The most common top-down parsing algorithms:
— Recursive descent - a coded implementation

— LL parsers - table driven implementation

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-32

The Parsing Problem

* Bottom-up parsers

— Gi1ven a right sentential form, o, determine what
substring of a 1s the right-hand side of the rule in the
grammar that must be reduced to produce the previous
sentential form in the right derivation

— The most common bottom-up parsing algorithms are in
the LR family

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-33

Top down vs. bottom up parsing

1€ parsing problem is to connect the root node S
ith the tree leaves, the input

p-down parsers: starts constructing the parse
¢ at the top (root) of the parse tree and move
n towards the leaves. Easy to implement
by hand, but work with restricted grammars.
amples:
Predictive parsers (e.g., LL(k)) A=1+3*4/5

pttom-up parsers: build the nodes on the bottom of the parse tree first.
suitable for automatic parser generation, handle a larger class of grammars.

’

xamples:
shift-reduce parser (or LR(k) parsers)

3oth are general techniques that can be made to work for all languages (but
ot all grammars!).

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-34

Ing complexity

ard is the parsing task?

rsing an arbitrary Context Free Grammar is O(n?), e.g., it can take time

parsers
Recognize LR grammar
se a bottom-up strategy

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

ional the cube of the number of symbols in the input. This is bad!

onstrain the grammar somewhat, we can always parse in linear time. This

« LL(n) : Left to right,
Leftmost derivation,
look ahead at most n
symbols.

* LR(n) : Left to right,
Right derivation, look
ahead at most n
symbols.

4-35

Recursive-Descent Parsing

e Recursive Descent Process

— There 1s a subprogram for each nonterminal in the
grammar, which can parse sentences that can be
generated by that nonterminal

— EBNF 1s 1deally suited for being the basis for a
recursive-descent parser, because EBNF minimizes the
number of nonterminals

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-36

Recursive-Descent Parsing

* A grammar for simple expressions:

<expr> — <term> {(+ | -) <term>}
<term> — <factor> {(* | /) <factor>}
<factor> — id | (<expr>)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-37

Recursive-Descent Parsing

« Assume we have a lexical analyzer named lex,
which puts the next token code in nextToken

e The coding process when there 1s only one RHS:

— For each terminal symbol in the RHS, compare 1t with
the next input token; if they match, continue, else there
1S an error

— For each nonterminal symbol in the RHS, call its
associated parsing subprogram

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-38

Recursive-Descent Parsing

/* Function expr
Parses strings in the language
generated by the rule:
<expr> - <term> {(+ | -) <term>}

*/
void expr () {

/* Parse the first term */

term() ;

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-39

Recursive-Descent Parsing

/* As long as the next token is + or -, call
lex to get the next token, and parse the
next term */

while (nextToken == PLUS CODE | |
nextToken == MINUS CODE) {
lex () ;
term() ;

}
« This particular routine does not detect errors

« Convention: Every parsing routine leaves the next token in
nextToken

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-40

Recursive-Descent Parsing

* A nonterminal that has more than one RHS
requires an 1nitial process to determine which
RHS 1t 1s to parse

— The correct RHS 1s chosen on the basis of the next
token of input (the lookahead)

— The next token 1s compared with the first token that can
be generated by each RHS until a match is found

— If no match is found, it 1s a syntax error

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-41

Recursive-Descent Parsing

/* Function factor
Parses strings in the language

generated by the rule:

<factor> -> id | (<expr>) */
void factor () {
/* Determine which RHS */

if (nextToken) == ID CODE)

/* For the RHS id, just call lex */

lex();

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-42

Recursive-Descent Parsing

/* If the RHS is (<expr>) - call lex to pass
over the left parenthesis, call expr, and
check for the right parenthesis */

else if (nextToken == LEFT PAREN CODE) ({
lex ()
expr () ;
if (nextToken == RIGHT PAREN CODE)
lex () ;
else
error () ;
} /* End of else if (nextToken == ... */

else error(); /* Neither RHS matches */

}

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

4-43

Recursive-Descent Parsing (continued)

- Trace of the lexical and syntax analyzers on (sun + 47) / total

Next token is:

Enter <expr>
Enter <term>

Enter <factor>
Next token is:

Enter <expr>
Enter <term>

Enter <factor>
Next token is:

Exit
Exit

Next token is:

<factor>
<term>

Enter <term>

Enter <factor>

Next
Exit
Exit
Exit
Next
Exit

token is:

<factor>
<term>
<expr>

token is:

<factor>

25 Next lexeme is (

11

21

10

26

24

Next

Next

Next

Next

Next

lexeme

lexeme

lexeme

lexeme

lexeme

is

is

is

is

is

Copyright © 2012 Addison-Wesley. All rights reserved.

sum

47

Next token is:
Enter <factor>
Next token is:
Exit <factor>
Exit <term>
Exit <expr>

1l Next lexeme is total

-1 Next lexeme is EOF

1-44

Recursive-Descent Parsing

e The LL Grammar Class
— The Left Recursion Problem

 If a grammar has left recursion, either direct or indirect, it
cannot be the basis for a top-down parser

— A grammar can be modified to remove left recursion

— Direct
» A—A+B

— Indirect
» A—BaA
» B—AD

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-45

Recursive-Descent Parsing

* The other characteristic of grammars that
disallows top-down parsing 1s the lack of pairwise
disjointness

— The 1nability to determine the correct RHS on the basis
of one token of lookahead
— Def: FIRST(a) = {a|a =>* af }

(If oo =>* ¢, € 1s In FIRST(a))

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-46

Recursive-Descent Parsing

« Pairwise Disjointness Test:

— For each nonterminal, A, in the grammar that has more
than one RHS, for each pair of rules, A - o, and A —
a;, 1t must be true that

FIRST(o;) N FIRST(ay) = ¢

« Examples:
A—a | bB | cAb
A—a | aB

-The FIRST sets for RHSs of these rules are a, b, and ¢ for
the first example which are disjoint.

-For the second example FIRST sets are a, a which are not
disjoint.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-47

Recursive-Descent Parsing

Left factoring can resolve the problem

Replace

<variable> — identifier | identifier [<expression>]
with

<variable> — 1dentifier <new>

<new> — ¢ | [<expression>]
or

<variable> — identifier [[<expression>]]

(the outer brackets are metasymbols of EBNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-48

~* Recall the definition of a
derivation and a rightmost
derivation.

'he parsing problem is finding
* the correct RHS in a right-
~ sentential form to reduce to get
- the previous right-sentential form
*in the derivation

Copyright © 2004 Pearson Addison-Wesley. All rights reserved.

Bottom-up Parsing

generation

o L T o I T I

-> E+T
> T
—> T*F
> F
-> (E)
-> id

E+T
E+T*F

E+T*Id
E+F*id
E+id*ic
T+id*ic
F+id*io
id+id*id

4-49

Buisied

Handles

| tuition: A handle of a string s is a substring a such that :
matches the RHS of a production A -> a; and

replacing a by the LHS A represents a step in the reverse of a
Ightmost derivation of s.

mple : Consider the grammar
> aABe
R I+ S Abc | b
- B->d

3 he rightmost derivation for the input abbcde is

S => aABe => aAde => aAbcde => abbcde
The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde; and
aAbcde => aAbcBe

t (2) isn’t a rightmost derivation, so Abc is the only handle.
te: the string to the right of a handle will only contain non-terminals

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-50

Phrases, simple phrases and handles

f: 3 Is the handle of the right sentential form vy = afw if and only
S =>*rm aAw => o fw

. B Is a phrase of the right sentential form y if and only if S =>*
alAa2 =>+ alfa?

Def: B is a simple phrase of the right sentential form y if and only if

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-51

hrases, simple phrases and handles

$+T : c
T*E E+T
F E+T*F
(E) T E+T*id
id \ E+F*id
: E+id*ic
T+i1d*I10
\ F+id*ic

*

id —jd+id*id

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-52

Bottom-up Parsing

« Shift-Reduce Algorithms

— Reduce 1s the action of replacing the handle on the top
of the parse stack with its corresponding LHS

— Shift 1s the action of moving the next token to the top of
the parse stack

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-53

Bottom-up Parsing

« Advantages of LR parsers:
— They will work for nearly all grammars that describe
programming languages.
— They work on a larger class of grammars than other

bottom-up algorithms, but are as efficient as any other
bottom-up parser.

— They can detect syntax errors as soon as it 1s possible.

— The LR class of grammars 1s a superset of the class
parsable by LL parsers.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-54

Bottom-up Parsing

e LR parsers must be constructed with a tool

e Knuth’s insight: A bottom-up parser could use the
entire history of the parse, up to the current point,
to make parsing decisions

— There were only a finite and relatively small number of
different parse situations that could have occurred, so
the history could be stored in a parser state, on the parse
stack

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-55

Bottom-up Parsing

* An LR configuration stores the state of an LR
parser

(SeX;S,X,S,...X. S ,aa+l...a9)

m—m?> 171

STACK INPUT

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-56

Bottom-up Parsing

* LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

— The ACTION table specifies the action of the parser, given
the parser state and the next token

 Rows are state names; columns are terminals

— The GOTO table specifies which state to put on top of the
parse stack after a reduction action is done

 Rows are state names; columns are nonterminals

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-57

Structure of An LR Parser

Top
Parse Stack J Input
So | X1 $7 e | Xm| Sm aj Qi+ e | @m
Parser Parsing
Code Table

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-58

Bottom-up Parsing

* Initial configuration: (S, a,...a.$)

* Parser actions:
— If ACTIONIS,,, a.] = Shift S, the next configuration is:
(SeX;S,X,S,...X S aSf, a,,...a$)

— If ACTION]JS,, a.] = Reduce A— fand S =
GOTOIS,, ., A], where r = the length of [3, the next
configuration 1s

(SX;S,X,S,...X S _AS aa.,...a$)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-59

Bottom-up Parsing

» Parser actions (continued):

— If ACTION]S,, a;] = Accept, the parse 1s complete and
no errors were found.

— If ACTION]IS,, a;] = Error, the parser calls an error-
handling routine.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-60

\ Action Goto
State| id + * () $ E | T | F
SA

0 $5 54 1 2 3
1 S6 accept

2 R2 | S7 R2 | R2

3 R4 | R4 R4 | R4

4 // $5 54 g | 2 | 3
s R6 | R6 R6 | R6

6 S5 54 9 3
7 $5 54 10
8 56 S11

9 R1 S7 R1 R1

10 R3 | R3 R3 R3

11 RS | RS R5 | R5

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-61

Parsing Process Next token
Go to state 3

/

0i +id*id § Reduce 6 (use GOTO|0,
(03 +id * id § Reduce 4 (use GDTD}B, '1;]];
<y +id * id § Reduce 2 (use GOTO[0, E|)
QB +id * id § Shift 6

UE1+8 id*id$ Shift 5

OE1+6id5 *id$ Reduce 6 (use GOTO[6, F])
0E1+6D3 *1d § Reduce 4 (use GOTO[B, T])
0E1+6T9 *id § Shift 7

OE1+6T9+*7 id 8 Shift 5

0E1+6T9+7id5 § Reduce 6 (use GOTO[7, F])
OEL+6T9*7F10 & Reduce 3 (use GOTO[6, T])
0E1+6T9 $ Reduce 1 (use GOTO[0, E])
0E1 A Accept

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-62

Bottom-up Parsing

* A parser table can be generated from a given
grammar with a tool, €.g., yacec orbison

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 4-63

Summary

- Syntax analysis is a common part of language
implementation

- A lexical analyzer is a pattern matcher that isolates
small-scale parts of a program

- Detects syntax errors
- Produces a parse tree

- A recursive-descent parser is an LL parser
- EBNF

Parsing problem for bottom-up parsers: find the
substring of current sentential form

- The LR family of shift-reduce parsers is the most
common bottom-up parsing approach

Copyright © 2012 Addison-Wesley. All rights reserved. 1-64

