
Chapter 9

Subprograms

The Structure of Run-Time Memory

Subprograms

❖ Two fundamental abstraction facilities in

programming language:

 Process abstraction – represented by subprograms

 Data abstraction

❖ General characteristics of subprograms:

1. A subprogram has a single entry point

2. The caller is suspended during execution of the

called subprogram

3. Control always returns to the caller when the called

subprogram’s execution terminates

Subprograms

❖ A subprogram definition is a description of the actions of the

subprogram abstraction

❖ A subprogram call is an explicit request that the subprogram

be executed

 A subprogram is active if, after being called, it has begun execution

but has not yet completed that execution

❖ A subprogram header is the first line of the definition

 Specifies that the following syntactic unit is a subprogram of some

particular kind - using a special word (function, procedure, etc)

 Provides name of subprogram

 Specifies the list of formal parameters

Fortran: Subroutine Adder(parameters)

Ada: procedure Adder(parameters)

Subprograms

❖The parameter profile (signature) of a subprogram is

the number, order, and types of its parameters

❖The protocol of a subprogram is its parameter profile

plus, if it is a function, its return type

❖Subprograms can have declarations as well as

definitions

❖Subprogram declaration provides the subprogram’s

protocol but do not include their bodies

Function declarations in C/C++ are called prototypes

Parameters

❖ A formal parameter is a dummy variable listed in the

subprogram header and used in the subprogram

❖ An actual parameter represents a value or address used in the

subprogram call statement

void doNothing (int formal_param) {

…

}

main() {

int actual_param;

doNothing(actual_param);

}

Parameters

❖ Actual/Formal Parameter Correspondence

 Binding of actual to formal parameters (type checking)

1. Positional parameters

❖ First actual param bound to first formal param, etc

2. Keyword parameters

❖ Name of formal param to which actual param is bound is

specified with actual param

Ada: Sumer(Length => My_Length,

List => My_Array,

Sum => My_Sum);

❖ Advantage: order is irrelevant

❖ Disadvantage: user must know the formal parameter’s names

Parameters

❖ Default values of formal parameters

 Allowed by C++, Fortran 95, Ada and PHP

 Default value is used if no actual parameter is passed to the formal

parameter

Ada: function Compute_Pay(Income : Float; Exemptions : Integer := 1;

Tax_Rate : Float) return Float

pay := Compute_Pay (20000.00, Tax_Rate => 0.15);

 C# allows methods to accept variable number of params of the same type

public void DisplayList(params int[] list) {

foreach (int nextValue in list) {

Console.WriteLine(“Next value {0}”, nextValue);

}

}

Procedures and Functions

❖ A function is called from within an expression and returns a
result after invocation. A procedure is treated as an atomic
statement and does not return a result after invocation.

❖ Procedures provide user-defined statements

❖ Functions provide user-defined operators
 Value produced by function is returned to the calling code, effectively

replacing the call itself

float power(float base, float exp)

result = 3.4 * power(10.0, x);

❖ C-based languages
 have only functions (but they can behave like procedures)

 Can be defined to return no value if the return type is void

Local Referencing Environments

❖ Local variables: variables defined inside subprograms

 their scope is the body of subprogram in which they are
defined

▪ Stack-dynamic: bound to storage when subprogram begins
execution, unbound when its execution terminates

➢ Advantages:

1. Support for recursion

2. Storage for local variables of active subprogram can be shared with
local variables of inactive subprograms

➢ Disadvantages:

1. Allocation/deallocation time

2. Indirect addressing (indirectness because the place in stack where a
particular local variable is stored can only be determined at run time)

3. Subprograms cannot be history sensitive

➢ Cannot retain data values of local variables between calls

▪ Static: bound to storage at compile-time

Structure of a Called Method’s Stack Frame (Activation record)

- Run-time activation of subprograms that are managed with a stack of Activation Record

Instances (ARIs).

- The dynamic link is a pointer to the base of the activation record instance of the caller. In

static-scoped languages, this link is used to provide traceback information when a run-time

error occurs. In dynamic-scoped languages, the dynamic link is used to access nonlocal

variables.

- The static link is a pointer to Static area.

Example Program with

Methods and Parameters

Run-Time Stack with Stack Frames for Method Invocations

Parameter Passing: Semantic Models

❖Semantic models for formal parameters
▪ In mode – can receive data from corresponding actual parameters

➢Actual value is either copied to caller, or an access path is transmitted

▪ Out mode – can transmit data to actual parameters

▪ Inout mode – can do both receive/transmit data

Parameter Passing

❖Pass-by-value

❖Pass-by-result

❖Pass-by-value-result

❖Pass-by-reference

❖Pass-by-name

Parameter Passing: Implementation

❖ Pass by value (in mode)
▪ Value of actual parameter is used to initialize formal parameter, which acts as

a local variable

void foo (int a) {

a = a + 1;

}

void main() {

int b = 2;

foo(b);

}

▪ Normally implemented by copying actual parameter to formal parameter

▪ Can also be implemented by transmitting access path to the value of actual
parameter as long as cell is write protected

▪ Disadvantages:

➢ Requires more storage (duplicated space)

➢ Cost of the moves (if the parameter is large)

Parameter Passing: Implementation

❖ Pass by result (out mode)

 Local’s value is passed back to the caller

 No value transmitted to the subprogram

 Formal parameter acts as local variable, but just before control is

transferred back to caller, its value is transmitted to actual parameter

 Disadvantages:

1. If value is copied back (as opposed to access paths), need extra time

and space

2. Pass-by-result can create parameter collision

e.g. procedure sub1(y: int, z: int);

...

sub1(x, x);

➢Value of x in the caller depends on order of assignments at the return

Parameter Passing: Implementation

❖Pass by value-result (or pass-by-copy)

Combination of pass-by-value and pass-by-result

Formal parameter acts as local variable in subprogram

Actual parameter is copied to formal parameter at subprogram

entry and copied back at subprogram termination

Share disadvantages of pass-by-result and pass-by-value

▪ Requires multiple storage for parameters

▪ Requires time for copying values

▪ Problems with parameter collision

Parameter Passing: Implementation

❖Pass by reference (or pass-by-sharing)

 transmits an access path (e.g., address) to the called
subprogram

Called subprogram is allowed to access actual parameter in
the calling program unit

Advantage:

▪ passing process is efficient (no copying and no duplicated storage)

Disadvantages:

▪ Slower accesses to formal parameters due to additional level of
indirect addressing

▪ Allows aliasing

void fun (int &first, int &second);

…

fun(total, total);

Parameter Passing: Implementation

❖Pass-by-reference

Collisions due to array elements can also cause aliases

void fun(int &first, int &second)

fun(list[i], list[j]); /* where i=j */

void fun1(int &first, int *a);

fun1(list[i], list);

Collisions between formal parameters and nonlocal
variables that are visible

int *global; void sub(int *param) {

void main() { extern int *global;

extern int *global; …

… }

sub(global);

…

}

Parameter Passing: Implementation

❖Pass by Name

Another type of inout mode

Actual parameter is textually substituted for the
corresponding formal parameters

▪ Actual binding of value and address is delayed until formal
parameter is assigned or referenced

Advantage:

▪ flexibility of late binding

Disadvantage:

▪ very expensive related to other parameter passing

➢Not used in any widely used language

Another Example:

▪ Used at compile time by macros, and for generic subprograms in
C++

Pass-by-value

int m=8, i=5;

foo(m);

print m; # prints 8

since m is passed by-value

...

proc foo (byval b) {

b = i + b;

b is byval so it is essentially a local variable

initialized to 8 (the value of the actual back in

the calling environment)

the assignment to b cannot change the value of m back

in the main program

}

Pass-by-reference

int m=8, i=5;

foo(m);

print m; # prints 13

since m is passed by-reference

...

proc foo (byref b) {

b = i + b;

b is byref so it is a pointer back to the actual

parameter back in the main program (containing 8

initially)

the assignment to b actually changes the value in m

back

in the main program

i accesses the variable in the main via scope rules

}

Pass-by-value-result

int m=8, i=5;

foo(m);

print m; # prints 13

since m is passed by-value-result

...

proc foo (byvres b) {

b = i + b;

b is byves so it copies value of the actual

parameter (containing 8 initially)

new value of b is copied back to actual parameter

in the main program

i accesses the variable in the main via scope rules

}

Pass-by-name

array A [1..100] of int; array A [1..100] of int;

int i=5; int i=5;

foo(A[i],i); foo(A[i]);

print A[i]; # prints A[6] print A[i]; # prints A[5]

... # so prints 7 ... # not sure what

good example # a problem here...

proc foo (name B,name k) { proc foo (name B) {

k = 6; int i = 2;

B = 7; B = 7;

} }

text substitution does this

proc foo { proc foo {

i = 6; int i = 2;

A[i] = 7; A[i] = 7;

} }

Parameter Passing in PL

❖Fortran

Always use inout-mode semantics model of parameter
passing

Before Fortran 77, mostly uses pass-by-reference

Later implementations mostly use pass-by-value-result

❖C

mostly pass by value

Pass-by-reference is achieved using pointers as parameters

int *p = { 1, 2, 3 };

void change(int *q) {

q[0] = 4;

}

main() {

change(p); /* p[0] = 4 after calling the change function */

}

Parameter Passing in PL

❖ C++

 includes a special pointer type called a reference type

void GetData(double &Num1, const int &Num2) {

int temp;

for (int i=0; i<Num2; i++) {

cout << “Enter a number: “;

cin >> temp;

if (temp > Num1)

{ Num1 = temp; return; }

}

 Num1 and Num2 are passed by reference

 const modifier prevents a function from changing the values of
reference parameters

 Referenced parameters are implicitly dereferenced

 Why do we need a constant reference parameter?

Implementing Parameter Passing

Code

Data

Heap

Stack

Memory contents

program code

global and static data

Dynamically allocated variables

local data

Implementing Parameter Passing

❖ Pass by Value

 Values copied into stack locations

 Stack locations serve as storage for corresponding formal parameters

❖ Pass by Result

 Implemented opposite of pass-by-value

 Values assigned to actual parameters are placed in the stack, where they

can be retrieved by calling program unit upon termination of called

subprogram

❖ Pass by Value Result

 Stack location for parameters is initialized by by the call and then copied

back to actual parameters upon termination of called subprogram

Implementing Parameter Passing

❖Pass by Reference

Regardless of type of parameter, put the address in the
stack

For literals, address of literal is put in the stack

For expressions, compiler must build code to evaluate
expression before the transfer of control to the called
subprogram

▪ Address of memory cell in which code places the result of its
evaluation is then put in the stack

Compiler must make sure to prevent called subprogram
from changing parameters that are literals or expressions

Access to formal parameters is by indirect addressing
from the stack location of the address

Implementing Parameter Passing

Main program calls sub(w,x,y,z) where w is passed by value, x is passed by result,

y is passed by value-result, and z is passed by reference

Implementing Parameter Passing

❖Pass by Name

 run-time resident code segments or subprograms evaluate

the address of the parameter

 called for each reference to the formal

Very expensive, compared to pass by reference or value-

result

Subprogram Names as Parameters

❖ Issues:

1. Are parameter types checked?

▪ Early Pascal and FORTRAN 77 do not; later versions of Pascal and
FORTRAN 90 do

▪ Ada does not allow subprogram parameters

▪ Java does not allow method names to be passed as parameters

▪ C and C++ - pass pointers to functions; parameters can be type checked

2. What is the correct referencing environment for a subprogram that was
sent as a parameter?

▪ Environment of the call statement that enacts the passed subprogram

➢ Shallow binding

▪ Environment of the definition of the passed subprogram

➢ Deep binding

▪ Environment of the call statement that passed the subprogram as actual
parameter

➢ Ad hoc binding (Has never been used)

Subprogram Names as Parameters

function sub1() {

var x;

function sub2() {

alert(x);

};

function sub3() {

var x;

x = 3;

sub4(sub2);

}

function sub4(subx) {

var x;

x = 4;

subx();

};

x = 1;

sub3();

};

Shallow binding:

 Referencing environment of

sub2 is that of sub4

Deep binding

 Referencing environment of

sub2 is that of sub1

Ad-hoc binding

 Referencing environment of

sub2 is that of sub3

Overloaded Subprograms

❖ A subprogram that has the same name as another subprogram in

the same referencing environment

❖ Every version of the overloaded subprogram must have a

unique protocol

 Must be different from others in the number, order, or types of its

parameters, or its return type (if it is a function)

❖ C++, Java, Ada, and C# include predefined overloaded

subprograms – e.g., overloaded constructors in C++

❖ Overloaded subprograms with default parameters can lead to

ambiguous subprogram calls

void foo(float b = 0.0);

void foo();

…

foo(); /* call is ambiguous; may lead to compilation error */

Generic (Polymorphic) Subprograms

❖Polymorphism:

 Increase reusability of software

Types:

▪ Ad hoc polymorphism = Overloaded subprogram

▪ Parametric polymorphism

➢ Provided by a subprogram that takes a generic parameter that is used

in a type expression

➢Ada and C++ provide compile-time parametric polymorphism

Generic Subprograms

template <class Type>

void generic_sort(Type list[], int len) {

int top, bottom;

Type temp;

for (top = 0; top < len - 2; top++)

for (bottom = top + 1; bottom < len - 1; bottom++) {

if (list[top] > list[bottom]) {

temp = list [top];

list[top] = list[bottom];

list[bottom] = temp;

} //** end of for (bottom ...

} //** end of generic_sort

float flt_list[100];

...

generic_sort(flt_list, 100); // Implicit instantiation

