
Chapter 9

Subprograms

The Structure of Run-Time Memory

Subprograms

❖ Two fundamental abstraction facilities in

programming language:

 Process abstraction – represented by subprograms

 Data abstraction

❖ General characteristics of subprograms:

1. A subprogram has a single entry point

2. The caller is suspended during execution of the

called subprogram

3. Control always returns to the caller when the called

subprogram’s execution terminates

Subprograms

❖ A subprogram definition is a description of the actions of the

subprogram abstraction

❖ A subprogram call is an explicit request that the subprogram

be executed

 A subprogram is active if, after being called, it has begun execution

but has not yet completed that execution

❖ A subprogram header is the first line of the definition

 Specifies that the following syntactic unit is a subprogram of some

particular kind - using a special word (function, procedure, etc)

 Provides name of subprogram

 Specifies the list of formal parameters

Fortran: Subroutine Adder(parameters)

Ada: procedure Adder(parameters)

Subprograms

❖The parameter profile (signature) of a subprogram is

the number, order, and types of its parameters

❖The protocol of a subprogram is its parameter profile

plus, if it is a function, its return type

❖Subprograms can have declarations as well as

definitions

❖Subprogram declaration provides the subprogram’s

protocol but do not include their bodies

Function declarations in C/C++ are called prototypes

Parameters

❖ A formal parameter is a dummy variable listed in the

subprogram header and used in the subprogram

❖ An actual parameter represents a value or address used in the

subprogram call statement

void doNothing (int formal_param) {

…

}

main() {

int actual_param;

doNothing(actual_param);

}

Parameters

❖ Actual/Formal Parameter Correspondence

 Binding of actual to formal parameters (type checking)

1. Positional parameters

❖ First actual param bound to first formal param, etc

2. Keyword parameters

❖ Name of formal param to which actual param is bound is

specified with actual param

Ada: Sumer(Length => My_Length,

List => My_Array,

Sum => My_Sum);

❖ Advantage: order is irrelevant

❖ Disadvantage: user must know the formal parameter’s names

Parameters

❖ Default values of formal parameters

 Allowed by C++, Fortran 95, Ada and PHP

 Default value is used if no actual parameter is passed to the formal

parameter

Ada: function Compute_Pay(Income : Float; Exemptions : Integer := 1;

Tax_Rate : Float) return Float

pay := Compute_Pay (20000.00, Tax_Rate => 0.15);

 C# allows methods to accept variable number of params of the same type

public void DisplayList(params int[] list) {

foreach (int nextValue in list) {

Console.WriteLine(“Next value {0}”, nextValue);

}

}

Procedures and Functions

❖ A function is called from within an expression and returns a
result after invocation. A procedure is treated as an atomic
statement and does not return a result after invocation.

❖ Procedures provide user-defined statements

❖ Functions provide user-defined operators
 Value produced by function is returned to the calling code, effectively

replacing the call itself

float power(float base, float exp)

result = 3.4 * power(10.0, x);

❖ C-based languages
 have only functions (but they can behave like procedures)

 Can be defined to return no value if the return type is void

Local Referencing Environments

❖ Local variables: variables defined inside subprograms

 their scope is the body of subprogram in which they are
defined

▪ Stack-dynamic: bound to storage when subprogram begins
execution, unbound when its execution terminates

➢ Advantages:

1. Support for recursion

2. Storage for local variables of active subprogram can be shared with
local variables of inactive subprograms

➢ Disadvantages:

1. Allocation/deallocation time

2. Indirect addressing (indirectness because the place in stack where a
particular local variable is stored can only be determined at run time)

3. Subprograms cannot be history sensitive

➢ Cannot retain data values of local variables between calls

▪ Static: bound to storage at compile-time

Structure of a Called Method’s Stack Frame (Activation record)

- Run-time activation of subprograms that are managed with a stack of Activation Record

Instances (ARIs).

- The dynamic link is a pointer to the base of the activation record instance of the caller. In

static-scoped languages, this link is used to provide traceback information when a run-time

error occurs. In dynamic-scoped languages, the dynamic link is used to access nonlocal

variables.

- The static link is a pointer to Static area.

Example Program with

Methods and Parameters

Run-Time Stack with Stack Frames for Method Invocations

Parameter Passing: Semantic Models

❖Semantic models for formal parameters
▪ In mode – can receive data from corresponding actual parameters

➢Actual value is either copied to caller, or an access path is transmitted

▪ Out mode – can transmit data to actual parameters

▪ Inout mode – can do both receive/transmit data

Parameter Passing

❖Pass-by-value

❖Pass-by-result

❖Pass-by-value-result

❖Pass-by-reference

❖Pass-by-name

Parameter Passing: Implementation

❖ Pass by value (in mode)
▪ Value of actual parameter is used to initialize formal parameter, which acts as

a local variable

void foo (int a) {

a = a + 1;

}

void main() {

int b = 2;

foo(b);

}

▪ Normally implemented by copying actual parameter to formal parameter

▪ Can also be implemented by transmitting access path to the value of actual
parameter as long as cell is write protected

▪ Disadvantages:

➢ Requires more storage (duplicated space)

➢ Cost of the moves (if the parameter is large)

Parameter Passing: Implementation

❖ Pass by result (out mode)

 Local’s value is passed back to the caller

 No value transmitted to the subprogram

 Formal parameter acts as local variable, but just before control is

transferred back to caller, its value is transmitted to actual parameter

 Disadvantages:

1. If value is copied back (as opposed to access paths), need extra time

and space

2. Pass-by-result can create parameter collision

e.g. procedure sub1(y: int, z: int);

...

sub1(x, x);

➢Value of x in the caller depends on order of assignments at the return

Parameter Passing: Implementation

❖Pass by value-result (or pass-by-copy)

Combination of pass-by-value and pass-by-result

Formal parameter acts as local variable in subprogram

Actual parameter is copied to formal parameter at subprogram

entry and copied back at subprogram termination

Share disadvantages of pass-by-result and pass-by-value

▪ Requires multiple storage for parameters

▪ Requires time for copying values

▪ Problems with parameter collision

Parameter Passing: Implementation

❖Pass by reference (or pass-by-sharing)

 transmits an access path (e.g., address) to the called
subprogram

Called subprogram is allowed to access actual parameter in
the calling program unit

Advantage:

▪ passing process is efficient (no copying and no duplicated storage)

Disadvantages:

▪ Slower accesses to formal parameters due to additional level of
indirect addressing

▪ Allows aliasing

void fun (int &first, int &second);

…

fun(total, total);

Parameter Passing: Implementation

❖Pass-by-reference

Collisions due to array elements can also cause aliases

void fun(int &first, int &second)

fun(list[i], list[j]); /* where i=j */

void fun1(int &first, int *a);

fun1(list[i], list);

Collisions between formal parameters and nonlocal
variables that are visible

int *global; void sub(int *param) {

void main() { extern int *global;

extern int *global; …

… }

sub(global);

…

}

Parameter Passing: Implementation

❖Pass by Name

Another type of inout mode

Actual parameter is textually substituted for the
corresponding formal parameters

▪ Actual binding of value and address is delayed until formal
parameter is assigned or referenced

Advantage:

▪ flexibility of late binding

Disadvantage:

▪ very expensive related to other parameter passing

➢Not used in any widely used language

Another Example:

▪ Used at compile time by macros, and for generic subprograms in
C++

Pass-by-value

int m=8, i=5;

foo(m);

print m; # prints 8

since m is passed by-value

...

proc foo (byval b) {

b = i + b;

b is byval so it is essentially a local variable

initialized to 8 (the value of the actual back in

the calling environment)

the assignment to b cannot change the value of m back

in the main program

}

Pass-by-reference

int m=8, i=5;

foo(m);

print m; # prints 13

since m is passed by-reference

...

proc foo (byref b) {

b = i + b;

b is byref so it is a pointer back to the actual

parameter back in the main program (containing 8

initially)

the assignment to b actually changes the value in m

back

in the main program

i accesses the variable in the main via scope rules

}

Pass-by-value-result

int m=8, i=5;

foo(m);

print m; # prints 13

since m is passed by-value-result

...

proc foo (byvres b) {

b = i + b;

b is byves so it copies value of the actual

parameter (containing 8 initially)

new value of b is copied back to actual parameter

in the main program

i accesses the variable in the main via scope rules

}

Pass-by-name

array A [1..100] of int; array A [1..100] of int;

int i=5; int i=5;

foo(A[i],i); foo(A[i]);

print A[i]; # prints A[6] print A[i]; # prints A[5]

... # so prints 7 ... # not sure what

good example # a problem here...

proc foo (name B,name k) { proc foo (name B) {

k = 6; int i = 2;

B = 7; B = 7;

} }

text substitution does this

proc foo { proc foo {

i = 6; int i = 2;

A[i] = 7; A[i] = 7;

} }

Parameter Passing in PL

❖Fortran

Always use inout-mode semantics model of parameter
passing

Before Fortran 77, mostly uses pass-by-reference

Later implementations mostly use pass-by-value-result

❖C

mostly pass by value

Pass-by-reference is achieved using pointers as parameters

int *p = { 1, 2, 3 };

void change(int *q) {

q[0] = 4;

}

main() {

change(p); /* p[0] = 4 after calling the change function */

}

Parameter Passing in PL

❖ C++

 includes a special pointer type called a reference type

void GetData(double &Num1, const int &Num2) {

int temp;

for (int i=0; i<Num2; i++) {

cout << “Enter a number: “;

cin >> temp;

if (temp > Num1)

{ Num1 = temp; return; }

}

 Num1 and Num2 are passed by reference

 const modifier prevents a function from changing the values of
reference parameters

 Referenced parameters are implicitly dereferenced

 Why do we need a constant reference parameter?

Implementing Parameter Passing

Code

Data

Heap

Stack

Memory contents

program code

global and static data

Dynamically allocated variables

local data

Implementing Parameter Passing

❖ Pass by Value

 Values copied into stack locations

 Stack locations serve as storage for corresponding formal parameters

❖ Pass by Result

 Implemented opposite of pass-by-value

 Values assigned to actual parameters are placed in the stack, where they

can be retrieved by calling program unit upon termination of called

subprogram

❖ Pass by Value Result

 Stack location for parameters is initialized by by the call and then copied

back to actual parameters upon termination of called subprogram

Implementing Parameter Passing

❖Pass by Reference

Regardless of type of parameter, put the address in the
stack

For literals, address of literal is put in the stack

For expressions, compiler must build code to evaluate
expression before the transfer of control to the called
subprogram

▪ Address of memory cell in which code places the result of its
evaluation is then put in the stack

Compiler must make sure to prevent called subprogram
from changing parameters that are literals or expressions

Access to formal parameters is by indirect addressing
from the stack location of the address

Implementing Parameter Passing

Main program calls sub(w,x,y,z) where w is passed by value, x is passed by result,

y is passed by value-result, and z is passed by reference

Implementing Parameter Passing

❖Pass by Name

 run-time resident code segments or subprograms evaluate

the address of the parameter

 called for each reference to the formal

Very expensive, compared to pass by reference or value-

result

Subprogram Names as Parameters

❖ Issues:

1. Are parameter types checked?

▪ Early Pascal and FORTRAN 77 do not; later versions of Pascal and
FORTRAN 90 do

▪ Ada does not allow subprogram parameters

▪ Java does not allow method names to be passed as parameters

▪ C and C++ - pass pointers to functions; parameters can be type checked

2. What is the correct referencing environment for a subprogram that was
sent as a parameter?

▪ Environment of the call statement that enacts the passed subprogram

➢ Shallow binding

▪ Environment of the definition of the passed subprogram

➢ Deep binding

▪ Environment of the call statement that passed the subprogram as actual
parameter

➢ Ad hoc binding (Has never been used)

Subprogram Names as Parameters

function sub1() {

var x;

function sub2() {

alert(x);

};

function sub3() {

var x;

x = 3;

sub4(sub2);

}

function sub4(subx) {

var x;

x = 4;

subx();

};

x = 1;

sub3();

};

Shallow binding:

 Referencing environment of

sub2 is that of sub4

Deep binding

 Referencing environment of

sub2 is that of sub1

Ad-hoc binding

 Referencing environment of

sub2 is that of sub3

Overloaded Subprograms

❖ A subprogram that has the same name as another subprogram in

the same referencing environment

❖ Every version of the overloaded subprogram must have a

unique protocol

 Must be different from others in the number, order, or types of its

parameters, or its return type (if it is a function)

❖ C++, Java, Ada, and C# include predefined overloaded

subprograms – e.g., overloaded constructors in C++

❖ Overloaded subprograms with default parameters can lead to

ambiguous subprogram calls

void foo(float b = 0.0);

void foo();

…

foo(); /* call is ambiguous; may lead to compilation error */

Generic (Polymorphic) Subprograms

❖Polymorphism:

 Increase reusability of software

Types:

▪ Ad hoc polymorphism = Overloaded subprogram

▪ Parametric polymorphism

➢ Provided by a subprogram that takes a generic parameter that is used

in a type expression

➢Ada and C++ provide compile-time parametric polymorphism

Generic Subprograms

template <class Type>

void generic_sort(Type list[], int len) {

int top, bottom;

Type temp;

for (top = 0; top < len - 2; top++)

for (bottom = top + 1; bottom < len - 1; bottom++) {

if (list[top] > list[bottom]) {

temp = list [top];

list[top] = list[bottom];

list[bottom] = temp;

} //** end of for (bottom ...

} //** end of generic_sort

float flt_list[100];

...

generic_sort(flt_list, 100); // Implicit instantiation

