
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 6 Functions

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Opening Problem

Find the sum of integers from 1 to 10, from 20 to 37, and

from 35 to 49, respectively.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Problem

sum = 0

for i in range(1, 10):

sum += i

print("Sum from 1 to 10 is", sum)

sum = 0

for i in range(20, 37):

sum += i

print("Sum from 20 to 37 is", sum)

sum = 0

for i in range(35, 49):

sum += i

print("Sum from 35 to 49 is", sum)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Problem

sum = 0

for i in range(1, 10):

sum += i

print("Sum from 1 to 10 is", sum)

sum = 0

for i in range(20, 37):

sum += i

print("Sum from 20 to 37 is", sum)

sum = 0

for i in range(35, 49):

sum += i

print("Sum from 35 to 49 is", sum)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Solution

def sum(i1, i2):

result = 0

for i in range(i1, i2):

result += i

return result

def main():

print("Sum from 1 to 10 is", sum(1, 10))

print("Sum from 20 to 37 is", sum(20, 37))

print("Sum from 35 to 49 is", sum(35, 49))

main() # Call the main function

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Objectives
To define functions (§6.2).

To invoke value-returning functions (§6.3).

To invoke functions that does not return a value (§6.4).

To pass arguments by values (§6.5).

To pass arguments by values (§6.6).

To develop reusable code that is modular, easy to read, easy to
debug, and easy to maintain (§6.7).

To create modules for reusing functions (§§6.7-6.8).

To determine the scope of variables (§6.9).

To define functions with default arguments (§6.10).

To return multiple values from a function (§6.11).

To apply the concept of function abstraction in software
development (§6.12).

To design and implement functions using stepwise refinement
(§6.13).

To simplify drawing programs using functions (§6.14).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Defining Functions

A function is a collection of statements that are

grouped together to perform an operation.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Function Header
A function contains a header and body. The header begins with the

def keyword, followed by function’s name and parameters,

followed by a colon.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Formal Parameters

The variables defined in the function header are known as

formal parameters.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Actual Parameters
When a function is invoked, you pass a value to the parameter. This

value is referred to as actual parameter or argument.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Return Value
A function may return a value using the return keyword.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Calling Functions

Testing the max function

This program demonstrates calling a function
max to return the largest of the int values

TestMax Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Calling Functions, cont.

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

Invoke the main function

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

i is now 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

j is now 2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

invoke max(i, j)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

invoke max(i, j)

Pass the value of i to num1

Pass the value of j to num2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

(num1 > num2) is true

since num1 is 5 and num2

is 2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

result is now 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

return result, which is 5

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

return max(i, j) and assign

the return value to k

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

Execute the print

statement

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Trace Function Invocation

animation

def main():

 i = 5

 j = 2

 k = max(i, j)

 print("The maximum between",

 i, "and", j, "is", k)

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

pass int 5

pass int 2

 main()

Return to the caller

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

Call Stacks

(a) The main function

is invoked.

Space required for

the main function

j: 2

 i: 5

(b) The max

function is invoked.
(c) The max function

is being executed.

Space required for

the main function
 j:

i:

Space required for

the max function
num2:

 num1:

int object

5

int object

2

This is a heap for

storing objects

stack stack

int object

5

int object

2

This is a heap for

storing objects

Space required for

the main function
 j:

i:

Space required for

the max function
result:

num2:

 num1:

stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Call Stacks

Space required for
the main function

k:

j: 2
 i: 5

(e) The main

function is finished.

int object

5

int object

2

This is a heap for

storing objects

stack stack

(d) The max function is

finished and the return

value is sent to k.

Stack is

now empty

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Functions With/Without Return Values

This type of function does not return a value. The

function performs some actions.

ReturnGradeFunction Run

PrintGradeFunction Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

The None Value

A function that does not return a value is known as

a void function in other programming languages

such as Python, C++, and C#. In Python, such

function returns a special None.

def sum(number1, number2):

total = number1 + number2

print(sum(1, 2))

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Passing Arguments by Positions
def nPrintln(message, n):

for i in range(0, n):

print(message)

Suppose you invoke the function using
nPrintln(“Welcome to Python”, 5)

What is the output?

Suppose you invoke the function using
nPrintln(“Computer Science”, 15)

What is the output?

What is wrong
nPrintln(4, “Computer Science”)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
30

Keyword Arguments
def nPrintln(message, n):

for i in range(0, n):

print(message)

What is wrong
nPrintln(4, “Computer Science”)

Is this OK?
nPrintln(n = 4, message = “Computer Science”)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Pass by Value
In Python, all data are objects. A variable for an object is actually a

reference to the object. When you invoke a function with a

parameter, the reference value of the argument is passed to the

parameter. This is referred to as pass-by-value. For simplicity, we

say that the value of an argument is passed to a parameter when

invoking a function. Precisely, the value is actually a reference value

to the object.

Increment Run

If the argument is a number or a string, the argument is not affected,

regardless of the changes made to the parameter inside the function.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Arbitrary Arguments, *args

If you do not know how many arguments that will
be passed into your function, add a * before the
parameter name in the function definition.

This way the function will receive a tuple of
arguments, and can access the items accordingly:

32

def my_function(*kids):
print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

Output:
The youngest child is Linus

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Arbitrary Keyword Arguments,

**kwargs
If you do not know how many keyword arguments that will be
passed into your function, add two asterisk: ** before the
parameter name in the function definition.

This way the function will receive a dictionary of arguments,
and can access the items accordingly:

33

def my_function(**kid):
print("His last name is " + kid["lname"])

my_function(fname = "Tobias", lname = "Refsnes")

Output:
His last name is Refsnes

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Python Lambda function

A lambda function is a small anonymous
function.

A lambda function can take any number of
arguments, but can only have one expression.

34

Syntax → lambda arguments : expression

x = lambda a: a + 10

print(x(5))

15

x = lambda a, b, c: a + b + c

print(x(5, 6, 2))

13

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
35

Modularizing Code

Functions can be used to reduce redundant coding
and enable code reuse. Functions can also be used
to modularize code and improve the quality of the
program.

GCDFunction

Run

PrimeNumberFunction

Run

TestGCDFunction

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
36

Problem: Converting Decimals to

Hexadecimals

Write a function that converts a decimal integer

to a hexadecimal.

Decimal2HexConversion RunDecimal2HexConversion Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
37

Scope of Variables

Scope: the part of the program where the
variable can be referenced.

A variable created inside a function is referred to as a
local variable. Local variables can only be
accessed inside a function. The scope of a local
variable starts from its creation and continues to
the end of the function that contains the variable.

In Python, you can also use global variables. They
are created outside all functions and are accessible
to all functions in their scope.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
38

Example 1

globalVar = 1

def f1():

localVar = 2

print(globalVar)

print(localVar)

f1()

print(globalVar)

print(localVar) # Out of scope. This gives an error

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
39

Example 2

x = 1

def f1():

x = 2

print(x) # Displays 2

f1()

print(x) # Displays 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
40

Example 3

x = eval(input("Enter a number: "))

if (x > 0):

y = 4

print(y) # This gives an error if y is not created

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
41

Example 4

sum = 0

for i in range(0, 5):

sum += i

print(i)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Example 5

x = 1

def increase():

global x

x = x + 1

print(x) # Displays 2

increase()

print(x) # Displays 2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
43

Default Arguments

Python allows you to define functions with

default argument values. The default values are

passed to the parameters when a function is

invoked without the arguments.

DefaultArgumentDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
44

Returning Multiple Values

Python allows a function to return multiple

values. Listing 5.9 defines a function that takes

two numbers and returns them in non-descending

order.

MultipleReturnValueDemo

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
45

Generating Random Characters

TestRandomCharacter

Run

RandomCharacter

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
46

Function Abstraction

You can think of the function body as a black box

that contains the detailed implementation for the

function.

Function Header

Function Body
Black Box

Optional arguments

for input

Optional return

value

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
47

Benefits of Functions

• Write a function once and reuse it anywhere.

• Information hiding. Hide the implementation

from the user.

• Reduce complexity.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
48

Stepwise Refinement

The concept of function abstraction can be applied
to the process of developing programs. When
writing a large program, you can use the “divide
and conquer” strategy, also known as stepwise
refinement, to decompose it into subproblems. The
subproblems can be further decomposed into
smaller, more manageable problems.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
49

PrintCalender Case Study

Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

PrintCalendar Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
50

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
51

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
52

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
53

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
54

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
55

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
56

Implementation: Top-Down

A Skeleton for printCalendar

Top-down approach is to implement one function in the

structure chart at a time from the top to the bottom. Stubs

can be used for the functions waiting to be implemented.

A stub is a simple but incomplete version of a function.

The use of stubs enables you to test invoking the function

from a caller. Implement the main function first and then

use a stub for the printMonth function. For example, let

printMonth display the year and the month in the stub.

Thus, your program may begin like this:

html/PrintCalendarSkeleton.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
57

Implementation: Bottom-Up

Bottom-up approach is to implement one function in the

structure chart at a time from the bottom to the top. For

each function implemented, write a test program to test it.

Both top-down and bottom-up functions are fine. Both

approaches implement the functions incrementally and

help to isolate programming errors and makes debugging

easy. Sometimes, they can be used together.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
58

Turtle:

Developing Reusable Graphics Functions

UseCustomTurtleFunctions

def drawLine(x1, y1, x2, y2):

def writeString(s, x, y):

def drawPoint(x, y):

def drawCircle(x = 0, y = 0, radius = 10):

def drawRectangle(x = 0, y = 0, width = 10, height = 10):

UsefulTurtleFunctions

Run

