
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 8 More on Strings and

Special Methods

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Objectives
To learn how to create strings (§8.2.1).

To use the len, min, and max functions to obtain the length of a string or the
smallest or largest element in a string (§8.2.2).

To access string elements by using the index operator ([])(§8.2.3).

To get a substring from a larger string by using the slicing str[start:end] operator
(§8.2.4).

To concatenate strings by using the + operator and to duplicate strings by using
the * operator (§8.2.5).

To use the in and not in operators to determine whether a string is contained
within another string (§8.2.6).

To compare strings by using comparison operators (==, !=, <, <=, >, and >=)
(§8.2.7).

To iterate characters in a string by using a foreach loop (§8.2.8).

To test strings by using the methods isalnum, isalpha, isdigit, isidentifier,
islower, isupper, and isspace (§8.2.9).

To search for substrings by using the methods endswith, startswith, find, rfind,
and count (§8.2.10).

To convert strings by using the methods capitalize, lower, upper, title,
swapcase, and replace (§8.2.11).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

The str Class

Creating Strings

s1 = str() # Create an empty string

s2 = str("Welcome") # Create a string Welcome

Python provides a simple syntax for creating string

using a string literal. For example,

s1 = "" # Same as s1 = str()

s2 = "Welcome" # Same as s2 = str("Welcome")

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Strings are Immutable

A string object is immutable. Once it is created, its
contents cannot be changed. To optimize
performance, Python uses one object for strings with
the same contents. As shown in Figure 6.8, both s1
and s2 refer to the same string object.

>>> s1 = "Welcome"

>>> s2 = "Welcome"

>>> id(s1)

505408902

>>> id(s2)

505408902

After executing s = "HTML";

: str

str object for "Welcome"

s1

s2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Functions for str

>>> s = "Welcome"

>>> len(s)

7

>>> max(s)

o

>>> min(s)

W

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Index Operator []

 P r o g r a m m i n

i

g

i

0 1 2 3 4 5 6 7 8 9

i

10

i
s

s[0] s[1] s[10]

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

The +, *, [:], and in Operators

>>> s1 = "Welcome"

>>> s2 = "Python"

>>> s3 = s1 + " to " + s2

>>> s3

’Welcome to Python’

>>> s4 = 2 * s1

>>> s4

’WelcomeWelcome’

>>> s1[3 : 6]

’com’

>>> 'W' in s1

True

>>> 'X' in s1

False

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Negative Index

>>> s1 = "Welcome"

>>> s1[-1]

‘e’

>>> s1[-3 : -1]

‘me’

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

The in and not in Operators

>>> s1 = "Welcome"

>>> "come" in s1

True

>>> "come" not in s1

False

>>>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Foreach Loops

for ch in string:

print(ch)

for i in range(0, len(s), 2):

print(s[i])

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Comparing Strings

>>> s1 = "green"

>>> s2 = "glow"

>>> s1 == s2

False

>>> s1 != s2

True

>>> s1 > s2

True

>>> s1 >= s2

True

>>> s1 < s2

False

>>> s1 <= s2

False

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Testing Characters in a String

str

isalnum(): bool

isalpha(): bool

isdigit(): bool

isidentifier(): bool

islower(): bool

isupper(): bool

isspace(): bool

Return True if all characters in this string are alphanumeric

and there is at least one character.

Return True if all characters in this string are alphabetic and

there is at least one character.

Return True if this string contains only number characters.

Return True if this string is a Python identifier.

Return True if all characters in this string are lowercase letters
and there is at least one character.

Return True if all characters in this string are uppercase letters

and there is at least one character.

Return True if this string contains only whitespace characters.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Searching for Substrings

str

endswith(s1: str): bool

startswith(s1: str): bool

find(s1): int

rfind(s1): int

count(subtring): int

Returns True if the string ends with the substring s1.

Returns True if the string starts with the substring s1.

Returns the lowest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the highest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the number of non-overlapping occurrences of this

substring.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Converting Strings

str

capitalize(): str

lower(): str

upper(): str

title(): str

swapcase(): str

replace(old, new): str

Returns a copy of this string with only the first character capitalized.

Returns a copy of this string with all characters converted to lowercase.

Returns a copy of this string with all characters converted to uppercase.

Returns a copy of this string with the first letter capitalized in each word.

Returns a copy of this string in which lowercase letters are converted to

uppercase and uppercase to lowercase.

Returns a new string that replaces all the occurrence of the old string with a

new string.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Stripping Whitespace Characters

str

lstrip(): str

rstrip(): str

strip(): str

Returns a string with the leading whitespace characters removed.

Returns a string with the trailing whitespace characters removed.

Returns a string with the starting and trailing whitespace characters

removed.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Formatting Strings

str

center(width): str

ljust(width): str

rjust(width): str

format(items): str

Returns a copy of this string centered in a field of the given width.

Returns a string left justified in a field of the given width.

Returns a string right justified in a field of the given width.

Formats a string. See Section 3.6.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Problem: Finding Palindromes

Objective: Checking whether a string

is a palindrome: a string that reads the

same forward and backward.

CheckPalindrome Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Problem: Converting Hex to Decimal

HexToDecimalConversion Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Operator Overloading

Defining methods for operators is called operator

overloading. Operator overloading allows the

programmer to use the built-in operators for user-

defined methods. These methods are named in a

special way for Python to recognize the

association.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Operators and Methods

Operator Method

+

*

-

/

%

<

<=

==

!=

>

>=

[index]

in

len

__add__(self, other)

__mul__(self, other)

__sub__(self, other)

__div__(self, other)

__mod__(self, other)

__lt__(self, other)

__le__(self, other)

__eq__(self, other)

__ne__(self, other)

__gt__(self, other)

__ge__(self, other)

__getitem__(self, index)

__contains__(self, value)

__len__(self)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2121

The Rational Class

Rational RunTestRationalClass

Rational

-numerator: int

-denominator: int

Rational(numerator = 0: int,

denominator = 1: int)

__add__(secondRational:

Rational): Rational

__sub__(secondRational:

Rational): Rational

__mul__(secondRational:

Rational): Rational

__div__(secondRational:

Rational): Rational

__lt__ (secondRational:

Rational): bool

Also __le__, __eq__, __ne__,

__gt__, __ge__ are supported

__int__(): int

__float__(): float

__str()__: str

__getitem(i)__

The numerator of this rational number.

The denominator of this rational number.

Creates a rational number with specified numerator (default 0) and

denominator (default 1).

Returns the addition of this rational with another.

Returns the subtraction of this rational with another.

Returns the multiplication of this rational with another.

Returns the division of this rational with another.

Compare this rational number with another.

Returns the numerator / denominator as an integer.

Returns the numerator / denominator.

Returns a string in the form “numerator / denominator.” Returns

numerator if denominator is 1.

[0] for numerator and [1] for denominator.

