
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 13

Files and Exception Handling

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

Data stored in the program are temporary; they are lost when the

program terminates. To permanently store the data created in a

program, you need to save them in a file on a disk or other

permanent storage. The file can be transported and can be read later

by other programs. There are two types of files: text and binary. Text

files are essentially strings on disk. This chapter introduces how to

read/write data from/to a text file.

When a program runs into a runtime error, the program terminates

abnormally. How can you handle the runtime error so that the

program can continue to run or terminate gracefully? This is the

subject we will introduce in this chapter.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Objectives
To open a file, read/write data from/to a file (§13.2)

To use file dialogs for opening and saving data (§13.3).

To develop applications with files (§13.4)

To read data from a Web resource (§13.5).

To handle exceptions using the try/except/finally clauses

(§13.6)

To raise exceptions using the raise statements (§13.7)

To become familiar with Python’s built-in exception classes

(§13.8)

To access exception object in the handler (§13.8)

To define custom exception classes (§13.9)

To perform binary IO using the pickle module (§13.10)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Open a File

How do you write data to a file and read the data back from a file?

You need to create a file object that is associated with a physical

file. This is called opening a file. The syntax for opening a file is as

follows:

file = open(filename, mode)

Mode Description

'r' Open a file for reading only.

'w' Open a file for writing only.

'a' Open a file for appending data. Data are

written to the end of the file.

'rb' Open a file for reading binary data.

'wb' Open a file for writing binary data.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Write to a File

outfile = open("test.txt", "w")

outfile.write("Welcome to Python")

WriteDemo Run

file

read([number: int]): str

readline(): str

readlines(): list

write(s: str): None

close(): None

Returns the specified number of characters from the file. If the

argument is omitted, the entire remaining contents are read.

Returns the next line of file as a string.

Returns a list of the remaining lines in the file.

Writes the string to the file.

Closes the file.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Testing File Existence

import os.path

if os.path.isfile("Presidents.txt"):

print("Presidents.txt exists")

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Read from a File

After a file is opened for reading data, you can use the

read method to read a specified number of characters or

all characters, the readline() method to read the next line,

and the readlines() method to read all lines into a list.

ReadDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Append Data to a File

You can use the 'a' mode to open a file for appending data to an

existing file.

AppendDemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Writing/Reading Numeric Data

To write numbers, convert them into strings, and then use the write

method to write them to a file. In order to read the numbers back

correctly, you should separate the numbers with a whitespace

character such as ' ', '\n'.

WriteReadNumbers Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

File Dialogs
from tkinter.filedialog import askopenfilename

from tkinter.filedialog import asksaveasfilename

filenameforReading = askopenfilename()

print("You can read from from " + filenameforReading)

filenameforWriting = asksaveasfilename()

print("You can write data to " + filenameforWriting)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

File Editor

FileEditor Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Problem: Counting Each Letter in a File

The problem is to write a program that prompts the

user to enter a file and counts the number of

occurrences of each letter in the file regardless of

case.

CountEachLetter Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Retrieving Data from the Web

Using Python, you can write simple code to read data from a

Website. All you need to do is to open a URL link using the urlopen

function as follows:

infile = urllib.request.urlopen('http://www.yahoo.com')

import urllib.request

infile = urllib.request.urlopen('http://www.yahoo.com/index.html')

print(infile.read().decode())

CountEachLetterURL Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Exception Handling

When you run the program in Listing 11.3 or Listing 11.4, what

happens if the user enters a file or an URL that does not exist? The

program would be aborted and raises an error. For example, if you

run Listing 11.3 with an incorrect input, the program reports an IO

error as shown below:

c:\pybook\python CountEachLetter.py

Enter a filename: newinput.txt

Traceback (most recent call last):

File "CountEachLetter.py", line 23, in <module>

main()

File "CountEachLetter.py", line 4, in main

Infile = open(filename, "r"> # Open the file

IOError: [Errno 2] No such file or directory: 'newinput.txt'

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

The try ... except Clause

try:

<body>

except <ExceptionType>:

<handler>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

The try ... except Clause

try:

<body>

except <ExceptionType1>:

<handler1>

...

except <ExceptionTypeN>:

<handlerN>

except:

<handlerExcept>

else:

<process_else>

finally:

<process_finally>

TestException

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Raising Exceptions

You learned how to write the code to handle exceptions in the

preceding section. Where does an exception come from? How is

an exception created? Exceptions are objects and objects are

created from classes. An exception is raised from a function.

When a function detects an error, it can create an object of an

appropriate exception class and raise the object, using the

following syntax:

raise ExceptionClass("Something is wrong")

RaiseException Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Processing Exceptions Using

Exception Objects

You can access the exception object in the except
clause.

ProcessExceptionObject Run

try

<body>

except ExceptionType as ex:

<handler>

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Defining Custom Exception Classes

TestCircleWithCustomException Run

BaseException

Exception

StandardError

ArithmeticError

ZeroDivionError

EnvironmentError

IOError

OSError

RuntimeError

LookupError

SyntaxError

IndentationError

IndexError

KeyError

InvalidRadiusException

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Binary IO Using Pickling

To perform binary IO using pickling, open a file

using the mode 'rb' or 'wb' for reading binary or

writing binary and invoke pickle module’s dump

and load functions to write and read data.

BinaryIODemo Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Detecting End of File

If you don’t know how many objects are in the file, how do you

read all the objects? You can repeatedly read an object using the

load function until it throws an EOFError exception. When this

exception is raised, catch it and process it to end the file reading

process.

DetectEndOfFile Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Case Study: Address Book

Now let us use object IO to create a useful project for

storing and viewing an address book. The user interface of

the program is shown below. The Add button stores a new

address at the end of the file. The First, Next, Previous,

and Last buttons retrieve the first, next, previous, and last

addresses from the file, respectively.

AddressBook Run

