
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 15 Recursion

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Motivations

Suppose you want to find all the files under a

directory that contains a particular word. How do

you solve this problem? There are several ways to

solve this problem. An intuitive solution is to use

recursion by searching the files in the

subdirectories recursively.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

Motivations

The H-tree is used in VLSI design as a clock distribution
network for routing timing signals to all parts of a chip with
equal propagation delays. How do you write a program to
display the H-tree? A good approach to solve this problem is
to use recursion.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

Objectives
To describe what a recursive function is and the benefits of using recursion

(§15.1).

To develop recursive functions for recursive mathematical functions (§§15.2–

15.3).

To explain how recursive function calls are handled in a call stack (§§15.2–15.3).

To use a helper function to derive a recursive function (§15.5).

To solve selection sort using recursion (§15.5.1).

To solve binary search using recursion (§15.5.2).

To get the directory size using recursion (§15.6).

To solve the Towers of Hanoi problem using recursion (§15.7).

To draw fractals using recursion (§15.8).

To solve the Eight Queens problem using recursion (§15.9).

To discover the relationship and difference between recursion and iteration

(§15.10).

To know tail-recursive functions and why they are desirable (§15.11).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

n! = n * (n-1)!

ComputeFactorial Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Computing Factorial

factorial(3)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Computing Factorial

factorial(3) = 3 * factorial(2)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Computing Factorial

factorial(3) = 3 * factorial(2)

= 3 * (2 * factorial(1))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Computing Factorial

factorial(3) = 3 * factorial(2)

= 3 * (2 * factorial(1))

= 3 * (2 * (1 * factorial(0)))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Computing Factorial

factorial(3) = 3 * factorial(2)

= 3 * (2 * factorial(1))

= 3 * (2 * (1 * factorial(0)))

= 3 * (2 * (1 * 1)))

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Computing Factorial

factorial(3) = 3 * factorial(2)

= 3 * (2 * factorial(1))

= 3 * (2 * (1 * factorial(0)))

= 3 * (2 * (1 * 1)))

= 3 * (2 * 1)

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Computing Factorial

factorial(3) = 3 * factorial(2)

= 3 * (2 * factorial(1))

= 3 * (2 * (1 * factorial(0)))

= 3 * (2 * (1 * 1)))

= 3 * (2 * 1)

= 3 * 2

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Computing Factorial

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

= 4 * 3 * (2 * 1)

= 4 * 3 * 2

= 4 * 6

= 24

animation

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)
Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

Executes factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns 1

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(0)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(1)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(2)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(3)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5
Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Trace Recursive factorial

animation

return 1

factorial(4)

return 4 * factorial(3)

return 3 * factorial(2)

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

returns factorial(4)

Main method

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

5
Stack

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

factorial(4) Stack Trace

Space Required

for factorial(4)
1 Space Required

for factorial(4)

2 Space Required

for factorial(3)

Space Required

for factorial(4)

3

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

4

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

5

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(0)

Space Required

for factorial(4)

6

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(1)

Space Required

for factorial(4)

7

Space Required

for factorial(3)

Space Required

for factorial(2)

Space Required

for factorial(4)

8 Space Required

for factorial(3)

Space Required

for factorial(4)
9

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Other Examples

f(0) = 0;

f(n) = n + f(n-1);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Fibonacci Numbers
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89…

indices: 0 1 2 3 4 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0)

+fib(1) = 1 + fib(1) = 1 + 1 = 2

ComputeFibonacci Run

html/ComputeFibonacci.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

Fibonnaci Numbers, cont.

return fib(3) + fib(2)

return fib(2) + fib(1)

return fib(1) + fib(0)

return 1

return fib(1) + fib(0)

return 0

return 1

return 1 return 0

1: call fib(3)

2: call fib(2)

3: call fib(1)

4: return fib(1)

7: return fib(2)

5: call fib(0)

6: return fib(0)

8: call fib(1)

9: return fib(1)

10: return fib(3)
11: call fib(2)

16: return fib(2)

12: call fib(1) 13: return fib(1)
14: return fib(0)

15: return fib(0)

fib(4)

0: call fib(4) 17: return fib(4)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Characteristics of Recursion

All recursive methods have the following characteristics:

– One or more base cases (the simplest case) are used to stop
recursion.

– Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, you break it
into subproblems. If a subproblem resembles the original
problem, you can apply the same approach to solve the
subproblem recursively. This subproblem is almost the
same as the original problem in nature with a smaller size.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
30

Problem Solving Using Recursion

Let us consider a simple problem of printing a message for
n times. You can break the problem into two subproblems:
one is to print the message one time and the other is to print
the message for n-1 times. The second problem is the same
as the original problem with a smaller size. The base case
for the problem is n==0. You can solve this problem using
recursion as follows:

def nPrintln(message, times):

if times >= 1:

print(message)

nPrintln(message, times - 1)

The base case is times == 0

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Think Recursively

Many of the problems presented in the early chapters can
be solved using recursion if you think recursively. For
example, the palindrome problem in Listing 8.1 can be
solved recursively as follows:

def isPalindrome(s):

if len(s) <= 1: # Base case

return True

elif s[0] != s[len(s) - 1]: # Base case

return False

else:

return isPalindrome(s[1 : len(s) – 1])

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
32

Recursive Helper Methods

The preceding recursive isPalindrome method is not
efficient, because it creates a new string for every recursive
call. To avoid creating new strings, use a helper method:

def isPalindrome(s):

return isPalindromeHelper(s, 0, len(s) - 1)

def isPalindromeHelper(s, low, high):

if high <= low: # Base case

return True

elif s[low] != s[high]: # Base case

return False

else:

return isPalindromeHelper(s, low + 1, high - 1)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
33

Recursive Selection Sort

RecursiveSelectionSort

1. Find the smallest number in the list and swaps it

with the first number.

2. Ignore the first number and sort the remaining

smaller list recursively.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
34

Recursive Binary Search

RecursiveBinarySearch

1. Case 1: If the key is less than the middle element,
recursively search the key in the first half of the array.

2. Case 2: If the key is equal to the middle element, the
search ends with a match.

3. Case 3: If the key is greater than the middle element,
recursively search the key in the second half of the
array.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
35

Recursive Implementation
def recursiveBinarySearch(list, key):

low = 0

high = len(list) - 1

return recursiveBinarySearchHelper(list, key, low, high)

def recursiveBinarySearchHelper(list, key, low, high):

if low > high: # The list has been exhausted without a match

return -low - 1

mid = (low + high) // 2

if key < list[mid]:

return recursiveBinarySearchHelper(list, key, low, mid - 1)

elif key == list[mid]:

return mid

else:

return recursiveBinarySearchHelper(list, key, mid + 1, high)

def main():

list = [3, 5, 6, 8, 9, 12, 34, 36]

print(recursiveBinarySearch(list, 3))

print(recursiveBinarySearch(list, 4))

main()

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
36

Directory Size

The preceding examples can easily be solved without using
recursion. This section presents a problem that is
difficult to solve without using recursion. The problem is
to find the size of a directory. The size of a directory is
the sum of the sizes of all files in the directory. A
directory may contain subdirectories. Suppose a
directory contains files , , ..., , and subdirectories , , ..., ,
as shown below.

directory

...

1f

1

2f

1

mf

1

1d

1

2d

1

nd

1

...

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
37

Directory Size

The size of the directory can be defined recursively as
follows:

)(...)()()(...)()()(2121 nm dsizedsizedsizefsizefsizefsizedsize +++++++=

DirectorySize Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
38

Towers of Hanoi

There are n disks labeled 1, 2, 3, . . ., n, and three

towers labeled A, B, and C.

No disk can be on top of a smaller disk at any

time.

All the disks are initially placed on tower A.

Only one disk can be moved at a time, and it must

be the top disk on the tower.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
39

Towers of Hanoi, cont.

3 7

6

5

4

1

A B

Original position

C
A B

Step 4: Move disk 3 from A to B

C

A B

Step 5: Move disk 1 from C to A

C
A B

Step 1: Move disk 1 from A to B

C

A C B

Step 2: Move disk 2 from A to C

A B

Step 3: Move disk 1 from B to C

C
A B

Step 7: Mve disk 1 from A to B

C

A B

Step 6: Move disk 2 from C to B

C

0

2

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
40

Solution to Towers of Hanoi
The Towers of Hanoi problem can be decomposed into three
subproblems.

A B

Original position

C

.

.

.

A B

Step 1: Move the first n-1 disks from A to C recursively

C

.

.

.

A B

Step2: Move disk n from A to B

C

.

.

.

A B

Step3: Move n-1 disks from C to B recursively

C

.

.

.

n-1 disks

n-1 disks

n-1 disks

n-1 disks

0

1

2

3

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
41

Solution to Towers of Hanoi

Move the first n - 1 disks from A to C with the assistance of tower
B.

Move disk n from A to B.

Move n - 1 disks from C to B with the assistance of tower A.

TowersOfHanoi Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Fractals?

A fractal is a geometrical figure just like

triangles, circles, and rectangles, but fractals

can be divided into parts, each of which is a

reduced-size copy of the whole. There are

many interesting examples of fractals. This

section introduces a simple fractal, called

Sierpinski triangle, named after a famous

Polish mathematician.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
43

Sierpinski Triangle
1. It begins with an equilateral triangle, which is considered to be

the Sierpinski fractal of order (or level) 0, as shown in Figure
(a).

2. Connect the midpoints of the sides of the triangle of order 0 to
create a Sierpinski triangle of order 1, as shown in Figure (b).

3. Leave the center triangle intact. Connect the midpoints of the
sides of the three other triangles to create a Sierpinski of order
2, as shown in Figure (c).

4. You can repeat the same process recursively to create a
Sierpinski triangle of order 3, 4, ..., and so on, as shown in
Figure (d).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
44

Sierpinski Triangle Solution

SierpinskiTriangle Run

p1

p3 p2

p12 p31

p23

Recursively draw the small Sierpinski triangle
displayTriangles(

 order - 1, p1, p12, p31)

)

Recursively draw the

small Sierpinski triangle
displayTriangles(

 order - 1, p31, p23, p3)

)

Recursively draw the small

Sierpinski triangle
displayTriangles(

 order - 1, p12, p2, p23)

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
45

Eight Queens

EightQueens Run

 0

 4

 7

 5

 2

 6

 1

 3

 queens[0]

 queens[1]

 queens[2]

 queens[3]

 queens[4]

 queens[5]

 queens[6]

 queens[7]

- The Eight Queens problem is to find a solution to place a queen in each row on a

chessboard so that no two queens can attack each other.

- The program arranges eight queens on a chessboard. There can only be one queen in

each row, and the queens must be positioned such that no two queens can take the other.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
46

Eight Queens

 0 1 2 3 4 5 6 7

0

1

 2

 3

 4

 5

 6

 7

 upright diagonal

 upleft

check

colum

n

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
47

Recursion vs. Iteration

Recursion is an alternative form of program

control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the

program calls a method, the system must assign

space for all of the method’s local variables and

parameters. This can consume considerable

memory and requires extra time to manage the

additional space.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
48

Advantages of Using Recursion

Recursion is good for solving the problems that are

inherently recursive.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
49

Tail Recursion

A recursive method is said to be tail recursive if

there are no pending operations to be performed on

return from a recursive call.

ComputeFactorialNon-tail recursive

ComputeFactorialTailRecursionTail recursive

