GLOBAL
EDITION

Chapter 8

Conceps of
Programming Languages

ELEVENTH EDITION

State ment- Level IR Robert W. Sebesta
Control Structures

ALWAYS LEARNING PEARSON

Chapter 8 Topics

- Introduction

- Selection Statements

- |terative Statements

- Unconditional Branching
- Guarded Commands

- Conclusions

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-2

Levels of Control Flow

- Within expressions (Chapter 7)
- Among program units (Chapter 9)
- Among program statements (this chapter)

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-3

Controlling Program Flows

- A control structure is a control statement and
the statements whose execution it controls

- Most programming Ian%uage_s follow a single
thread of control (or scheduling)

Types of control statements:

- Selection statements

- lterative statements

- Unconditional branching statement

Levels of Control Flow:

1. Within expressions

2. Among program units

3. Among program statements

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-4

Control Statements: Evolution

- FORTRAN | control statements were based
directly on IBM 704 hardware

- Much research and argument in the 1960s
about the issue

- One important result: It was proven that all
algorithms represented by flowcharts can be
coded with only two-way selection and pretest

logical loops

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-5

Control Structure

- A control structure is a control statement

and the statements whose execution it
controls

- Design question
- Should a control structure have multiple entries?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-6

Selection Statements

- A selection statement provides the means

of choosing between two or more paths of
execution

- Two general categories:
- Two-way selectors
- Multiple-way selectors

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-7

Two-Way Selection Statements

. General form:

if control_expression

then clause
else clause

- Design Issues:

- What is the form and type of the control
expression?

- How are the then and else clauses specified?

- How should the meaning of nested selectors be
specified?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-8

The Control Expression

- If the then reserved word
or some other syntactic
marker is not used to
introduce the then clause,
the control expression is
placed in parentheses

- In C89, C99, Python, and
C++, the contro
expression can be
arithmetic

- In most other languages,
the control expression
must be Boolean

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

#tinclude <stdio.h>
int main()

int x = -10;
if (x+10)

printf("Hello World");
else

printf("Hello Zero");
return 0;

1-9

Clause Form

- |n many contemﬁorary
languages, the then and else
clauses can be single
statements or compound
statements

- In Perl, all clauses must be
delimited by braces (they must
be compound)

- In Python and Ruby, clauses are
statement sequences

- Python uses indentation to
define clauses
if x > y : X >y) 4
X = y X'Zyﬂ "
print " x was greater than y' print " X was greater than y

b

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-10

Two Way-Selection in Common Lisp

. Syntax
(1f <test> <do_if true>
<do if false>)

- Single/nested functions for <do_if ...>

- May contain multiple statements

- if surrounded by a block structure
* prog, let, do, elc.

Lisp - Two Way Selection

(when (= x 0)
(terpri)
(princ "It's now 0")

- an array with 10- cells, named my-array
(setf my-array (make-array '(10)))

- access the content of the tenth cell

(1f (> (aref a x) (aref b x)) (aref my-array 9)

(progn ; block,
returns last value
(terpri) (princ "Fixing") progn is a special form that causes each of its
arguments to be evaluated in sequence and
(setf (aref a x) (aref b x))) thenreturnsthe value of the last one.
(1f (< (aref a x) (aref b x))
(format t "~%It's Less")

(format t "~%It's Equal")))

Nesting Selectors

- Java example

if (sum == 0)
if (count == 0)
result = 0;

else result = 1;

- Which is gets the e1se?

- Java's static semantics rule: e1se matches
with the nearest previous is

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-13

Nesting Selectors (continued)

- To force an alternative semantics,
compound statements may be used:
if (sum == 0) {
if (count == 0)

result = 0;

}

else result = 1;

- The above solution is used in C, C++, and C#

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-14

Nesting Selectors (continued)

- Statement sequences as clauses: Ruby

if sum == 0 then 1f sum == 0 then
if count == 0 then 1f count == 0 then
result = 0 result {0
else end
result = 1 else
end result =1
end

end

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-15

Nesting Selectors (continued)

- Python
if sum ==
if count ==
result = 0

else :

result = 1

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-16

Selector Expressions

- In ML, F#, and Lisp, the selector is an
expression; in F#:

let vy =
if x > 0 then x

else 2 * x

— If the if expression returns a value, there must
be an else clause (the expression could produce
a unit type, which has no value). The types of
the values returned by then and else clauses
must be the same.

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-17

Multiple-Way Selection Statements

- Allow the selection of one of any number of
statements or statement groups

- Design Issues:
1. What is the form and type of the control expression?
2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to
include just a single selectable segment?

4. How are case values specified?
5. What is done about unrepresented expression values?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-18

Multiple-Way Selection: Examples

- C, C++, Java, and JavaScript

switch (expression) {

case const expr;: stmty;

case const expr, : stmt;
[default: stmt_,,]

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-19

Switch in C, C++, Java

Note the use of case labels inside if
statements 1s supported in C++, but

switch (x) not Java

default:
if (prime(x))
case 2: case 3: case 5: case 7:
process prime (x);
else
case 4: case 6: case 8:
case 9: case 10:

process_composite (x);

20

Multiple-Way Selection: Examples

Design choices for C’s switch statement
1. Control expression can be only an integer type

2. Selectable segments can be statement sequences,
blocks, or compound statements

3. Any number of segments can be executed in one
execution of the construct (there is no implicit
branch at the end of selectable segments)

4. default clause is for unrepresented values (if
there is no default, the whole statement does
nothing)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-21

Multiple-Way Selection: Examples

- C#

- Differs from C in that it has a static semantics
rule that disallows the implicit execution of
more than one segment

- Each selectable segment must end with an
unconditional branch (goto Or break)

- Also, in C# the control expression and the case
constants can be strings

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-22

Multiple-Way Selection in C#

.- It has a static semantics rule that disallows the
implicit execution of more than one segment

- Each selectable segment must end with an
unconditional branch (goto or break)

- The control expression and the case constants
can be strings

switch (wvalue) {

case -1: Negatives++; break;
case 0: Zeros++; goto case 1;
case 1: Positives++; break;

default: Console.WriteLine (“!!!'\n”); }

23

Multiple-Way Selection: Examples

- Ruby has two forms of case statements-we’ll cover
only one

leap = case

when year $ 400 == 0 then true
when year $ 100 == 0 then false
else year $ 4 ==

end

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-24

Multiple-Way Selection in Ada

- Ada

case expression 1s
when choice list => stmt sequence;

when choice list => stmt sequence;
when others => stmt sequence;]
end case;

- More reliable than C’s switch

- Once a stmt_sequence execution is completed,
control is passed to the first statement after the
case Sstatement

25

Lisp Multiple Selection - cond

(defun test (x)

(cond
((< x 0) ;test

(terpri) (princ “It’s negative"))

; actions to perform if test is true

((> x 100)

(terpri) (princ "It's huge"))
(t

(terpri) (princ “It’s reasonable'"))))

« Only the Tst true test and following expressions within the
corresponding clause are evaluated
— Safe - like ADA

« GOTOs not needed

Implementing Multiple Selectors

- Approaches:
- Multiple conditional branches

- Store case values in a table and use a linear
search of the table

- When there are more than ten cases, a hash
table of case values can be used

- If the number of cases is small and more than
half of the whole range of case values are
represented, an array whose indices are the case
values and whose values are the case labels can
be used

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-27

Multiple-Way Selection Using if

- Multiple Selectors can appear as direct
extensions to two-way selectors, using
else-if clauses, for example in Python:

if count < 10 :
bagl = True

elif count < 100 :
bag2 = True

elif count < 1000 :
bag3 = True

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-28

Multiple-Way Selection Using if

- The Python example can be written as a
Ru by case
case

when count < 10 then bagl = true
when count < 100 then bagZ2 = true
when count < 1000 then bag3 = true

end

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-29

Scheme’s Multiple Selector

- General form of a call to conp:

(COND

(predicate, expression,)

(predicate, expression,)
[(ELSE expression,.q)]

)

- The s1sE clause is optional; ELsE is a synonym
for true

- Each predicate-expression pair is a parameter

— Semantics: The value of the evaluation of conp is
the value of the expression associated with the
first predicate expression that is true

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-30

lterative Statements

- The repeated execution of a statement or
compound statement is accomplished
either by iteration or recursion

- General design issues for iteration control
statements:

1. How is iteration controlled?
2. Where is the control mechanism in the loop?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-31

Counter-Controlled Loops

A counting iterative statement has a loop
variable, and a means of specifying the
initial and terminal, and stepsize values

Design Issues:

1. What are the type and scope of the loop
variable?

2. Should it be legal for the loop variable or loop
parameters to be changed in the loop body,
and if so, does the change affect loop control?

3. Should the loop parameters be evaluated only
once, or once for every iteration?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-32

Counter-Controlled Loops: Examples

- C-based languages
for ([expr 1] ; [expr 2] ; [expr 3]) statement
- The expressions can be whole statements, or even
statement sequences, with the statements separated by
commas

- The value of a multiple-statement expression is the value of the
last statement in the expression

- |If the second expression is absent, it is an infinite loop
Design choices:

— There is no explicit loop variable

— Everything can be changed in the loop

— The first expression is evaluated once, but the other two

are evaluated with each iteration
- It is legal to branch into the body of a for loop in C

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-33

Counter-Controlled Loops: Examples

C++ differs from C in two ways:
1. The control expression can also be Boolean

2. The initial expression can include variable
definitions (scope is from the definition to the
end of the loop body)

Java and C#

- Differs from C++ in that the control
expression must be Boolean

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-34

Counter-Controlled Loops: Examples

Python
for loop_variable in object:
— loop body
[else:
- else clause]

- The object is often a range, which is either a list of values
in brackets ([2, 4, 6]), or a call to the range function
(range (5), which returns 0, 1, 2, 3, 4

- The loop variable takes on the values specified in the
given range, one for each iteration

- The else clause, which is optional, is executed if the loop
terminates normally

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-35

Counter-Controlled Loops: Examples

- F#

- Because counters require variables, and functional
languages do not have variables, counter-controlled
loops must be simulated with recursive functions

let rec forLoop loopBody reps =
if reps <= 0 then ()
else
loopBody ()
forLoop loopBody, (reps — 1)

- This defines the recursive function forLoop with the
parameters loopBody (a function that defines the
loop’s body) and the number of repetitions

- () means do nothing and return nothing

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-36

Logically-Controlled Loops

- Repetition control is based on a Boolean
expression

- Design issues:
- Pretest or posttest?

- Should the logically controlled loop be a
special case of the counting loop statement or
a separate statement?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-37

Logically-Controlled Loops: Examples

C and C++ have both pretest and posttest forms, in
which the control expression can be arithmetic:

while (control_expr) do

loop body loop body
while (control_expr)
- In both C and C++ it is legal to branch into the body
of a logically-controlled loop

Java is like C and C++, except the control
expression must be Boolean (and the body can only

be entered at the beginning —- Java has no goto

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-38

Logically-Controlled Loops: Examples

- F#
/] Recursive function defintion:

let rec function-name parameter-list =

function-body
// recursive fibonacci

let rec fib n =
ifn<=2then1

else fib (n - 1) + fib (n - 2)

As with counter-controlled loops, logically-controlled loops can be simulated

with recursive functions
let rec whileLoop test body =
if test () then

body ()
whileLoop test body

else ()

- This defines the recursive function whileLoop With parameters test and body,
both functions. test defines the control expression

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-39

User-Located Loop Control Mechanisms

Sometimes it is convenient for the
programmers to decide a location for loop

control (other than top or bottom of the
loop)

Simple design for single loops (e.qg., break)

Design issues for nested loops
1. Should the conditional be part of the exit?

2. Should control be transferable out of more
than one loop?

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-40

User-Located Loop Control

- Exit statement:

% Unconditional unlabeled exit: break (C, C++)
for (index=0; index<10; index++) {

if (V8;|.l.,le < 0) break;
}

oto(lfancgnditional labeled exit: break (Java, C#), last
er
C#: outerloop: for (row=0; row<numRows; row++)
for (col = 0; col < numCols; col++) {
sum += matrix[row][col];
if (sum > 1000)
break outerLoop;

}

Perl: LINE: while (<STDIN>) {
last LINE if /AS$/:

}

User-Located Loop Control Mechanisms

- C, C++, Python, Ruby, and C# have
unconditional unlabeled exits (break)

- Java and Perl have unconditional labeled
exits (break in Java, last in Perl)

- C, C++, and Python have an unlabeled
control statement, continue, that skips the
remainder of the current iteration, but does
not exit the loop

- Java and Perl have labeled versions of
continue

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-42

Ilteration Based on Data Structures

- The number of elements in a data structure
controls loop iteration

- Control mechanism is a call to an jterator
function that returns the next element in
some chosen order, if there is one; else
loop is terminate

- C's for can be used to build a user-defined
Iterator:

for (p=root; p==NULL; traverse (p)) {

}

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-43

lteration Based on Data Structures (continued)

PHP

- current points at one element of the array
- next Moves current to the next element
- reset moves current to the first element

reset $list;
print (“1lst: “+current($list) + “
");
while (Scurrent value = next($list))

print (“next: “+$current value+”
") ;

- Java 5.0 (uses sor, although it is called foreach)

For arrays and any other class that implements the rterable
interface, e.g., ArrayList

for (String myElement : myList) { .. }

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-44

lteration Based on Data Structures (continued)

C# and F# (and the other .NET languages) have generic library
classes, like Java 5.0 (for arrays, lists, stacks, and queues).
Can iterate over these with the foreach statement. User-
defined collections can implement the 1Enumerator

interface and also use foreach.

List<String> names = new List<String>();

names.Add ("Bob") ;

names.Add ("Carol") ;

names.Add ("Ted") ;

foreach (Strings name in names)
Console.WritelLine ("Name: {0}", name);

String[] strList = {“Bob”, “John”, “Carol” };
foreach (String name in strList)

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-45

lteration Based on Data Structures (continued)

- Ruby bl/ocks are sequences of code,

>> 4. times {puts "Hey!"}

delimited by either braces or do and end e

- Blocks can be used with methods to create
iterators

- Predefined iterator methods (times, each,
upto):

3.times {puts "Hey!'"}
list.each {|value| puts value}

(1ist iS an array; value is a block
parameter)
1l.upto(5) {|x| print x, " "}

Iterators are implemented with blocks,
which can also be defined by
applications

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

Hey!
Hey!
Hey!
=>>4

>> list = [2, 4, 6, 8]

=> [2, 4, 6, 8]

>> list.each {|value| puts value}
2

4

I co o

> [2, 4, 6, 8]

l.upto(5) {|x| print x, "™ "}
This produces the following output:
1 2 345

1-46

lteration Based on Data Structures (continued)

- Ruby blocks are attached methods calls; they can have

parameters (in vertical bars); they are executed when the
method executes a yield statement

def fibonacci(last)
first, second =1, 1
while first <= last
yield first
first, second = second, first + second
end
end
puts "Fibonacci numbers less than 100 are:"

fibonacci (100) {|num| print num, " "}
puts

— Ruby has a for statement, but Ruby converts them to upto
method calls

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-47

Unconditional Branching

- Transfers execution control to a specified place in
the program

- Represented one of the most heated debates in
1960’s and 1970’s

- Major concern: Readability

- Some languages do not support goto statement
(e.g., Java)

. C# offers goto statement (can be used in switch
statements)

- Loop exit statements are restricted and somewhat
camouflaged goto’s

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-48

Guarded Commands

- Designed by Dijkstra

- Purpose: to support a new programming
methodology that supported verification
(correctness) during development

- Basis for two linguistic mechanisms for
concurrent programming (in CSP)

- Basic Idea: if the order of evaluation is not
important, the program should not specify
one

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-49

Selection Guarded Command

- Form

if <Boolean expr> -> <statement>
[1 <Boolean expr> -> <statement>

[] <Boolean expr> -> <statement>
fi

- Semantics: when construct is reached,
- Evaluate all Boolean expressions

- If more than one are true, choose one non-
deterministically

- If none are true, it is a runtime error

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-50

Loop Guarded Command

- Form
do <Boolean> -> <statement>
1 <Boolean> -> <statement>

1 <Boolean> -> <statement>
od

- Semantics: for each iteration

- Evaluate all Boolean expressions

- If more than one are true, choose one non-
deterministically; then start loop again

- If none are true, exit loop

Copyright © 2017 Pearson Education, Ltd. All rights reserved.

1-51

Guarded Commands: Rationale

- Connection between control statements
and program verification is intimate

- Verification is impossible with goto
statements

- Verification is possible with only selection
and logical pretest loops

- Verification is relatively simple with only
guarded commands

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-52

Conclusions

- Variety of statement-level structures

- Choice of control statements beyond
selection and logical pretest loops is a
trade-off between language size and
writability

- Functional and logic programming

languages use quite different control
structures

Copyright © 2017 Pearson Education, Ltd. All rights reserved. 1-53

