
ISBN 0-321-49362-1

Chapter 13

Concurrency

Copyright © 2018 Pearson. All rights reserved. 1-2

Chapter 13 Topics

• Introduction

• Introduction to Subprogram-Level Concurrency

• Semaphores

• Monitors

• Message Passing

• Ada support for Concurrency

• Java Threads

• C# Threads

• Concurrency in Functional Languages

• Statement-Level Concurrency

Copyright © 2018 Pearson. All rights reserved. 1-3

Introduction

• Concurrency can occur at four levels:

– Machine instruction level

– High-level language statement level

– Unit level

– Program level

• Because there are no language issues in
instruction- and program-level
concurrency, they are not addressed here

Copyright © 2018 Pearson. All rights reserved. 1-4

Multiprocessor Architectures

• Late 1950s - one general-purpose processor and
one or more special-purpose processors for input
and output operations

• Early 1960s - multiple complete processors, used
for program-level concurrency

• Mid-1960s - multiple partial processors, used for
instruction-level concurrency

• Single-Instruction Multiple-Data (SIMD) machines

• Multiple-Instruction Multiple-Data (MIMD)
machines

• A primary focus of this chapter is shared memory
MIMD machines (multiprocessors)

Copyright © 2018 Pearson. All rights reserved. 1-5

Categories of Concurrency

• Categories of Concurrency:
– Physical concurrency - Multiple independent

processors (multiple threads of control)

– Logical concurrency - The appearance of
physical concurrency is presented by time-
sharing one processor (software can be
designed as if there were multiple threads of
control)

• Coroutines (quasi-concurrency) have a
single thread of control

• A thread of control in a program is the
sequence of program points reached as
control flows through the program

Copyright © 2018 Pearson. All rights reserved. 1-6

Motivations for the Use of Concurrency

• Multiprocessor computers capable of physical
concurrency are now widely used

• Even if a machine has just one processor, a
program written to use concurrent execution can
be faster than the same program written for
nonconcurrent execution

• Involves a different way of designing software that
can be very useful—many real-world situations
involve concurrency

• Many program applications are now spread over
multiple machines, either locally or over a network

Copyright © 2018 Pearson. All rights reserved. 1-7

Introduction to Subprogram-Level
Concurrency
• A task or process or thread is a program

unit that can be in concurrent execution
with other program units

• Tasks differ from ordinary subprograms in
that:
– A task may be implicitly started

– When a program unit starts the execution of a
task, it is not necessarily suspended

– When a task’s execution is completed, control
may not return to the caller

• Tasks usually work together

Copyright © 2018 Pearson. All rights reserved. 1-8

Two General Categories of Tasks

• Heavyweight tasks execute in their own
address space

• Lightweight tasks all run in the same
address space – more efficient

• A task is disjoint if it does not
communicate with or affect the execution
of any other task in the program in any way

Copyright © 2018 Pearson. All rights reserved. 1-9

Task Synchronization

• A mechanism that controls the order in
which tasks execute

• Two kinds of synchronization
– Cooperation synchronization

– Competition synchronization

• Task communication is necessary for
synchronization, provided by:
- Shared nonlocal variables
- Parameters
- Message passing

Copyright © 2018 Pearson. All rights reserved. 1-10

Kinds of synchronization

• Cooperation: Task A must wait for task B to
complete some specific activity before task
A can continue its execution, e.g., the
producer-consumer problem

• Competition: Two or more tasks must use
some resource that cannot be
simultaneously used, e.g., a shared counter

– Competition is usually provided by mutually
exclusive access (approaches are discussed
later)

Copyright © 2018 Pearson. All rights reserved. 1-11

Need for Competition Synchronization

Task A: TOTAL = TOTAL + 1

Task B: TOTAL = 2 * TOTAL

- Depending on order, there could be four different results

Copyright © 2018 Pearson. All rights reserved. 1-12

Scheduler

• Providing synchronization requires a
mechanism for delaying task execution

• Task execution control is maintained by a
program called the scheduler, which maps
task execution onto available processors

Copyright © 2018 Pearson. All rights reserved. 1-13

Task Execution States

• New - created but not yet started

• Ready - ready to run but not currently
running (no available processor)

• Running

• Blocked - has been running, but
cannot now continue (usually waiting
for some event to occur)

• Dead - no longer active in any sense

Task Execution States (continued)

Copyright © 2018 Pearson. All rights reserved. 1-14

Copyright © 2018 Pearson. All rights reserved. 1-15

Liveness and Deadlock

• Liveness is a characteristic that a program
unit may or may not have
- In sequential code, it means the unit will

eventually complete its execution

• In a concurrent environment, a task can
easily lose its liveness

• If all tasks in a concurrent environment lose
their liveness, it is called deadlock

Copyright © 2018 Pearson. All rights reserved. 1-16

Design Issues for Concurrency

• Competition and cooperation
synchronization*

• Controlling task scheduling

• How can an application influence task
scheduling

• How and when tasks start and end
execution

• How and when are tasks created

* The most important issue

Copyright © 2018 Pearson. All rights reserved. 1-17

Methods of Providing Synchronization

• Semaphores

• Monitors

• Message Passing

Copyright © 2018 Pearson. All rights reserved. 1-18

Semaphores

• Dijkstra - 1965

• A semaphore is a data structure consisting of a
counter and a queue for storing task descriptors

– A task descriptor is a data structure that stores all of the
relevant information about the execution state of the task

• Semaphores can be used to implement guards on
the code that accesses shared data structures

• Semaphores have only two operations, wait and
release (originally called P and V by Dijkstra)

• Semaphores can be used to provide both
competition and cooperation synchronization

1-19

Cooperation Synchronization with
Semaphores

• Example: A shared buffer

• The buffer is implemented as an ADT with
the operations DEPOSIT and FETCH as the
only ways to access the buffer

• Use two semaphores for cooperation:
emptyspots and fullspots

• The semaphore counters are used to store
the numbers of empty spots and full spots
in the buffer

Copyright © 2018 Pearson. All rights reserved. 1-20

Cooperation Synchronization with
Semaphores (continued)

• DEPOSIT must first check emptyspots to
see if there is room in the buffer

• If there is room, the counter of emptyspots
is decremented and the value is inserted

• If there is no room, the caller is stored in
the queue of emptyspots

• When DEPOSIT is finished, it must
increment the counter of fullspots

Copyright © 2018 Pearson. All rights reserved. 1-21

Cooperation Synchronization with
Semaphores (continued)

• FETCH must first check fullspots to see if
there is a value
– If there is a full spot, the counter of fullspots

is decremented and the value is removed

– If there are no values in the buffer, the caller
must be placed in the queue of fullspots

– When FETCH is finished, it increments the
counter of emptyspots

• The operations of FETCH and DEPOSIT on
the semaphores are accomplished through
two semaphore operations named wait and
release

Copyright © 2018 Pearson. All rights reserved. 1-22

Semaphores: Wait and Release Operations

wait(aSemaphore)

if aSemaphore’s counter > 0 then

decrement aSemaphore’s counter

else

put the caller in aSemaphore’s queue

attempt to transfer control to a ready task

-- if the task ready queue is empty,

-- deadlock occurs

end

release(aSemaphore)

if aSemaphore’s queue is empty then

increment aSemaphore’s counter

else

put the calling task in the task ready queue

transfer control to a task from aSemaphore’s queue

end

Copyright © 2018 Pearson. All rights reserved. 1-23

Producer and Consumer Tasks

semaphore fullspots, emptyspots;

fullstops.count = 0;

emptyspots.count = BUFLEN;

task producer;

loop

-- produce VALUE –-

wait (emptyspots); {wait for space}

DEPOSIT(VALUE);

release(fullspots); {increase filled}

end loop;

end producer;

task consumer;

loop

wait (fullspots);{wait till not empty}}

FETCH(VALUE);

release(emptyspots); {increase empty}

-- consume VALUE –-
end loop;

end consumer;

Copyright © 2018 Pearson. All rights reserved. 1-24

Competition Synchronization with
Semaphores

• A third semaphore, named access, is used
to control access (competition
synchronization)

– The counter of access will only have the values
0 and 1

– Such a semaphore is called a binary semaphore

• Note that wait and release must be atomic!

Copyright © 2018 Pearson. All rights reserved. 1-25

Producer Code for Semaphores

semaphore access, fullspots, emptyspots;

access.count = 0;

fullstops.count = 0;

emptyspots.count = BUFLEN;

task producer;

loop

-- produce VALUE –-
wait(emptyspots); {wait for space}

wait(access); {wait for access)

DEPOSIT(VALUE);

release(access); {relinquish access}

release(fullspots); {increase filled}

end loop;

end producer;

Copyright © 2018 Pearson. All rights reserved. 1-26

Consumer Code for Semaphores

task consumer;

loop

wait(fullspots);{wait till not empty}

wait(access); {wait for access}

FETCH(VALUE);

release(access); {relinquish access}

release(emptyspots); {increase empty}

-- consume VALUE –-
end loop;

end consumer;

Copyright © 2018 Pearson. All rights reserved. 1-27

Evaluation of Semaphores

• Misuse of semaphores can cause failures in
cooperation synchronization, e.g., the
buffer will overflow if the wait of
fullspots is left out

• Misuse of semaphores can cause failures in
competition synchronization, e.g., the
program will deadlock if the release of
access is left out

Copyright © 2018 Pearson. All rights reserved. 1-28

Monitors

• Ada, Java, C#

• The idea: encapsulate the shared data and
its operations to restrict access

• A monitor is an abstract data type for
shared data

Copyright © 2018 Pearson. All rights reserved. 1-29

Competition Synchronization

• Shared data is resident in the monitor
(rather than in the client units)

• All access resident in the monitor

– Monitor implementation guarantee
synchronized access by allowing only one
access at a time

– Calls to monitor procedures are implicitly
queued if the monitor is busy at the time of the
call

Copyright © 2018 Pearson. All rights reserved. 1-30

Cooperation Synchronization

• Cooperation between processes is still a
programming task

– Programmer must guarantee that a shared
buffer does not experience underflow or
overflow

Copyright © 2018 Pearson. All rights reserved. 1-31

Evaluation of Monitors

• A better way to provide competition
synchronization than semaphores

• Semaphores can be used to implement
monitors

• Monitors can be used to implement
semaphores

• Support for cooperation synchronization is
very similar as with semaphores, so it has
the same problems

Copyright © 2018 Pearson. All rights reserved. 1-32

Message Passing

• Message passing is a general model for
concurrency

– It can model both semaphores and monitors

– It is not just for competition synchronization

• Central idea: task communication is like
seeing a doctor--most of the time she
waits for you or you wait for her, but when
you are both ready, you get together, or
rendezvous

Copyright © 2018 Pearson. All rights reserved. 1-33

Message Passing Rendezvous

• To support concurrent tasks with message
passing, a language needs:

- A mechanism to allow a task to indicate when it
is willing to accept messages

- A way to remember who is waiting to have its
message accepted and some “fair” way of choosing
the next message

• When a sender task’s message is accepted by a
receiver task, the actual message transmission is
called a rendezvous

Copyright © 2018 Pearson. All rights reserved. 1-34

Ada Support for Concurrency

• The Ada 83 Message-Passing Model

– Ada tasks have specification and body parts,
like packages; the spec has the interface, which
is the collection of entry points:

task Task_Example is

entry ENTRY_1 (Item : in Integer);

end Task_Example;

Copyright © 2018 Pearson. All rights reserved. 1-35

Task Body

• The body task describes the action that
takes place when a rendezvous occurs

• A task that sends a message is suspended
while waiting for the message to be
accepted and during the rendezvous

• Entry points in the spec are described with
accept clauses in the body
accept entry_name (formal parameters) do

...

end entry_name;

Copyright © 2018 Pearson. All rights reserved. 1-36

Example of a Task Body

task body Task_Example is

begin

loop

accept Entry_1 (Item: in Float) do

...

end Entry_1;

end loop;

end Task_Example;

Copyright © 2018 Pearson. All rights reserved. 1-37

Ada Message Passing Semantics

• The task executes to the top of the accept
clause and waits for a message

• During execution of the accept clause, the
sender is suspended

• accept parameters can transmit information
in either or both directions

• Every accept clause has an associated queue
to store waiting messages

Copyright © 2018 Pearson. All rights reserved. 1-38

Rendezvous Time Lines

Copyright © 2018 Pearson. All rights reserved. 1-39

Message Passing: Server/Actor Tasks

• A task that has accept clauses, but no other
code is called a server task (the example
above is a server task)

• A task without accept clauses is called an
actor task
– An actor task can send messages to other tasks

– Note: A sender must know the entry name of
the receiver, but not vice versa (asymmetric)

Copyright © 2018 Pearson. All rights reserved. 1-40

Graphical Representation of a
Rendezvous

Graphical
representation of a
rendezvous caused by a
message sent from task
A to task B

Copyright © 2018 Pearson. All rights reserved. 1-41

Multiple Entry Points

• Tasks can have more than one entry point

– The specification task has an entry clause for
each

– The task body has an accept clause for each
entry clause, placed in a select clause, which is
in a loop

Copyright © 2018 Pearson. All rights reserved. 1-42

A Task with Multiple Entries

task body Teller is

loop

select

accept Drive_Up(formal params) do

...

end Drive_Up;

...

or

accept Walk_Up(formal params) do

...

end Walk_Up;

...

end select;

end loop;

end Teller;

In this task, there are two accept clauses, Walk_Up and
Drive_Up, each of which has an associated queue. The
action of the select, when it is executed, is to examine
the queues associated with the two accept clauses.

Copyright © 2018 Pearson. All rights reserved. 1-43

Semantics of Tasks with Multiple
accept Clauses

• If exactly one entry queue is nonempty, choose a
message from it

• If more than one entry queue is nonempty, choose
one, nondeterministically, from which to accept a
message

• If all are empty, wait

• The construct is often called a selective wait

• Extended accept clause - code following the
clause, but before the next clause

– Executed concurrently with the caller

Copyright © 2018 Pearson. All rights reserved. 1-44

Cooperation Synchronization with
Message Passing

• Provided by Guarded accept clauses

when not Full(Buffer) =>

accept Deposit (New_Value) do

...

end

• An accept clause with a with a when clause is either
open or closed

– A clause whose guard is true is called open

– A clause whose guard is false is called closed

– A clause without a guard is always open

Copyright © 2018 Pearson. All rights reserved. 1-45

Semantics of select with Guarded
accept Clauses:

• select first checks the guards on all clauses

• If exactly one is open, its queue is checked for
messages

• If more than one are open, non-deterministically
choose a queue among them to check for messages

• If all are closed, it is a runtime error

• A select clause can include an else clause to avoid
the error

– When the else clause completes, the loop
repeats

Copyright © 2018 Pearson. All rights reserved. 1-46

Competition Synchronization with
Message Passing

• Modeling mutually exclusive access to
shared data

• Example--a shared buffer

• Encapsulate the buffer and its operations in
a task

• Competition synchronization is implicit in
the semantics of accept clauses

– Only one accept clause in a task can be active at
any given time

Partial Shared Buffer Code

Copyright © 2018 Pearson. All rights reserved. 1-47

An example of an Ada task that
implements a monitor for
a buffer. The buffer behaves very
much like the buffer in Section
13.3, in which synchronization is
controlled with semaphores.

A Producer and Consumer Task

Copyright © 2018 Pearson. All rights reserved. 1-48

The tasks for a

producer and a

consumer that could

use Buf_Task

Copyright © 2018 Pearson. All rights reserved. 1-49

Concurrency in Ada 95

• Ada 95 includes Ada 83 features for
concurrency, plus two new features

– Protected objects: A more efficient way of
implementing shared data to allow access to a
shared data structure to be done without
rendezvous

– Asynchronous communication

– A protected object is not a task; it is more like a
monitor.

Copyright © 2018 Pearson. All rights reserved. 1-50

Ada 95: Protected Objects

• A protected object is similar to an abstract
data type

• Access to a protected object is either
through messages passed to entries, as
with a task, or through protected
subprograms

• A protected procedure provides mutually
exclusive read-write access to protected
objects

• A protected function provides concurrent
read-only access to protected objects

A protected object example

Copyright © 2018 Pearson. All rights reserved. 1-51

The buffer problem that

is solved with a task in

the previous subsection

can be more simply

solved with a protected

object. Note that this

example does

not include protected

subprograms.

Copyright © 2018 Pearson. All rights reserved. 1-52

Evaluation of the Ada

• Message passing model of concurrency is
powerful and general

• Protected objects are a better way to
provide synchronized shared data

• In the absence of distributed processors,
the choice between monitors and tasks with
message passing is somewhat a matter of
taste

• For distributed systems, message passing
is a better model for concurrency

Copyright © 2018 Pearson. All rights reserved. 1-53

Java Threads

• The concurrent units in Java are methods named
run

– A run method code can be in concurrent execution with
other such methods

– The process in which the run methods execute is called a
thread

class myThread extends Thread

public void run () {…}

}

…

Thread myTh = new MyThread ();

myTh.start();

Copyright © 2018 Pearson. All rights reserved. 1-54

Controlling Thread Execution

• The Thread class has several methods to control
the execution of threads
– The yield is a request from the running thread to

voluntarily surrender the processor
– The sleep method can be used by the caller of the

method to block the thread (The sleep method has a single parameter, which
is the integer number of milliseconds that the caller of sleep wants the thread to be blocked.
After the specified number of milliseconds has passed, the thread will be put in the task-ready

queue.)
– The join method is used to force a method to delay its

execution until the run method of another thread has
completed its execution

Copyright © 2018 Pearson. All rights reserved. 1-55

Thread Priorities

• A thread’s default priority is the same as
the thread that create it

– If main creates a thread, its default priority is
NORM_PRIORITY

• Threads defined two other priority
constants, MAX_PRIORITY and MIN_PRIORITY

• The priority of a thread can be changed
with the methods setPriority

Semaphores in Java

• The java.util.concurrent.Semaphore package defines the Semaphore
class. Objects of this class implement counting semaphores.

• The Semaphore class defines two methods, acquire and release,
which correspond to the wait and release operations described in
Section 13.3.

The basic constructor for Semaphore takes one integer parameter, which initializes the semaphore’s
counter. For example, the following could be used to initialize the fullspots and emptyspots
semaphores for the buffer example of Section 13.3.2:

fullspots = new Semaphore(0);

emptyspots = new Semaphore(BUFLEN);

The deposit operation of the producer method would appear as follows:
emptyspots.acquire();

deposit(value);

fullspots.release();

Likewise, the fetch operation of the consumer method would appear as follows:
fullspots.acquire();

fetch(value);

emptyspots.release();

Copyright © 2018 Pearson. All rights reserved. 1-56

Copyright © 2018 Pearson. All rights reserved. 1-57

Competition Synchronization with Java
Threads

• A method that includes the synchronized
modifier disallows any other method from running
on the object while it is in execution
…
public synchronized void deposit(int i) {…}

public synchronized int fetch() {…}

…

• The above two methods are synchronized which
prevents them from interfering with each other

• If only a part of a method must be run without
interference, it can be synchronized thru
synchronized statement

synchronized (expression)
statement

Copyright © 2018 Pearson. All rights reserved. 1-58

Cooperation Synchronization with Java
Threads

• Cooperation synchronization in Java is
achieved via wait, notify, and notifyAll
methods
– All methods are defined in Object, which is the

root class in Java, so all objects inherit them

• The wait method must be called in a loop

• The notify method is called to tell one
waiting thread that the event it was waiting
has happened

• The notifyAll method awakens all of the
threads on the object’s wait list

Copyright © 2018 Pearson. All rights reserved. 1-59

Copyright © 2018 Pearson. All rights reserved. 1-60

Copyright © 2018 Pearson. All rights reserved. 1-61

Java’s Thread Evaluation

• Java’s support for concurrency is relatively
simple but effective

• Not as powerful as Ada’s tasks

Copyright © 2018 Pearson. All rights reserved. 1-62

C# Threads

• Loosely based on Java but there are significant
differences

• Basic thread operations

– Any method can run in its own thread

– A thread is created by creating a Thread object

– Creating a thread does not start its concurrent execution;
it must be requested through the Start method

– A thread can be made to wait for another thread to finish
with Join

– A thread can be suspended with Sleep

– A thread can be terminated with Abort

Copyright © 2018 Pearson. All rights reserved. 1-63

Synchronizing Threads

• Three ways to synchronize C# threads

– The Interlocked class

• Used when the only operations that need to be
synchronized are incrementing or decrementing of
an integer

– The lock statement

• Used to mark a critical section of code in a thread

lock (expression) {… }

– The Monitor class

• Provides four methods that can be used to provide
more sophisticated synchronization

Copyright © 2018 Pearson. All rights reserved. 1-64

C#’s Concurrency Evaluation

• An advance over Java threads, e.g., any
method can run its own thread

• Thread termination is cleaner than in Java

• Synchronization is more sophisticated

Copyright © 2018 Pearson. All rights reserved. 1-65

Statement-Level Concurrency

• Objective: Provide a mechanism that the
programmer can use to inform compiler of
ways it can map the program onto
multiprocessor architecture

• Minimize communication among
processors and the memories of the other
processors

Copyright © 2018 Pearson. All rights reserved. 1-66

High-Performance Fortran

• A collection of extensions that allow the
programmer to provide information to the
compiler to help it optimize code for
multiprocessor computers

• Specify the number of processors, the
distribution of data over the memories of
those processors, and the alignment of
data

Copyright © 2018 Pearson. All rights reserved. 1-67

Primary HPF Specifications

• Number of processors

!HPF$ PROCESSORS procs (n)

• Distribution of data

!HPF$ DISTRIBUTE (kind) ONTO procs ::

identifier_list

– kind can be BLOCK (distribute data to processors
in blocks) or CYCLIC (distribute data to
processors one element at a time)

• Relate the distribution of one array with that
of another
ALIGN array1_element WITH array2_element

Copyright © 2018 Pearson. All rights reserved. 1-68

Statement-Level Concurrency Example

REAL list_1(1000), list_2(1000)

INTEGER list_3(500), list_4(501)

!HPF$ PROCESSORS proc (10)

!HPF$ DISTRIBUTE (BLOCK) ONTO procs ::

list_1, list_2

!HPF$ ALIGN list_1(index) WITH

list_4 (index+1)

…

list_1 (index) = list_2(index)

list_3(index) = list_4(index+1)

Copyright © 2018 Pearson. All rights reserved. 1-69

Statement-Level Concurrency
(continued)

• FORALL statement is used to specify a list
of statements that may be executed
concurrently

FORALL (index = 1:1000)

list_1(index) = list_2(index)

• Specifies that all 1,000 RHSs of the
assignments can be evaluated before any
assignment takes place

Copyright © 2018 Pearson. All rights reserved. 1-70

Summary

• Concurrent execution can be at the instruction,
statement, or subprogram level

• Physical concurrency: when multiple processors are
used to execute concurrent units

• Logical concurrency: concurrent united are
executed on a single processor

• Two primary facilities to support subprogram
concurrency: competition synchronization and
cooperation synchronization

• Mechanisms: semaphores, monitors, rendezvous,
threads

• High-Performance Fortran provides statements for
specifying how data is to be distributed over the
memory units connected to multiple processors

