CONCEPTS OF
PROGRAMMING LANGUAGES

Chapter 13

Concurrency

ISBN 0-321-49362-1

Chapter 13 Topics

- Introduction

- Introduction to Subprogram-Level Concurrency
- Semaphores

- Monitors

- Message Passing

- Ada support for Concurrency

- Java Threads

- C# Threads
- Concurrency in Functional Languages

- Statement-Level Concurrency

Copyright © 2018 Pearson. All rights reserved.

1-2

Introduction

Concurrency can occur at four levels:
- Machine instruction level

- High-level language statement level

- Unit level

- Program level

Because there are no language issues in
instruction- and program-level
concurrency, they are not addressed here

Copyright © 2018 Pearson. All rights reserved. 1-3

Multiprocessor Architectures

- Late 1950s - one general-purpose processor and
one or more special-purpose processors for input
and output operations

- Early 1960s - multiple complete processors, used
for program-level concurrency

- Mid-1960s - multiple partial processors, used for
instruction-level concurrency

- Single-Instruction Multiple-Data (SIMD) machines

. Multiple-Instruction Multiple-Data (MIMD)
machines

- A primary focus of this chapter is shared memory
MIMD machines (multiprocessors)

Copyright © 2018 Pearson. All rights reserved.

Categories of Concurrency

- Categories of Concurrency:

- Physical concurrency - Multiple independent
processors (multiple threads of control)

- Logical concurrency - The appearance of
physical concurrency is presented by time-
sharing one processor (software can be
designed as if there were multiple threads of
control)

- Coroutines (guasi-concurrency) have a

single thread of control/

- A thread of control/in a program is the
sequence of program points reached as
control flows through the program

Copyright © 2018 Pearson. All rights reserved.

1-5

Motivations for the Use of Concurrency

- Multiprocessor computers capable of physical
concurrency are now widely used

- Even if a machine has just one processor, a
program written to use concurrent execution can
be faster than the same program written for
nonconcurrent execution

- Involves a different way of designing software that
can be very useful—many real-world situations
involve concurrency

- Many program applications are now spread over
multiple machines, either locally or over a network

Copyright © 2018 Pearson. All rights reserved. 1-6

Introduction to Subprogram-Level
Concurrency

- A task or process or thread is a program
unit that can be in concurrent execution
with other program units

. Tasks differ from ordinary subprograms in
that:
- A task may be implicitly started

- When a program unit starts the execution of a
task, it is not necessarily suspended

- When a task’s execution is completed, control
may not return to the caller

- Tasks usually work together

Copyright © 2018 Pearson. All rights reserved. 1-7

Two General Categories of Tasks

- Heavyweight tasks execute in their own
address space

. Lightweight tasks all run in the same
address space - more efficient

- A task is disjointif it does not
communicate with or affect the execution
of any other task in the program in any way

Copyright © 2018 Pearson. All rights reserved. 1-8

Task Synchronization

- A mechanism that controls the order in
which tasks execute

- Two kinds of synchronization
- Cooperation synchronization
- Competition synchronization

- Task communication is necessary for

synchronization, provided by:
- Shared nonlocal variables
— Parameters

- Message passing

Copyright © 2018 Pearson. All rights reserved.

1-9

Kinds of synchronization

- Cooperation: Task A must wait for task B to
complete some specific activity before task
A can continue its execution, e.g., the
producer-consumer problem

- Competition: Two or more tasks must use
some resource that cannot be
simultaneously used, e.g., a shared counter

- Competition is usually provided by mutually
exclusive access (approaches are discussed
later)

Copyright © 2018 Pearson. All rights reserved. 1-10

Need for Competition Synchronization

Task A: TOTAL = TOTAL + 1

Task B: TOTAL = 2 * TOTAL
Value of TOTAL 3 %4 6
Task A | | }
Fetch Add 1 Store
TOTAL TOTAL
Task B ; | }
Fetch Multiply Store
TOTAL by 2 TOTAL
Time >

- Depending on order, there could be four different results

Copyright © 2018 Pearson. All rights reserved. 1-11

Scheduler

- Providing synchronization requires a
mechanism for delaying task execution

- Task execution control is maintained by a
program called the scheduler, which maps
task execution onto available processors

Copyright © 2018 Pearson. All rights reserved. 1-12

Task Execution States

- New - created but not yet started

- Ready - ready to run but not currently
running (no available processor)

- Running

. Blocked - has been running, but
cannot now continue (usually waiting
for some event to occur)

- Dead - no longer active in any sense

Copyright © 2018 Pearson. All rights reserved. 1-13

Task Execution States (continued)

Figure 1.3.2

Flow diagram of task
states

Time slice Scheduled

expiration

Input/output
completed

Input/output

Completed

Blocked

Copyright © 2018 Pearson. All rights reserved. 1-14

Liveness and Deadlock

- Liveness is a characteristic that a program
unit may or may not have
- In sequential code, it means the unit will
eventually complete its execution

- In a concurrent environment, a task can
easily lose its liveness

.- If all tasks in a concurrent environment lose
their liveness, it is called dead/ock

Copyright © 2018 Pearson. All rights reserved. 1-15

Design Issues for Concurrency

- Competition and cooperation
synchronization*®

- Controlling task scheduling

- How can an application influence task
scheduling

- How and when tasks start and end
execution

- How and when are tasks created
* The most important issue

Copyright © 2018 Pearson. All rights reserved. 1-16

Methods of Providing Synchronization

- Semaphores
- Monitors
- Message Passing

Copyright © 2018 Pearson. All rights reserved. 1-17

Semaphores

+ Dijkstra - 1965

- A semaphore is a data structure consisting of a
counter and a queue for storing task descriptors

- A task descriptor is a data structure that stores all of the
relevant information about the execution state of the task

- Semaphores can be used to implement guards on
the code that accesses shared data structures

- Semaphores have only two operations, wait and
release (originally called Pand V by Dijkstra)

- Semaphores can be used to provide both
competition and cooperation synchronization

Copyright © 2018 Pearson. All rights reserved. 1-18

Cooperation Synchronization with

Semaphores

- Example: A shared buffer

- The buffer is implemented as an ADT with
the operations DEPOSIT and FETCH as the
only ways to access the buffer

- Use two semaphores for cooperation:
emptyspots and fullspots

- The semaphore counters are used to store
the numbers of empty spots and full spots
in the buffer

1-19

Cooperation Synchronization with
Semaphores (continued)

e« DEPOSIT must first check emptyspots to
see if there is room in the buffer

- If there is room, the counter of emptyspots
is decremented and the value is inserted

- If there is no room, the caller is stored in
the queue of emptyspots

- When DEPOSIT is finished, it must
increment the counter of fullspots

Copyright © 2018 Pearson. All rights reserved. 1-20

Cooperation Synchronization with
Semaphores (continued)

e FETCH must first check fullspots to see if
there is a value

- If there is a full spot, the counter of fullspots
is decremented and the value is removed

- If there are no values in the buffer, the caller
must be placed in the queue of fullspots

- When FETCH is finished, it increments the
counter of emptyspots
- The operations of FETCH and DEPOSIT on
the semaphores are accomplished through
two semaphore operations named wait and
release

Copyright © 2018 Pearson. All rights reserved. 1-21

Semaphores: Wait and Release Operations

walt (aSemaphore)
1f aSemaphore’s counter > 0 then
decrement aSemaphore’s counter
else
put the caller in aSemaphore’s queue
attempt to transfer control to a ready task
-— 1f the task ready queue 1s empty,
—-— deadlock occurs
end

release (aSemaphore)
1f aSemaphore’s queue 1s empty then
increment aSemaphore’s counter
else
put the calling task in the task ready queue
transfer control to a task from aSemaphore’s queue
end

Copyright © 2018 Pearson. All rights reserved. 1-22

Producer and Consumer Tasks

semaphore fullspots, emptyspots;
fullstops.count = 0;
emptyspots.count = BUFLEN;
task producer;
loop
-— produce VALUE —-
walit (emptyspots); {wait for space}
DEPOSIT (VALUE) ;
release(fullspots); {increase filled}
end loop;
end producer;
task consumer;
loop
wait (fullspots);{wait till not empty}}
FETCH (VALUE) ;
release (emptyspots); {increase empty}
—-— consume VALUE --
end loop;
end consumer;

Copyright © 2018 Pearson. All rights reserved.

1-23

Competition Synchronization with
Semaphores

- A third semaphore, named access, is used
to control access (competition
synchronization)

- The counter of access will only have the values
0 and 1

- Such a semaphore is called a binary semaphore
- Note that wait and release must be atomic!

Copyright © 2018 Pearson. All rights reserved. 1-24

Producer Code for Semaphores

semaphore access, fullspots, emptyspots;

access.count = 0;

fullstops.count = 0;

emptyspots.count = BUFLEN;

task producer;
loop
—-— produce VALUE --
walt (emptyspots); {walit for space}
walt (access) ; {walit for access)
DEPOSIT (VALUE) ;
release (access); {relinquish access}
release (fullspots); {increase filled}
end loop;

end producer;

Copyright © 2018 Pearson. All rights reserved. 1-25

Consumer Code for Semaphores

task consumer;

loop
walt (fullspots); {wait ti1ll not empty}
walt (access) ; {walit for access}

FETCH (VALUE) ;
release (access); {relinquish access}
release (emptyspots); {increase empty}
—-— consume VALUE --
end loop;

end consumer;

Copyright © 2018 Pearson. All rights reserved. 1-26

Evaluation of Semaphores

- Misuse of semaphores can cause failures in
cooperation synchronization, e.qg., the
buffer will overflow if the wait of
fullspots is left out

- Misuse of semaphores can cause failures in
competition synchronization, e.g., the
program will deadlock if the release of
access is left out

Copyright © 2018 Pearson. All rights reserved. 1-27

Monitors

- Ada, Java, C#

- The idea: encapsulate the shared data and
Its operations to restrict access

- A monitor is an abstract data type for
shared data

Copyright © 2018 Pearson. All rights reserved. 1-28

Competition Synchronization

- Shared data is resident in the monitor
(rather than in the client units)

- All access resident in the monitor

- Monitor implementation guarantee
synchronized access by allowing only one
access at a time

- Calls to monitor procedures are implicitly
queued if the monitor is busy at the time of the
call

Copyright © 2018 Pearson. All rights reserved. 1-29

Cooperation Synchronization

- Cooperation between processes is still a
programming task

- Programmer must guarantee that a shared
buffer does not experience underflow or
Ove rfl OW Program

ocess
SUB1 ~—
Monitor
cess ns >

SUB2

MM Cw

SUB3 =< |

SUB4

Copyright © 2018 Pearson. All rights reserved. 1-30

Evaluation of Monitors

. A better way to provide competition
synchronization than semaphores

- Semaphores can be used to implement
monitors

- Monitors can be used to implement
semaphores

- Support for cooperation synchronization is
very similar as with semaphores, so it has
the same problems

Copyright © 2018 Pearson. All rights reserved. 1-31

Message Passing

- Message passing is a general model for
concurrency
- It can model both semaphores and monitors
- It is not just for competition synchronization

- Central idea: task communication is like
seeing a doctor--most of the time she
waits for you or you wait for her, but when
you are both ready, you get together, or
rendezvous

Copyright © 2018 Pearson. All rights reserved. 1-32

Message Passing Rendezvous

- To support concurrent tasks with message
passing, a language needs:

— A mechanism to allow a task to indicate when it
Is willing to accept messages

- A way to remember who is waiting to have its

message accepted and some “fair” way of choosing
the next message

- When a sender task’s message is accepted by a
receiver task, the actual message transmission is
called a rena’ezvous

Copyright © 2018 Pearson. All rights reserved. 1-33

Ada Support for Concurrency

- The Ada 83 Message-Passing Model

- Ada tasks have specification and body parts,
like packages; the spec has the interface, which

is the collection of entry points:

task Task Example 1is
entry ENTRY 1 (Item : in Integer);

end Task Example;

Copyright © 2018 Pearson. All rights reserved. 1-34

Task Body

- The body task describes the action that
takes place when a rendezvous occurs

. A task that sends a message is suspended
while waiting for the message to be
accepted and during the rendezvous

- Entry points in the spec are described with
accept clauses in the body

accept entry name (formal parameters) do

end entry name;

Copyright © 2018 Pearson. All rights reserved. 1-35

Example of a Task Body

task body Task Example 1is
begin
loop
accept Entry 1 (Item: in Float) do

end Entry 1;

end loop;

end Task Example;

Copyright © 2018 Pearson. All rights reserved. 1-36

Ada Message Passing Semantics

- The task executes to the top of the accept
clause and waits for a message

- During execution of the accept clause, the
sender is suspended

. accept parameters can transmit information
in either or both directions

- Every accept clause has an associated queue
to store waiting messages

Copyright © 2018 Pearson. All rights reserved. 1-37

Rendezvous Time Lines

Wait at accept Accept Wait at accept
TASK_EXAMPLE --------—-—-—--——-- | oI -
Sends message 41
Continue
SENDER b oo - ! _ -
N ; execution
'
Rendezvous
Time

(a) TASK_EXAMPLE waits for SENDER

Busy Accept IWait at accept

TASK_EXAMPLE

Sends message
and is suspended ’
SENDER o m e m—— - 4o e oo = , :
N , execution

Continue

Y

Rendezvous

Y

Time

(b) SENDER waits for TASK_EXAMPLE
Copyright © 2018 Pearson. All rights reserved. 1-38

Message Passing: Server/Actor Tasks

- A task that has accept clauses, but no other
code is called a server task (the example
above is a server task)

- A task without accept clauses is called an
actor task
- An actor task can send messages to other tasks

- Note: A sender must know the entry name of
the receiver, but not vice versa (asymmetric)

Copyright © 2018 Pearson. All rights reserved. 1-39

Graphical Representation of a

Rendezvous
Task A
accept /
clauses JOBL Task body
JOB2/
B.JOB3 (Value)
Graphical
. Task B
representation of a /
rendezvous caused by a == /
message sent from task /
A totask B JoB4
accept /
clauses

Copyright © 2018 Pearson. All rights reserved. 1-40

Multiple Entry Points

- Tasks can have more than one entry point

- The specification task has an entry clause for
each

- The task body has an accept clause for each
entry clause, placed in a select clause, which is
in a loop

Copyright © 2018 Pearson. All rights reserved. 1-41

A Task with Multiple Entries

task body Teller is

loop

select
accept Drive Up (formal params) do

end Drive Up;

or
accept Walk Up (formal params) do

end Walk Up;

In this task, there are two accept clauses, Walk Up and

end select; Drive Up, each of which has an associated queue. The
end loop; action of the sel.ect, when it is executed, is to examine
the queues associated with the two accept clauses.

end Teller;

Copyright © 2018 Pearson. All rights reserved. 1-42

Semantics of Tasks with Multiple

accept Clauses

- |f exactly one entry queue is nonempty, choose a
message from it

- |If more than one entry queue is nonempty, choose
one, nondeterministically, from which to accept a
message

- If all are empty, wait
- The construct is often called a selective wait

- Extended accept clause - code following the
clause, but before the next clause

- Executed concurrently with the caller

Copyright © 2018 Pearson. All rights reserved. 1-43

Cooperation Synchronization with

Message Passing

- Provided by Guarded accept clauses

when not Full (Buffer) =>

accept Deposit (New Value) do

end

- An accept clause with a with a when clause is either
open or closed

- A clause whose guard is true is called open
- A clause whose guard is false is called c/osed
- A clause without a guard is always open

Copyright © 2018 Pearson. All rights reserved. 1-44

Semantics of select With Guarded
accept Clauses:

. select first checks the guards on all clauses

- |f exactly one is open, its queue is checked for
messages

- |If more than one are open, non-deterministically
choose a queue among them to check for messages

.- If all are closed, it is a runtime error

- A select clause can include an eise clause to avoid
the error

- When the e1se clause completes, the loop
repeats

Copyright © 2018 Pearson. All rights reserved. 1-45

Competition Synchronization with

Message Passing

- Modeling mutually exclusive access to
shared data

- Example--a shared buffer
- Encapsulate the buffer and its operations in
a task

- Competition synchronization is implicit in
the semantics of accept clauses

- Only one accept clause in a task can be active at
any given time

Copyright © 2018 Pearson. All rights reserved. 1-46

Partial Shared Buffer Code

task Burf Task is
entry Deposit(ltem : in Integer);

entry Fetch(Item : out Integer):;
end Buf Task:;

task body Burf Task is

Bufsize : constant Integer := 100;
Buf : array (1. .Bufsize) of Integer:;
Ellled_ : Integer range 0. .Bufsize 1= 0; An example of an Ada task that
ext In,
Next_Out : Integer range 1..Burfsize ::= 1; implements a monitor for
begin a buffer. The buffer behaves very
1°°Pl . much like the buffer in Section
selec
when Filled < Bufsize —> 13.3, in which synchronization is
accept Deposit(Item : in Integer) do controlled with semaphores.
Buf (Next_In) := Item;
end Deposits
Next ITn := (Next ITn mod Bufsize) + 1;
Filled := Filled + 1;
or
when Filled > 0 =>
accept Fetch(Item : out Integser) do
Item := Buf (Next Out):;

end Fetchg;
MNMext_Out ::= (Next_Out mod Bufsize) + 1;
Filled := Filled — 1;
end select;
end loop:;
end Buf_ Task; 1-47

A Producer and Consumer Task

task Producer;

task Consumer;

task body Producer is
New_Value : Integer;

begin

loop
-— produce New_Value --

Buf_ Task.Deposit (New_Value):; The taSkS fOI’ a
end loop;
end Producer; prOducer and d
_ consumer that could
task body Consumer is
Stored Value : Integer; usce Bl],f TaSk

begin
loop
Buf Task.letch(Stored Value);
--— consume Stored Value --
end loop:;
end Consumer;

Copyright © 2018 Pearson. All rights reserved. 1-48

Concurrency in Ada 95

- Ada 95 includes Ada 83 features for
concurrency, plus two new features

- Protected objects: A more efficient way of
implementing shared data to allow access to a
shared data structure to be done without
rendezvous

- Asynchronous communication

- A protected object is not a task; it is more like a
monitor.

Copyright © 2018 Pearson. All rights reserved. 1-49

Ada 95: Protected Objects

- A protected object is similar to an abstract
data type

- Access to a protected object is either
through messages passed to entries, as
with a task, or through protected
subprograms

- A protected procedure provides mutually
exclusive read-write access to protected
objects

- A protected function provides concurrent
read-only access to protected objects

Copyright © 2018 Pearson. All rights reserved. 1-50

A protected object example

protected Buffer is
entry Deposit(Item : in Integer);
entry Fetch(Item : out Integer):;

private The buffer problem that

Bufsize : constant Integer := 100;

But . arra (1..Bufsize) of Integer; : b bt
Filled : Intgger range 0. .Bufsizet:S 0; 1S SOlved Wlth a' taSk 1n
Next In, . .
Next_Out : Integer range 1..Bufsize := 1; the pI’CVIOUS SU.bSCCthI’l
end Buffer; .
can be more simply
protected body Buffer is .
entry Deposit(Item : in Integer) solved with a protected

when Filled < Bufsize is

begin object. Note that this

Buf (Next_In) := Item;
Next In := (Next_ In mod Bufsize) + 1;
Filled := Filled + 1; 63)(211111)163 (1()638

end Deposit:;
entry Fetch(Item : out Integer) when Filled > 0 is

not include protected

begin Item := Buf (Next Out);

Next Out := (Next Out mod Bufsize) + 1; Subprograms-
Filled := Filled - 1;

end Fetch;

end Buffer;

Copyright © 2018 Pearson. All rights reserved. 1-51

Evaluation of the Ada

- Message passing model of concurrency is
oowerful and general

- Protected objects are a better way to
orovide synchronized shared data

n the absence of distributed processors,
the choice between monitors and tasks with

message passing is somewhat a matter of
taste

- For distributed systems, message passing
is a better model for concurrency

Copyright © 2018 Pearson. All rights reserved. 1-52

Java Threads

- The concurrent units in Java are methods named
run

- A run method code can be in concurrent execution with
other such methods

- The process in which the run methods execute is called a
thread

class myThread extends Thread
public void run () {..}

Thread myTh = new MyThread ()
myTh.start () ;

Copyright © 2018 Pearson. All rights reserved. 1-53

Controlling Thread Execution

- The Thread class has several methods to control
the execution of threads

- The yield is a request from the running thread to
voluntarily surrender the processor

- The sleep method can be used by the caller of the
method to block the thread (The sleep method has a single parameter, which

is the integer number of milliseconds that the caller of sleep wants the thread to be blocked.
After the specified number of milliseconds has passed, the thread will be put in the task-ready

queue.

- The j0in method is used to force a method to delay its
execution until the run method of another thread has
completed its execution

public wveoid run{() {

Thread myTh = new Thread/():

myTh.start () -

// do part of the computation of this thread
myTh.Jjoin () : S/ Wait for myTh to complete

// do the rest of the computation of this thread
}

Copyright © 2018 Pearson. All rights reserved. 1-54

Thread Priorities

- A thread’s default priority is the same as
the thread that create it

- If main creates a thread, its default priority is
NORM PRIORITY

- Threads defined two other priority
constants, vax prIorITY and MIN PRIORITY

- The priority of a thread can be changed
with the methods seteriority

Copyright © 2018 Pearson. All rights reserved. 1-55

Semaphores in Java

- The java.util.concurrent.Semaphore package defines the Semaphore
class. Objects of this class implement counting semaphores.

- The Semaphore class defines two methods, acquire and release,

which correspond to the wait and release operations described in
Section 13.3.

The basic constructor for semaphore takes one integer parameter, which initializes the semaphore’s
counter. For example, the following could be used to initialize the fullspots and emptyspots
semaphores for the buffer example of Section 13.3.2:

fullspots = new Semaphore (0);
emptyspots = new Semaphore (BUFLEN) ;

The deposit operation of the producer method would appear as follows:
emptyspots.acquire () ;

deposit (value) ;

fullspots.release ()

Likewise, the fetch operation of the consumer method would appear as follows:
fullspots.acquire() ;

fetch (value) ;

emptyspots.release();

Copyright © 2018 Pearson. All rights reserved. 1-56

Competition Synchronization with Java
Threads

- A method that includes the synchronized

modifier disallows any other method from running
on the object while it is in execution

public synchronized void deposit(int 1)

{..}
public synchronized int fetch() {..}

- The above two methods are synchronized which
prevents them from interfering with each other

- If only a part of a method must be run without

interference, it can be synchronized thru
synchronized Statement

synchronized (expression)
statement

Copyright © 2018 Pearson. All rights reserved. 1-57

Cooperation Synchronization with Java
Threads

- Cooperation synchronization in Java is
achieved via wait, notify, and notifyall
methods

- All methods are defined in 0Object, which is the
root class in Java, so all objects inherit them

- The wait method must be called in a loop

- The notify method is called to tell one
waiting thread that the event it was waiting
has happened

- The notifyAll method awakens all of the
threads on the object’s wait list

Copyright © 2018 Pearson. All rights reserved. 1-58

// Queue

// This class implements a circular gqueue for storing int
// values. It includes a constructor for allocating and
// initializing the queue to a specified size. It has

// synchronized methods for inserting values into and

// removing values from the queue.

class Queue {
private int [] que;
private int nextiIn,
nextout,
filled,
quesize;

Copyright © 2018 Pearson. All rights reserved.

}

public synchronized void deposit (int item)
throws InterruptedException {

try |
while (filled == gqueSize)
wait();
gue [nextlIn] = item;
nextIn = (nextIn % gueSize) + 1;
filled++;

notifyAll ()
} //** end of try clause
catch (InterruptedException &) {}
} //** end of deposit method

public synchronized int fetch()
throws InterruptedException {
int item = 0;
try |
while (filled == 0)
waiti();
item = gue [nextOut];
nextOut = (nextOut % queSize) + 1;
filled--;
notifyAll ()
} //** end of try clause
catch (InterruptedException &) {}
return item;
} //** end of fetch method
//** end of Queue class

class Producer extends Thread {
private Queue buffer;
public Producer (Queue que) {
buffer = qgue;
1
public wvoid run() {
int new item;
while (true) {

/ /== (Croate a3 new item

buffer.deposit(new_1item)
}
}
}

class Consumer extends Thread {

private Queue buffer;

public Consumer (Queue que) |
buffer = que;

}

public void run{() {
int stored item;
while (trus) |

stored item = buffer.fetch();

//-- Consume the stored item
}
}
}

Copyright © 2018 Pearson. All rights reserved.

The following code creates Queue object, and a Broducer and 4
Consurer object, both attached to the Quene object, and starts thei
execution:

Queue buffl = new Queue(100);

Producer producerl = new Producer (buffl);
Consumer consumerl = new Consumer (buffl);
producerl.start();

consumer1.start();

1-60

Java’s Thread Evaluation

- Java’s support for concurrency is relatively
simple but effective

- Not as powerful as Ada’s tasks

Copyright © 2018 Pearson. All rights reserved. 1-61

C# Threads

- Loosely based on Java but there are significant
differences

- Basic thread operations
- Any method can run in its own thread
- A thread is created by creating a Thread object

- Creating a thread does not start its concurrent execution;
it must be requested through the start method

- A thread can be made to wait for another thread to finish
with Join

- A thread can be suspended with Sleep
- A thread can be terminated with Abort

Copyright © 2018 Pearson. All rights reserved. 1-62

Synchronizing Threads

- Three ways to synchronize C# threads

- The Interlocked class

- Used when the only operations that need to be
synchronized are incrementing or decrementing of
an integer

- The lock statement
- Used to mark a critical section of code in a thread
lock (expression) {... }

- The Monitor class

- Provides four methods that can be used to provide
more sophisticated synchronization

Copyright © 2018 Pearson. All rights reserved. 1-63

C#’s Concurrency Evaluation

- An advance over Java threads, e.g., any
method can run its own thread

- Thread termination is cleaner than in Java
- Synchronization is more sophisticated

Copyright © 2018 Pearson. All rights reserved. 1-64

Statement-Level Concurrency

- Objective: Provide a mechanism that the
programmer can use to inform compiler of
ways it can map the program onto
multiprocessor architecture

- Minimize communication among
processors and the memories of the other
processors

Copyright © 2018 Pearson. All rights reserved. 1-65

High-Performance Fortran

- A collection of extensions that allow the
programmer to provide information to the
compiler to help it optimize code for
multiprocessor computers

- Specify the number of processors, the

distribution of data over the memories of
those processors, and the alignment of

data

Copyright © 2018 Pearson. All rights reserved. 1-66

Primary HPF Specifications

- Number of processors
'HPF'S PROCESSORS procs (n)
.- Distribution of data

'HPFS DISTRIBUTE (kind) ONTO procs
identifier_list

- kind can be BLOCK (distribute data to processors
in blocks) or cycrLic (distribute data to
processors one element at a time)

- Relate the distribution of one array with that
of another
ALIGN arrayl_element WITH arrayZ2_element

Copyright © 2018 Pearson. All rights reserved. 1-67

Statement-Level Concurrency Example

REAL list 1(1000), 1list 2(1000)
INTEGER list 3(500), 1list 4(501)
'HPF$ PROCESSORS proc (10)
'HPFS DISTRIBUTE (BLOCK) ONTO procs
list 1, list 2
'HPFS ALIGN list 1(index) WITH
list 4 (index+l)

list 1 (index) = list 2 (i1ndex)
list 3(index) = list 4 (index+l)

Copyright © 2018 Pearson. All rights reserved. 1-68

Statement-Level Concurrency
(continued)

e FORALL statement is used to specify a list
of statements that may be executed
concurrently

FORALL (index = 1:1000)
list 1(index) = list 2 (index)

- Specifies that all 1,000 RHSs of the
assignments can be evaluated before any
assignment takes place

Copyright © 2018 Pearson. All rights reserved. 1-69

Summary

- Concurrent execution can be at the instruction,
statement, or subprogram level

- Physical concurrency: when multiple processors are
used to execute concurrent units

- Logical concurrency: concurrent united are
executed on a single processor

- Two primary facilities to support subprogram
concurrency: competition synchronization and
cooperation synchronization

- Mechanisms: semaphores, monitors, rendezvous,
threads

- High-Performance Fortran provides statements for
specifying how data is to be distributed over the
memory units connected to multiple processors

Copyright © 2018 Pearson. All rights reserved. 1-70

