
ISBN 0-321-49362-1

Chapter 14

Exception Handling
and Event Handling

Copyright © 2018 Pearson. All rights reserved. 1-2

Chapter 14 Topics

• Introduction to Exception Handling

• Exception Handling in C++

• Exception Handling in Java

• Exception Handling in Python and Ruby

• Introduction to Event Handling

• Event Handling in Java

• Event Handling in C#

Copyright © 2018 Pearson. All rights reserved. 1-3

Introduction to Exception Handling

• In a language without exception handling

– When an exception occurs, control goes to the
operating system, where a message is displayed
and the program is terminated

• In a language with exception handling

– Programs are allowed to trap some exceptions,
thereby providing the possibility of fixing the
problem and continuing

Copyright © 2018 Pearson. All rights reserved. 1-4

Basic Concepts

• Many languages allow programs to trap
input/output errors (including EOF)

• An exception is any unusual event, either
erroneous or not, detectable by either hardware or
software, that may require special processing

• The special processing that may be required after
detection of an exception is called exception
handling

• The exception handling code unit is called an
exception handler

Copyright © 2018 Pearson. All rights reserved. 1-5

Exception Handling Alternatives

• An exception is raised when its associated event occurs

• A language that does not have exception handling
capabilities can still define, detect, raise, and handle
exceptions (user defined, software detected)
– Alternatives:

• Send an auxiliary parameter or use the return value to indicate the
return status of a subprogram

• Pass a label parameter to all subprograms (error return is to the
passed label)

• Pass an exception handling subprogram to all subprograms

Example : Fortran Read

Read(Unit=5, Fmt=1000, Err=100, End=999) Weight

The Err clause specifies that control is to be transferred to the statement labeled 100 if an error occurs
in the read operation. The End clause specifies that control is to be transferred to the statement labeled
999 if the read operation encounters the end of the file. So, Fortran uses simple branches for both input
errors and end-of-file.

Copyright © 2018 Pearson. All rights reserved. 1-6

Advantages of Built-in Exception
Handling

• Error detection code is tedious to write and
it clutters the program

• Exception handling encourages
programmers to consider many different
possible errors

• Exception propagation allows a high level
of reuse of exception handling code

Copyright © 2018 Pearson. All rights reserved. 1-7

Design Issues

• How and where are exception handlers
specified and what is their scope?

• How is an exception occurrence bound to
an exception handler?

• Can information about the exception be
passed to the handler?

• Where does execution continue, if at all,
after an exception handler completes its
execution? (continuation vs. resumption)

• Is some form of finalization provided?

Copyright © 2018 Pearson. All rights reserved. 1-8

Design Issues (continued)

• How are user-defined exceptions specified?

• Should there be default exception handlers
for programs that do not provide their own?

• Can predefined exceptions be explicitly
raised?

• Are hardware-detectable errors treated as
exceptions that can be handled?

• Are there any predefined exceptions?

• How can exceptions be disabled, if at all?

Copyright © 2018 Pearson. All rights reserved. 1-9

Exception Handling Control Flow

Copyright © 2018 Pearson. All rights reserved. 1-10

Exception Handling in C++

• Added to C++ in 1990

• Design is based on that of CLU, Ada, and
ML

Copyright © 2018 Pearson. All rights reserved. 1-11

C++ Exception Handlers

• Exception Handlers Form:
try {

-- code that is expected to raise an exception
}

catch (formal parameter) {

-- handler code

}

...

catch (formal parameter) {

-- handler code

}

Copyright © 2018 Pearson. All rights reserved. 1-12

The catch Function

• catch is the name of all handlers--it is an
overloaded name, so the formal parameter
of each must be unique

• The formal parameter need not have a
variable
– It can be simply a type name to distinguish the

handler it is in from others

• The formal parameter can be used to
transfer information to the handler

• The formal parameter can be an ellipsis, in
which case it handles all exceptions not yet
handled

Copyright © 2018 Pearson. All rights reserved. 1-13

Throwing Exceptions

• Exceptions are all raised explicitly by the
statement:

throw [expression];

• The brackets are metasymbols

• A throw without an operand can only
appear in a handler; when it appears, it
simply re-raises the exception, which is
then handled elsewhere

• The type of the expression disambiguates
the intended handler

Copyright © 2018 Pearson. All rights reserved. 1-14

Unhandled Exceptions

• An unhandled exception is propagated to
the caller of the function in which it is
raised

• This propagation continues to the main
function

• If no handler is found, the default handler
is called

Copyright © 2018 Pearson. All rights reserved. 1-15

Continuation

• After a handler completes its execution,
control flows to the first statement after
the last handler in the sequence of
handlers of which it is an element

• Other design choices
– All exceptions are user-defined

– Exceptions are neither specified nor declared

– The default handler, unexpected, simply
terminates the program; unexpected can be
redefined by the user

– Functions can list the exceptions they may raise

– Without a specification, a function can raise any
exception (the throw clause)

Copyright © 2018 Pearson. All rights reserved. 1-16

Evaluation

• There are no predefined exceptions

• It is odd that exceptions are not named and
that hardware- and system software-
detectable exceptions cannot be handled

• Binding exceptions to handlers through the
type of the parameter certainly does not
promote readability

Copyright © 2018 Pearson. All rights reserved. 1-17

Exception Handling in Java

• Based on that of C++, but more in line with
OOP philosophy

• All exceptions are objects of classes that
are descendants of the Throwable class

Java Keywords

Copyright © 2018 Pearson. All rights reserved. 1-18

Keyword Description

try The "try" keyword is used to specify a block where we
should place exception code. The try block must be
followed by either catch or finally. It means, we can't
use try block alone.

catch The "catch" block is used to handle the exception. It
must be preceded by try block which means we can't
use catch block alone. It can be followed by finally
block later.

finally The "finally" block is used to execute the important
code of the program. It is executed whether an
exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It
doesn't throw an exception. It specifies that there may
occur an exception in the method. It is always used
with method signature.

Try-Catch-Finally-Throws-Throw

1-19

Copyright © 2018 Pearson. All rights reserved. 1-20

Classes of Exceptions

• The Java library includes two subclasses of
Throwable :

– Error

• Thrown by the Java interpreter for events such as heap
overflow

• Never handled by user programs

– Exception

• User-defined exceptions are usually subclasses of this

• Has two predefined subclasses, IOException and
RuntimeException (e.g.,
ArrayIndexOutOfBoundsException and
NullPointerException

Copyright © 2018 Pearson. All rights reserved. 1-21

Java Exception Handlers

• Like those of C++, except every catch
requires a named parameter and all
parameters must be descendants of
Throwable

• Syntax of try clause is exactly that of C++

• Exceptions are thrown with throw, as in
C++, but often the throw includes the new
operator to create the object, as in:

throw new MyException();

Copyright © 2018 Pearson. All rights reserved. 1-22

Binding Exceptions to Handlers

• Binding an exception to a handler is
simpler in Java than it is in C++

– An exception is bound to the first handler with a
parameter is the same class as the thrown
object or an ancestor of it

• An exception can be handled and rethrown
by including a throw in the handler (a
handler could also throw a different
exception)

Copyright © 2018 Pearson. All rights reserved. 1-23

Continuation

• If no handler is found in the try construct, the
search is continued in the nearest enclosing try
construct, etc.

• If no handler is found in the method, the exception
is propagated to the method’s caller

• If no handler is found (all the way to main), the
program is terminated

• To insure that all exceptions are caught, a handler
can be included in any try construct that catches
all exceptions

– Simply use an Exception class parameter

– Of course, it must be the last in the try construct

Copyright © 2018 Pearson. All rights reserved. 1-24

Checked and Unchecked Exceptions

• The Java throws clause is quite different
from the throw clause of C++

• Exceptions of class Error and
RunTimeException and all of their
descendants are called unchecked
exceptions; all other exceptions are called
checked exceptions

• Checked exceptions that may be thrown by
a method must be either:
– Listed in the throws clause, or

– Handled in the method

Copyright © 2018 Pearson. All rights reserved. 1-25

Other Design Choices

• A method cannot declare more exceptions in its
throws clause than the method it overrides

• A method that calls a method that lists a particular
checked exception in its throws clause has three
alternatives for dealing with that exception:

– Catch and handle the exception

– Catch the exception and throw an exception that is listed
in its own throws clause

– Declare it in its throws clause and do not handle it

Copyright © 2018 Pearson. All rights reserved. 1-26

The finally Clause

• Can appear at the end of a try construct

• Form:

finally {

...

}

• Purpose: To specify code that is to be
executed, regardless of what happens in
the try construct

Copyright © 2018 Pearson. All rights reserved. 1-27

Example

• A try construct with a finally clause can be used
outside exception handling

try {

for (index = 0; index < 100; index++) {

…
if (…) {

return;

} //** end of if

} //** end of try clause

finally {

…
} //** end of try construct

Copyright © 2018 Pearson. All rights reserved. 1-28

Assertions

• Statements in the program declaring a boolean
expression regarding the current state of the
computation

• When evaluated to true nothing happens

• When evaluated to false an AssertionError
exception is thrown

• Can be disabled during runtime without program
modification or recompilation

• Two forms

– assert condition;

– assert condition: expression;

Copyright © 2018 Pearson. All rights reserved. 1-29

Evaluation

• The types of exceptions makes more sense
than in the case of C++

• The throws clause is better than that of
C++ (The throw clause in C++ says little to
the programmer)

• The finally clause is often useful

• The Java interpreter throws a variety of
exceptions that can be handled by user
programs

Exception Handling in Python

• Exceptions are objects; the base class is
BaseException

• All predefined and user-defined exceptions
are derived from Exception

• Predefined subclasses of Exception are
ArithmeticError (subclasses are OverflowError,
ZeroDivisionError, and FloatingPointError) and
LookupError (subclasses are IndexError and
KeyError)

Copyright © 2018 Pearson. All rights reserved. 1-30

Exception Handling in Python
(continued)

try:

- The try block

except Exception1:

- Handler for Exception1

except Exception2:

- Handler for Exception2

...

else:

- The else block (no exception is raised)

finally:

- the finally block (do it no matter what)

Copyright © 2018 Pearson. All rights reserved. 1-31

Exception Handling in Python
(continued)

• Handlers handle the named exception plus
all subclasses of that exception, so if the
named exception is Exception, it handles all
predefined and user-defined exceptions

• Unhandled exceptions are propagated to
the nearest enclosing try block; if no
handler is found, the default handler is
called

• Raise IndexError creates an instance
• The raised exception object can be gotten:

except Exception as ex_obj:

Copyright © 2018 Pearson. All rights reserved. 1-32

Exception Handling in Python
(continued)

• The assert statement tests its Boolean
expression (first parameter) and sends its
second parameter to the constructor for the
exception object to be raised

assert test, data

Copyright © 2018 Pearson. All rights reserved. 1-33

Exception Handling in Ruby

• Exceptions are objects

• There are many predefined exceptions

• All exceptions that are user handled are
either StandardError class or a subclass of it

• StandardError is derived from Exception, which
has two methods, message and backtrace

• Exceptions can be raised with raise, which
often has the form:

raise ″bad parameter″ if count == 0

Copyright © 2018 Pearson. All rights reserved. 1-34

Exception Handling in Ruby (continued)

• Handlers are placed at the end of a begin-
end block of code; introduced by rescue

begin

- Statements in the block

rescue

- Handler

end

• The block could include else and/or ensure
clauses, which are like else and finally in
Java

Copyright © 2018 Pearson. All rights reserved. 1-35

Exception Handling in Ruby (continued)

• Unlike the other languages we have
discussed, in Ruby the code that raised an
exception can be rerun by placing a retry
statement at the end of the handler

Copyright © 2018 Pearson. All rights reserved. 1-36

Copyright © 2018 Pearson. All rights reserved. 1-37

Introduction to Event Handling

• An event is a notification that something
specific has occurred, such as a mouse
click on a graphical button

• The event handler is a segment of code that
is executed in response to an event

Copyright © 2018 Pearson. All rights reserved. 1-38

Java Swing GUI Components

• Text box is an object of class JTextField

• Radio button is an object of class JRadioButton

• Applet’s display is a frame, a multilayered
structure

• Content pane is one layer, where applets put
output

• GUI components can be placed in a frame

• Layout manager objects are used to control the
placement of components

Copyright © 2018 Pearson. All rights reserved. 1-39

The Java Event Model

• User interactions with GUI components
create events that can be caught by event
handlers, called event listeners

• An event generator tells a listener of an
event by sending a message

• An interface is used to make event-
handling methods conform to a standard
protocol

• A class that implements a listener must
implement an interface for the listener

Copyright © 2018 Pearson. All rights reserved. 1-40

The Java Event Model (continued)

• One class of events is ItemEvent, which is
associated with the event of clicking a
checkbox, a radio button, or a list item

• The ItemListener interface prescribes a
method, itemStateChanged, which is a
handler for ItemEvent events

• The listener is created with addItemListener

Example

Copyright © 2018 Pearson. All rights reserved. 1-41

Event Handling in C#

• Event handling in C# (and the other .NET
languages) is similar to that in Java

• .NET has two approaches, Windows Forms and
Windows Presentation Foundation—we cover only
the former (which is the original approach)

• An application subclasses the Form predefined class
(defined in System.Windows.Forms)

• There is no need to create a frame or panel in
which to place the GUI components

• Label objects are used to place text in the window

• Radio buttons are objects of the RadioButton class

Copyright © 2018 Pearson. All rights reserved. 1-42

Event Handling in C# (continued)

• Components are positioned by assigning a
new Point object to the Location property of
the component

private RadioButton plain = new RadioButton();

plain.Location = new Point(100, 300);

plain.Text = ″Plain″;

controls.Add(plain);

• All C# event handlers have the same
protocol, the return type is void and the two
parameters are of types object and EventArgs

Copyright © 2018 Pearson. All rights reserved. 1-43

Event Handling in C# (continued)

• An event handler can have any name

• A radio button is tested with the Boolean
Checked property of the button

private void rb_CheckedChanged (object o,

EventArgs e) {

if (plain.Checked) …

...

}

• To register an event, a new EventHandler
object must be created and added to the
predefined delegate for the event

Copyright © 2018 Pearson. All rights reserved. 1-44

Event Handling in C# (continued)

• When a radio button changes from
unchecked to checked, the CheckedChanged
event is raised

• The associated delegate is referenced by
the name of the event

• If the handler was named rb_CheckedChanged,
we could register it on the radio button
named plain with:

plain.CheckedChanged +=

new EventHandler (rb_CheckedChanged);

Copyright © 2018 Pearson. All rights reserved. 1-45

Copyright © 2018 Pearson. All rights reserved. 1-46

Summary

• Ada provides extensive exception-handling facilities with a
comprehensive set of built-in exceptions.

• C++ includes no predefined exceptions

• Exceptions are bound to handlers by connecting the type of
expression in the throw statement to that of the formal
parameter of the catch function

• Java exceptions are similar to C++ exceptions except that a
Java exception must be a descendant of the Throwable class.
Additionally Java includes a finally clause

• An event is a notification that something has occurred that
requires handling by an event handler

• Java event handling is defined on the Swing components

• C# event handling is the .NET model, which is similar to the
Java model

