Chapter 3

Describing Syntax
and Semantics

Introduction

We usually break down the problem of defining a
programming language into two parts.

* Defining the PL’s syntax

* Defining the PL’s semantics

Syntax - the form or structure of the expressions,
statements, and program units

Semantics - the meaning of the expressions,
statements, and program units.

The boundary between the two Is not always clear.

COME 214

COME 214

Why and How

Why? We want specifications for several
communities:
 Other language designers
 Implementors

» Programmers (the users of the language)

How? One way Is via natural language descriptions
(e.g., users’ manuals, textbooks) but there are a
number of techniques for specifying the syntax and
semantics that are more formal.

Syntax Overview

« Language preliminaries
» Context-free grammars and BNF
» Syntax diagrams

COME 214

Introduction

A sentence Is a string of characters over some
alphabet.

A language Is a set of sentences.

A lexeme Is the lowest level syntactic unit of a
language (e.g., *, sum, begin).

A token Is a category of lexemes (e.g., identifier).

Formal approaches to describing syntax:

1. Recognizers - used in compilers

2. Generators - what we'll study

COME 214

L_exical Structure of

Programming Languages

» The structure of its lexemes (words or tokens)
— token is a category of lexeme

 The scanning phase (lexical analyser) collects characters into
tokens

 Parsing phase (syntactic analyser) determines (validity of)

tokens and
values

ntactic structure

S
Stream of
characters

>

B

lexical
analyser

I

Result of
parsing

Syntactic
analyser

COME 214

Regular Expressions

The lexemes of a programming languages are
described formally by the use of regular
expressions, where there are 3 operations,
concatentation, repetition and selection:

- alb denotesaor b.

- ab denotes a followed by b

- (ab)* denotes a followed by b zero or more times
- (alp)c denotes a or b followed by c

10

COME 214

Extending Regular Expressions

. There are other operators that we can add to

regular expression notations that make them
easier to write:

« [a-z] any character from a through z
e r+ ONe or more occurrences of r

« 2 An optional term

« . Any one character

Examples

« [0-9]+ describes an integer

e [0-9]+(\.[0-9]+)? describes an unsigned
real

11

COME 214

What Is A Grammar?

« The grammar of a language is expressed formally as
G=(T, N, S, P) where

T is a set of terminals (the basic, atomic symbols of a
language).

N Is a set of nonterminals (symbols which denote
particular arrangements of terminals).

S Is the start symbol (a special nonterminal which denotes
the program as a whole).

P is the set of productions (rules showing how terminals

and nonterminal can be arranged to form other
nonterminals.

12

Grammars

Context-Free Grammars (CFG)

« Context-Free grammars are grammars where non-terminals
(collections of tokens in a language) always are deconstructed the
same way, regardless of the context in which they are used.

» Developed by Noam Chomsky in the mid-1950s.

 Language generators, meant to describe the syntax of natural
languages.

A context-free grammar (CFG) Is a formal grammar whose
production rules are of the form
A2

with A a single nonterminal symbol, and o a string of terminals
and/or nonterminals (o. can be empty).

 Define a class of languages called context-free languages.

COME 214

13

— Base cases
1. P— A
2. P—a
3. P—bDb

— Recursion
4. P — aPa
5. P — bPb

Comyputar Science Theorv

COME 214

COME 214

CFG

Back to CS Theory

* Building the palindrome abba using
gramimar
« P— aPa (Rule 4)
« P — abPba (Rule 5)
« P — abAba (Rule 1)
* P = abba

Conmputer Science Theory

15

COME 214

CFG

Context Free Grammars

Let’s redefine gramumars for CS Theory use:

Terminals = Set of symbols that form the strings of
the language being defined

Wariables = Set of syvimbols representing categories

Start Svinbol = variable that represents the ““base
category”” that defines our language

Production rules = set of rules that recursively define
the language

Computer Science Theory

16

COME 214

CFG

Context Free Grammars

* Production Rules
— Ofthe form A — B

* A is a variable
* B is a string, combining terminals and variables
* To apply a rule. replace an occurance of A with the

string B.

Computer Science Theory

17

COME 214

CFG

Context Free Grammars

« Let’s formalize this a bait:
— A context free grammar (CFG) 1s a 4-tuple: (V.
>. S. P) where
*« W is a set of variables
« X 1s a set of terminals
« WV and X are disjoint (i.e. V ./ L = 7))
« S =WV, is your start symbol

Computer Science Theory

18

COME 214

CFG

Context Free Grammars

» T et’s formalize this a bit:

— Production rules
+ Of the form A — [where
— A=V
— B = (W ?2) stning with symbols from V and 3

+ We say that v can be derived from o in one step:

— A — [isarmle

— o= A o,
- -I'l. - I:E_ -3 I:E:
—_ ,:]-_ — -I_.-

Copypuater Serence Theorwy

19

COME 214

CFG

Example

 Find a CFG to describe:

—L={xe {0.1}7 | ng(x) =n,(x)}
eSS A (1)
« S 081 (2)
« S 1S0 (3)
+S >SS (4

«+S > A|0S1|1S0|SS

Computer Science Theory

20

COME 214

CFG

Example

* Let’s derive a string from L

— 00110110
— S = 5SS rule 4
— 0S1 SS rules 2. 4

— 00S11 0S11S0 mles 2.2.3
— 00A11 OAT1IAOD mle 1
= 00110110

Copputer Science Theory

21

COME 214

CFG

Another example

* Find a CFG to describe:
— L = {atbick | 1=k}

« Number of a’s equals the number of ¢’s with any
number of b's between them

* Use variable B to represent by

* Every time you add ‘a’ to the left of B you need to
add ‘¢’ to the right.

Computer Sorence Theory

22

COME 214

CFG

Another example

« Find a CFG to describe:

— L = {abck|i=k}
S > B (1)
* S —aSc (2)
« B— bB (3)
« B — A (4)
— Can also write as
« S — B |aSc
* B—-D0DB | A

Conmpuater Science Theory

23

COME 214

CFG

Another example

- Let’s derive a string from L: aabbbcc
— S = aSc

o

wwnnnn

U

aascc
— aaBcc

— aabBcc
— aabbBcc
— aabbbBcc
—> aabbbAcc
= aabbbcc

mle 2
mle 2
mle 1
mle 3
mle 3
mile 3
rle 4

Computer Science Theory

24

COME 214

CFG

One more example

* Defining the grammar for algebraic
eXPressions:
— Let a = a numeric constant
— Set of binary operators = {+. -. *. /}
— Expressions can be parenthesized

Coneputer Soience Theory

25

COME 214

CFG

One more example

* Defining the grammar for algebraic
eXPressions:
—G=(V.Z. 5. P)

— V=S
—X={a -+ " L0);
— S5 =35

— P = see next shide

Computer Sorence Theorw

26

COME 214

CFG

One more example

* Defining the grammar for algebraic
expressions — Production rules

— S —>8+S (1)
S—- S-S (2)
S—>S*8 (3)
S—-S/S (4)
S — (5) (5)
S —>a (6)

Compuater Science Theorw

27

COME 214

CFG

One more example

Show derivation fora +{(a *a)/ a

— S=8+8 rmle 1
S—a—+=5s mle 6
S—a+5s5/85 rule 4
S—=a+(S)/S rile 5
S—=a+(S*TS)/8 mle 3
S—a+(a*S8)/8 mle 6
S—a-+(a*a)/s rle 6
S—a-+(a*a) a rule 6

Computer Science Theory

28

Another Example

(atmt)
if { { Expry) Lt
{Expr} (Optr} (Expr)
T
x (Optr}
> (Expr)
ETTITY
g {5ttt}
(Stmt) — (Id} = (Expr) ; ; (StmtList)
(Stmt) = { (StmtList) | {StmtList)} | (Stmt)
iStmt) = if ((Expr) } (Stmt) TSt '
{stmtList) — (Stmt)) - |:|'-'_:..J|::.|-': ;
(StmtList) — (StmtList) (Stmt) - -f[".h'plii
(Expr} —+ (Id) {Num)
(Expr) — (Num) 0 Stmt)
tExpr) — (Expr) (Optr} (Expr) T} = TExpr
(ld) — x TI -:.]'::'-:].ILE:
_H'l:' r ¥ tbkxpr) (Optr) {Expr)
(MNum) — 0 {1
(Num) — 1 T 1Optr)
pNMum) — 9 v { Expr)
{Optr) = > Num)
Optz) —» + if{ x » 8 3{=x= 0 3=y + 1 ;}

Simplified excerpt of the formal grammar for the C programming language (left), and a
derivation of a piece of C code (right) from the nonterminal symbol . Nonterminal and
terminal symbols are shown in blue and red, respectively.

COME 214

COME 214

CFG

Practical uses for grammars
* How a compiler works

Stream Parse
of tokens
Tree

Object
code

Source
file iR

Computer Science Theory

30

COME 214

BNF
Backus Normal/Naur Form (1959)

Invented by John Backus to describe Algol 58 and refined by Peter Naur for

Algol 60.
*BNF is equivalent to context-free grammars

- A metalanguage is a language used to describe another language.

- In BNF, abstractions are used to represent classes of syntactic
structures--they act like syntactic variables (also called
nonterminal symbols), e.g.

<while stmt> ::= while <logic expr> do <stmt>

- This Is a rule which describes the structure of a while statement.
Which symbols are nonterminals?

31

BNF

* Arule has a left-hand side (LHS) which is a single non-
terminal symbol and a right-hand side (RHS), one or more
terminal or nonterminal symbols.

« A grammar Is a 4-tuple containing a set of tokens, a set of
nonterminals, a designated nonterminal start symbol, and a
finite nonempty set of rules

* A non-terminal symbol 1s “defined” by one or more rules.

« Multiple rules can be combined with the | symbol so that
<stmts> ::= <stmt>
<stmts> ::= <stmnt> ; <stmnts>

IS equivalent to
<stmts> ::= <stmt> | <stmnt> ; <stmnts>

COME 214

BNF

Syntactic lists are described in BNF using
recursion

<ident_list> -> i1dent

| ident, <ident list>

A derivation Is a repeated application of rules,
starting with the start symbol and ending with a
sentence (all terminal symbols)

33

COME 214

Here is an example of a simple grammar for a subset of English.
A sentence Is noun phrase and verb phrase followed by a period.

<sentence>
<noun-phrase>
<article>
<noun>
<verb-phrase>
<verb>

BNF Example

<noun-phrase><verb-phrase>.
<article><noun>

a | the

man | apple | worm | penguln
<verb> | <verb><noun-phrase>

eats | throws | sees | 1s

34

COME 214

Derivation using BNF

<sentence> -> <noun-phrase><verb-phrase>.

<article><noun><verb_phrase>.

t
t
t
t
t
t
t

ne<noun><verb_phrase>.
ne man <verb_phrase>.

ne man <verb><noun-phrase>.

ne man eats <noun-phrase>.

he man eats <article> < noun>.

ne man eats the <noun>.

ne man eats the apple.

35

COME 214

Another BNF Example

<program> -> <stmts> Note: There is some
variation in notation

<stmts> -> <stmt> for BNF grammars.
| <stmt> ; <stmts> Here we are using ->

in the rules instead of
<stmt> -> <var> = <expr> e

<var> -> a | b | ¢ | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

Here I1s a derivation:
<program> => <stmts> => <stmt>
=> <var> = <expr> => a = <expr>

=> a = <term> + <term>
=> a = <var> + <term>
=> a = b + <term>

=> a = b + const

36

Derivatior

Every string of symbols In the derivation is a
sentential form.

A sentence Is a sentential form that has only
terminal symbols.

A leftmost derivation iIs one in which the
leftmost nonterminal In each sentential form is

the one that Is expanded.

A derivation may be neither leftmost nor

rightmost (or something else)
37

Parse Tree

A parse tree is a hierarchical representation of
a derivation <rogram

<stmts>

<var> = <expr>

| /l\

a <term> + <term>

<var> const

COME 214

38

COME 214

Another Parse Tree

W

<sentence>

<verb_phrase>

/\

<article> <noTn> <verb> <noun-phrase>
the man ke /\
<art’1cle> <IIOITn>
the apple

39

Grammar

A grammar Is ambiguous If and only if it
generates a sentential form that has two or
more distinct parse trees.

Ambiguous grammars are, in general,
undesirable in formal languages.

We can usually eliminate ambiguity by
revising the grammar.

40

COME 214

Grammar

Here Is a simple grammar for expressions. This grammar is
ambiguous

<expr> -> <expr> <op> <expr>
<expr> -> int
<op> -> +|-|*|/

The sentence 1+2*3 can lead to two different parse trees
corresponding to 1+(2*3) and (1+2)*3

41

Grammar

Issue of Ambiguity
« A grammar is ambiguous if there exists a string which gives rise to more

than one parse tree.

Most common cause is due to infix binary operations.

COME 214

Grammar

<expr> ::= <num> | <expr>— <expr>

1-2-3

String

<expr>

/1N |

<expr> <num>

<num>

Parse

Which One?

<expr> = —

| /1N

<num> <expr> = —

<num>

Different Parse Trees,
Different Meaning!

2 3
1-(2-3)

42

COME 214

Grammar

If we use the parse tree to indicate precedence
levels of the operators, we cannot have
ambiguity.

An unambiguous expression grammar:

<expr> -> <expr> - <term> | <term>

<term> -> <term> / const | const

<ex

<exprp - jﬁfﬁgﬁ\\\\\\\\

<termp> <term> / const

const const

43

COME 214

Grammar (continued)

<expr> => <expr> - <term> => <term> - <term>
=> const - <term>

=> const - <term> / const

=> const - const / const

Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (@mbiguous)
<expr> -> <expr> + const | const GJnanﬂﬂguous)

’fsgggz\\\ + const

<ex$r> + const

const

44

COME 214

An Expression Grammar

Here’s a grammar to define simple arithmetic expressions over

variables and numbers.

EXp ;= num

Exp ::=1d

Exp ::= UnOp Exp
Exp := Exp BinOp Exp

Exp ::="(Exp’)
UnOp ::= "'+
UnOp ::="-

BinOp ::= '+ | ' | ™' | '/

Here's another common
notation variant where
single quotes are used to
Indicate terminal symbols
and unquoted symbols are
taken as non-terminals.

45

Here’s a derivation of a+b*2 using the expression grammar:

COME 214

Exp BinOp Exp =>

1d * num

Exp =>
1d BinOp
id + Exp
id + Exp
id + Exp
id +
id +
a + b

Exp =>

=>

A derivation

//
//
//
//

BinOp Exp => //
BinOp num => //
id BinOp num => //

* 2

ExXp
ExXp
BinOp
ExXp
Exp
Exp
B1inOp

Exp BinOp Exp

Exp BinOp Exp
num
1d

L g |

46

COME 214

A parse tree

A parse tree for a+b*2:

Exp BinOp ExXp
| | /] \
identifier + Exp BinOp Exp
| | |

ldentifier * number

47

Precedence

« Precedence refers to the order in which operations are evaluated. The
convention is: exponents, mult div, add sub.

« Deal with operations in categories: exponents, mulops, addops.
Here’s a revised grammar that follows these conventions:

Exp ::= Exp AddOp Exp
Exp ::= Term

Term ::= Term MulOp Term
Term ::= Factor

Factor ::= '"(' + Exp + ")
Factor ::= num | 1d
AddOp ::= "+'" | '-'

MulOp ::= '"*' | '"/"

COME 214

Assoclativity

 Associativity refers to the order in which two of the same operation
should be computed

— 3+4+5 = (3+4)+5, left associative (all BinOps)
— 3MN5 = 37N(4M5), right associative

— 'if x then if x then y else y' ="if x then (if X then y else y)', else associates with closest
unmatched if (matched if has an else)

« Adding associativity to the BinOp expression grammar

Exp ::= Exp AddOp Term
Exp ::= Term

Term ::= Term MulOp Factor
Term ::= Factor

Factor ::= '"(' Exp '")'
Factor ::= num | id

AddOp ::= "+' | '-!

MulOp ::= '*' | '/°

COME 214

COME 214

Another example: conditionals

Goal: to create a correct grammar for conditionals.

It needs to be unambiguous and the precedence is else with
nearest unmatched if.

Statement ::= Conditional | 'whatever'
Conditional ::= '"if' test 'then' Statement 'else' Statement
Conditional ::= 'if' test 'then' Statement

The grammar is ambiguous. The first Conditional allows
unmatched 'if's to be Conditionals.

If test then (if test then whatever else whatever) = correct

If test then (if test then whatever) else whatever = incorrect
The final unambiguous grammar.

Statement ::= Matched | Unmatched
Matched ::= '"if' test 'then' Matched 'else' Matched | 'whatever'
Unmatched ::= '"if' test 'then' Statement

| '"if' test 'then' Matched else Unmatched

50

COME 214

Extended BNF

eSyntactic sugar: doesn’t extend the expressive power of the
formalism, but does make It easier to use.

*Optional parts are placed in brackets ([])
<proc_call> -> ident [(<expr_list>)]

Put alternative parts of RHSs in parentheses and
separate them with vertical bars

<term> -> <term> (+ | -) const
Put repetitions (0 or more) in braces ({})

<ident> -> |etter {letter | digit}

ol

COME 214

BNF:

<expr>

<term>

EBNF:

<exXpr>

<term>

BNF

-> <expr> + <term>

| <expr> - <term>

| <term>

—> <term> * <factor>

| <term> / <factor>

| <factor>

-> <term> { (+ |

-> <factor> {(*

-)
|

<term>}

/)

<factor>}

52

Syntax Graphs

Syntax Graphs - Put the terminals in circles or ellipses and
put the nonterminals in rectangles; connect with lines with
arrowheads

e.g., Pascal type declarations

» type identifier

A
__*<]> 3 » identifier ><z>___

(D&
L «

v

» constant > . . > » constant

COME 214 53

COME 214

Parsing

« A grammar describes the strings of tokens that are
syntactically legal ina PL

A recogniser simply accepts or rejects strings.
A parser constructs a derivation or parse tree.

 Two common types of parsers:

— bottom-up or data driven
— top-down or hypothesis driven
A recursive descent parser is a way to implement a

top-down parser that is particularly simple.

54

Recursive Descent Parsing

« Each nonterminal in the grammar has a
subprogram assoclated with it; the
subprogram parses all sentential forms that
the nonterminal can generate

* The recursive descent parsing subprograms
are built directly from the grammar rules

 Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars (why not?)

55

COME 214

Recursive Descent Parsing Example
Example: For the grammatr:

<term> -> <factor> {(*|/)<factor>}

We could use the following recursive
descent parsing subprogram (this one Is
written in C)

volid term () {
factor () ; /* parse first factor*/
while (next token == ast code ||
next token == slash code) {
lexical(); /* get next token */
factor () ; /* parse next factor */

}
}

56

Semantics

Semantics Overview

 Syntax 1s about “form” and semantics about
“meaning”.

 The boundary between syntax and semantics is not
always clear.

* First we’ll look at issues close to the syntax end,
what Sebesta calls “static semantics”, and the
technique of attribute grammars.

* Then we’ll sketch three approaches to defining

“deeper” semantics

— Operational semantics
— Axiomatic semantics
— Denotational semantics

COME 214

58

COME 214

Static Semantics

Static semantics covers some language features that

are difficult or impossible to handle in a BNF/CFG.

It Is also a mechanism for building a parser which

produces a “a

pstract syntax tree” of its input.

Categories attri

pute grammars can handle:

 Context-free but cumbersome (e.g. type

checking)

« Noncontext-free (e.g. variables must be
declared before they are used)

59

Attribute Grammars

Attribute Grammars (AGs) (Knuth, 1968)
» CFGs cannot describe all of the syntax of
programming languages
 Additions to CFGs to carry some
“semantic” info along through parse trees

Primary value of AGs:
» Static semantics specification
« Compiler design (static semantics checking)

60

COME 214

Attribute Grammar Example

In Ada we have the following rule to describe procedure
definitions:
<proc> -> procedure <procName> <procBody> end <procName> ;

But, of course, the name after “procedure” has to be the same as
the name after “end”.

This i1s not possible to capture in a CFG (in practice) because
there are too many names.

Solution: associate simple attributes with nodes in the parse tree
and add a “semantic” rules or constraints to the syntactic rule
In the grammar.

<proc> -> procedure <procName>[1] <procBody> end <procName>[2] ;
<procName][1].string = <procName>[2].string

61

Attribute Grammars

Definition: An attribute grammar is a CFG
G=(S,N,T,P)

with the following additions:
— For each grammar symbol x there is a set A(x) of attribute
values.
— Each rule has a set of functions that define certain
attributes of the nonterminals in the rule.
— Each rule has a (possibly empty) set of predicates to check
for attribute consistency

COME 214 62

COME 214

Attribute Grammars

Let X,->X;.. X, bearule.

Functions of the form S(X,) = f(A(X,), ... A(X,,)) define
synthesized attributes

Functions of the form I(X;) = f(A(X), ..., A(X})) for |
<=] <= n define Inherited attributes

Initially, there are Intrinsic attributes on the leaves

63

Attribute Grammars
Example: expressions of the form id + id

« 1 ds can be either int_type or real type

* types of the two ids must be the same

» type of the expression must match its expected type

BNF: <expr> -> <var> + <var>

<var> -> 1d

Attributes:

actual type - synthesized for <var> and <expr>

expected_type - inherited for <expr>

COME 214

64

Attribute Grammars
Attribute Grammar:

1. Syntax rule: <expr> -> <var>[1] + <var>[2]

Semantic rules:
<expr>.actual type < <var>[1] .actual type
Predicate:
<var>[1] .actual type =<var>[2] .actual type
<expr>.expected type = <expr>.actual type

2. Syntax rule: <var> -> id
Semantic rule:
<var>.actual type « lookup (id, <var>)

COME 214 65

Attribute Grammars (continued)

How are attribute values computed?

o|f all attributes were inherited, the tree could
be decorated in top-down order.

o|f all attributes were synthesized, the tree
could be decorated in bottom-up order.

In many cases, both kinds of attributes are
used, and It Is some combination of top-down
and bottom-up that must be used.

66

COME 214

Attribute Grammars (continued)

<expr>.expected type <« inherited from parent

<var>[1] .actual type « lookup (A, <var>[11)
<var>[2] .actual _type <« lookup (B, <var>[21])
<var>[1] .actual type =? <var>[2] .actual type

<expr>.actual type < <var>[1] .actual type
<expr>.actual type =? <expr>.expected type

67

COME 214

Dynamic Semantics

No single widely acceptable notation or formalism for
describing semantics.

The general approach to defining the semantics of any
language L 1s to specify a general mechanism to
translate any sentence in L into a set of sentences In
another language or system that we take to be well
defined.

Here are three approaches we’ll briefly look at:
— Operational semantics
— Axiomatic semantics
— Denotational semantics

68

Operational Semantics

» |dea: describe the meaning of a program in language L by
specifying how statements effect the state of a machine,
(simulated or actual) when executed.

 The change In the state of the machine (memory, registers,
stack, heap, etc.) defines the meaning of the statement.

 Similar in spirit to the notion of a Turing Machine and also
used informally to explain higher-level constructs in terms
of simpler ones, as In:

Cc statement operational semantics
for(el;e2;e3) el;
{<body>} loop: 1if e2=0 goto exit
<body>
e3;
goto loop

exit:

69

COME 214

COME 214

Operational Semantics

» To use operational semantics for a high-level
language, a virtual machine in needed
A hardware pure interpreter would be too
expensive
* A software pure interpreter also has problems:
 The detailed characteristics of the particular
computer would make actions difficult to
understand
 Such a semantic definition would be machine-
dependent

70

COME 214

Operational Semantics

A better alternative: A complete computer simulation

 Build a translator (translates source code to the machine
code of an idealized computer)

 Build a simulator for the idealized computer

Evaluation of operational semantics:
» Good If used informally

« Extremely complex if used formally (e.g. VDL)

71

COME 214

Vienna Definition Language

VDL was a language developed at IBM Vienna Labs as a
language for formal, algebraic definition via operational
semantics.

VDL was used to specify the semantics of PL/I.

See: The Vienna Definition Language, P. Wegner, ACM Comp
Surveys 4(1):5-63 (Mar 1972)

The VDL specification of PL/I was very large, very
complicated, a remarkable technical accomplishment, and of
little practical use.

72

Axiomatic Semantics

« Based on formal logic (first order predicate calculus)
« Original purpose: formal program verification
 Approach: Define axioms and inference rules in logic
for each statement type in the language (to allow
transformations of expressions to other expressions)
» The expressions are called assertions and are either
» Preconditions: An assertion before a statement states
the relationships and constraints among variables that
are true at that point in execution
» Postconditions: An assertion following a statement

COME 214 73

Propositional logic:

Logical constants: true, false

Propositional symbols: P, Q, S, ... that are either true or false

LLogic 101

Logical connectives: A (and) , v (or), = (implies), < (is equivalent), — (not) which are

defined by the truth tables below.

Sentences are formed by combining propositional symbols, connectives and parentheses
and are either true or false. e.g.: PAQ << — (=P v =Q)

First order logic adds
Variables which can range over objects in the domain of discourse
Quantifiers including: V¥ (forall) and 3 (there exists)
Example sentences:
(Vp) (Va) pAQ < — (=P v —Q)
VX prime(x) = 3y prime(y) A y>X

P (3 = FPAQ Pv i P = 0 P i 0
Feilze Foil me T riie Feilze Foilme Triie Triie
Feilze Triie 1 e Feilse Trie Triie Feil ze
Triie Pl me Feilse Felse Trie Feilse Feil =z
Triie Triie Feilse Trie Trie Triie Triie

COME 214

74

COME 214

Axiomatic Semantics

A weakest precondition Is the least restrictive
precondition that will guarantee the postcondition

Notation: {P} Statement {Q}

precondition postcondition
Example:
{?}a=b+1 {a>1}

We often need to infer what the precondition must be for a
given postcondition

One possible precondition: {b > 10}
Weakest precondition: {b > 0}

75

Axiomatic Semantics

Program proof process:

 The postcondition for the whole program is
the desired results.

» Work back through the program to the first
statement.

* If the precondition on the first statement Is
the same as the program spec, the program is
correct.

76

Example: Assignment Statements

Here’s how we might define a simple
assignment statement of the formx :=eina
programming language.
* {Qx->E} X:=E {Q}
* Where Q,_.p means the result of replacing all
occurrences of x with E In Q
So from
{Q} a:=Db/2-1 {a<10}
We can infer that the weakest precondition Q is
b/2-1<10 or b<22

7

COME 214

Axiomatic Semantics

*The Rule of Consequence:

Pt S {O}, PP=>P Q=

1P} S{Q}

*An inference rule for sequences

*For a sequence S1;32:

{P1} S1 {P2}
{P2} S2 {P3}

the inference rule i1s:

{P11 S1 {P2}, {P2} S2 {P3}
{P1} S1: S2 {P3}

A notation from
symbolic logic for
specifying a rule of
inference with premise P
and consequence Q is

P

Q

For example, Modus
Ponens can be specified
as:

P_P=>
Q

/8

COME 214

Conditions

Here’s a rule for a conditional statement

{B AP}S1{Q} {-B AP}S2{Q}
{P} if B then S1 else S2 {Q}

And an example of its use for the statement
{P} if x>0 then y=y-1 else y=y+1 {y>0}

So the weakest precondition P can be deduced as follows:
The postcondition of S1 and S2 is Q.
The weakest precondition of S1 is x>0 A y>1 and for S2 is x>0 A y>-1

The rule of consequence and the fact that y>1 = y>-1supports the conclusion
That the weakest precondition for the entire conditional is y>1..

79

COME 214

Loops

For the loop construct {P} while B do S end {Q}
the inference rule is:

{inB} S {I} _
{13 whileB do S {I A =B}

where | Is the loop Invariant, a proposition

necessarily true throughout the loop’s execution.

80

LLoop Invariants

A loop Invariant | must meet the following conditions:

1.P=>1 (the loop invariant must be true initially)

2. {1} B {I} (evaluation of the Boolean must not change the validity of I)
3.{land B} S{I} (I is not changed by executing the body of the loop)
4.(land (not B)) =>Q (if I is true and B is false, Q is implied)

5. The loop terminates (this can be difficult to prove)

 The loop invariant | is a weakened version of the loop
postcondition, and it is also a precondition.

* | must be weak enough to be satisfied prior to the beginning of the
loop, but when combined with the loop exit condition, it must be
strong enough to force the truth of the postcondition

81

COME 214

Evaluation of Axiomatic Semantics

« Developing axioms or inference rules for all of the
statements in a language is difficult

* Itis agood tool for correctness proofs, and an excellent
framework for reasoning about programs

« It is much less useful for language users and compiler
writers

COME 214

82

Denotational Semantics

A technique for describing the meaning of programs
In terms of mathematical functions on programs and
program components.

 Programs are translated into functions about which
properties can be proved using the standard
mathematical theory of functions, and especially
domain theory.

« Originally developed by Scott and Strachey (1970)
and based on recursive function theory

» The most abstract semantics description method
83

COME 214

Denotational Semantics

 The process of building a denotational specification
for a language:

1. Define a mathematical object for each language
entity
2. Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects
« The meaning of language constructs are defined by
only the values of the program's variables

COME 214

84

COME 214

Example: Decimal Numbers

<dec num>— 0]1|2|3|4|5|6|7|8]|9
| <dec_num> (0|1|2|3|4|5|6|7|8|9)

Mdeccol) =0, I\/Idec ('1') =1,..., Mdec ('9') =9

M. (<dec_num>"'0") =10 * M, (<dec_num>)
M. (<dec_num>'1") =10 * M, (<dec_num>) +1

Mg (<dec_num>'9") =10 * M, (<dec_num>) + 9

85

Denotational Semantics (continued)

The difference between denotational and operational semantics:
In operational semantics, the state changes are defined by
coded algorithms; in denotational semantics, they are defined
by rigorous mathematical functions

 The state of a program is the values of all its current variables
S = {<|11 V]_>1 <|21 V2>9 *e <in’ Vn>}

» Let VARMAP be a function that, when given a variable name
and a state, returns the current value of the variable

VARMAP(i;, s) = v,

COME 214 86

COME 214

EXxpressions

M (<expr>, s) A=

case <expr> of
<dec_num> => M (<dec_num>, s)
<var> =>
If VARMAP(<var>, s) = undef
then error
else VARMAP(<var>, s)
<binary_expr>=>
If (M (<binary_expr>.<left_expr>, s) = undef
OR M, (<binary_expr>.<right_expr>, s) =
undef)
then error
else
if (<binary expr>.<operator>= ‘+’ then
M. (<binary_expr>.<left_expr>, s) +
M. (<binary_expr>.<right_expr>, s)
else M (<binary_expr>.<left_expr>, s) *
M. (<binary_expr>.<right_expr>, s)

87

COME 214

Assignment Statements

Ma(X ;== E, S) A=
If Me(E, S) = error
then error
else 8" = {<11",v1’>,<12°,v2’>,...,.<ln’,vn" >},
whereforj=1, 2, ..., n,
Vi’ = VARMAP(j;j, S) If Ij <> X
= Me(E, s) if I = X

88

Logical Pretest Loops
Mi(while B do L, s) A=

If Mp(B, s) = undef
then error
else If Mp(B, s) = false
then s
else If Mg(L, S) = error
then error
else Mi(while B do L, Mg(L, S))

89

L_ogical Pretest Loops

» The meaning of the loop is the value of the
program variables after the statements in the loop
have been executed the prescribed number of
times, assuming there have been no errors

* [n essence, the loop has been converted from
Iteration to recursion, where the recursive control Is
mathematically defined by other recursive state
mapping functions

 Recursion, when compared to Iteration, Is easier to

describe with mathematical rigor

COME 214 90

Denotational Semantics

Evaluation of denotational semantics:

» Can be used to prove the correctness of
programs

* Provides a rigorous way to think about
programs

» Can be an aid to language design

» Has been used In compiler generation systems

91

Summary

This chapter covered the following

» Backus-Naur Form and Context Free
Grammars

« Syntax Graphs and Attribute Grammars

« Semantic Descriptions: Operational, Axiomatic
and Denotational

92

