
COME 214. 1

Chapter 5

Variables:
Names, Bindings,

and Scope

Chapter 5

Variables:
Names, Bindings,
Type Checking and
Scope

COME 214. 3

Introduction

This chapter introduces the fundamental semantic
issues of variables.

– It covers the nature of names and special words in
programming languages, attributes of variables,
concepts of binding and binding times.

– It investigates type checking, strong typing and type
compatibility rules.

– At the end it discusses named constraints and
variable initialization techniques.

COME 214. 4

Names
Names

Design issues:
Maximum length?

Are connector characters allowed?

Are names case sensitive?

Are special words reserved words or keywords?

Length

FORTRAN I: maximum 6

COBOL: maximum 30

FORTRAN 90 and ANSI C: maximum 31

Ada: no limit, and all are significant

C++: no limit, but implementors often impose one

Connectors

Pascal, Modula-2, and FORTRAN 77 don't allow

Others do

Copyright © 2012 Addison-Wesley. All rights reserved. 1-5

Names (continued)

• Special characters

– PHP: all variable names must begin with dollar signs

– Perl: all variable names begin with special characters,
which specify the variable’s type

– Ruby: variable names that begin with @ are instance
variables; those that begin with @@ are class variables

COME 214. 6

Case sensitivity

• Foo = foo?

• The first languages only had upper case

• Case sensitivity was probably introduced by Unix and hence

C.

• Disadvantage:
• Poor readability, since names that look alike to a human are different;

worse in Modula-2 because predefined names are mixed case (e.g.

WriteCard)

• Advantages:
• Larger namespace, ability to use case to signify classes of variables

(e.g., make constants be in uppercase)

• C, C++, Java, and Modula-2 names are case sensitive but the

names in many other languages are not

COME 214. 7

Special words

Def: A keyword is a word that is special only in

certain contexts
– Disadvantage: poor readability

– Advantage: flexibility

Def: A reserved word is a special word that

cannot be used as a user-defined name

COME 214. 8

Variables

• A variable is an abstraction of a memory cell

• Variables can be characterized as a 6-tuple of attributes:

Name: identifier

Address: memory location(s)

Value: particular value at a moment

Type: range of possible values

Lifetime: when the variable accessible

Scope: where in the program it can be accessed

COME 214. 9

Variables

• Name - not all variables have them (examples?)

• Address - the memory address with which it is

associated

• A variable may have different addresses at different

times during execution

• A variable may have different addresses at different

places in a program

• If two variable names can be used to access the same

memory location, they are called aliases

• Aliases are harmful to readability, but they are useful

under certain circumstances

COME 214. 10

Aliases

• How aliases can be created:

• Pointers, reference variables, Pascal variant

records, C and C++ unions, and FORTRAN

EQUIVALENCE (and through parameters -

discussed in Chapter 8)

• Some of the original justifications for aliases are

no longer valid; e.g. memory reuse in FORTRAN

• replace them with dynamic allocation

COME 214. 11

Variables Type and Value

Type - determines the range of values of variables and the set

of operations that are defined for values of that type; in the

case of floating point, type also determines the precision

Value - the contents of the location with which the variable is

associated

• Abstract memory cell - the physical cell or collection of

cells associated with a variable

COME 214. 12

lvalue and rvalue

Are the two occurrences of “a” in this expression the

same?

a := a + 1;

In a sense,
• The one on the left of the assignment refers to the location

of the variable whose name is a;

• The one on the right of the assignment refers to the value of

the variable whose name is a;

We sometimes speak of a variable’s lvalue and rvalue
• The lvalue of a variable is its address

• The rvalue of a variable is its value

COME 214. 13

Binding

Def: A binding is an association, such as between an attribute and

an entity, or between an operation and a symbol

Def: Binding time is the time at which a binding takes place.

Possible binding times:
– Language design time -- e.g., bind operator symbols to operations

– Language implementation time -- e.g., bind floating point type to a

representation

– Compile time -- e.g., bind a variable to a type in C or Java

– Link time

– Load time--e.g., bind a FORTRAN 77 variable to memory cell (or a C

static variable)

– Runtime -- e.g., bind a nonstatic local variable to a memory cell

COME 214. 14

Type Bindings

• Def: A binding is static if it occurs before run

time and remains unchanged throughout

program execution.

• Def: A binding is dynamic if it occurs during

execution or can change during execution of

the program.

• Type binding issues
• How is a type specified?

• When does the binding take place?

• If static, type may be specified by either an explicit or an

implicit declaration

COME 214. 15

Variable Declarations
Def: An explicit declaration is a program statement used for

declaring the types of variables

Def: An implicit declaration is a default mechanism for specifying

types of variables (the first appearance of the variable in the

program)
– E.g.: in Perl, variables of type scalar, array and hash begin with a $, @ or %,

respectively.

– E.g.: In Fortran, variables beginning with I-N are assumed to be of type integer.

– E.g.: ML (and other languages) use sophisticated type inference mechanisms

– Fortran, BASIC, Perl, Ruby, JavaScript, and PHP provide implicit declarations

(Fortran has both explicit and implicit)

Advantages: writability, convenience

Disadvantages: reliability

Explicit/Implicit Declaration (continued)

• Some languages use type inferencing to
determine types of variables (context)

– C# - a variable can be declared with var and an
initial value. The initial value sets the type

– Visual BASIC 9.0+, ML, Haskell, F#, and Go use type
inferencing. The context of the appearance of a
variable determines its type

Copyright © 2012 Addison-Wesley. All rights reserved. 1-16

COME 214. 17

Dynamic Type Binding

• The type of a variable can chance during the course of the

program and, in general, is re-determined on every assignment.

• Usually associated with languages first implemented via an

interpreter rather than a compiler.

• Dynamic Type Binding (JavaScript, Python, Ruby, PHP, and

C# (limited))

• Specified through an assignment statement, e.g. JavaScript
LIST = [2 4 6 8];

LIST = 17.3;

• Advantages:
• Flexibility

• Obviates the need for “polymorphic” types

• Development of generic functions (e.g. sort)

• Disadvantages:
• High cost (dynamic type checking and interpretation)

• Type error detection by the compiler is difficult

COME 214. 18

Type Inferencing

• Type Inferencing is used in some programming languages,

including ML, Miranda, and Haskell.

• Types are determined from the context of the reference, rather than

just by assignment statement.

• Legal:

fun circumf(r) = 3.14159 * r * r; // infer r is real

fun time10(x) = 10 * x; // infer x is integer

• Illegal:

fun square(x) = x * x; // can’t deduce anything

• Fixed

fun square(x) : int = x * x; // use explicit declaration

COME 214. 19

Storage Bindings and Lifetime

• Storage Bindings

• Allocation - getting a cell from some pool of

available cells

• Deallocation - putting a cell back into the pool

• Def: The lifetime of a variable is the time during

which it is bound to a particular memory cell

• Categories of variables by lifetimes

• Static

• Stack dynamic

• Explicit heap dynamic

• Implicit heap dynamic

COME 214. 20

Static Variables

• Static variables are bound to memory cells before

execution begins and remains bound to the same

memory cell throughout execution.

• Examples:

• all FORTRAN 77 variables

• C static variables

Advantage: efficiency (direct addressing),

history-sensitive subprogram support

Disadvantage: lack of flexibility, no recursion!

COME 214. 21

Stack Dynamic Variables

• Stack-dynamic variables -- Storage bindings are created
for variables when their declaration statements are
elaborated.
(A declaration is elaborated when the executable
code associated with it is executed)

• If scalar, all attributes except address are statically bound
– e.g. local variables in Pascal and C subprograms (not declared static)

• Advantages:
– allows recursion
– conserves storage

• Disadvantages:
– Overhead of allocation and deallocation
– Subprograms cannot be history sensitive
– Inefficient references (indirect addressing)

COME 214. 22

Static and Stack-Dynamic Variables

#include <stdio.h>

main() {
int count = 0; /* Count is a stack-dynamic variable */

count = count + 1;

printf(“Sum is %d\n”, sumValue(count)); /* sum = 1 */

count = count + 1;

printf(“Sum is %d\n”, sumValue(count)); /* sum = 3 */

count = count + 1;

printf(“Sum is %d\n”, sumValue(count)); /* sum = 6 */

}

int sumValue(int k)

{

static int total = 0; /* total is a static variable */

total = total + k;

return total;

}

COME 214. 23

Explicit heap-dynamic

Explicit heap-dynamic variables are allocated and deallocated by

explicit directives, specified by the programmer, which take

effect during execution

• Referenced only through pointers or references

• e.g. dynamic objects in C++ (via new and delete), all

objects in Java

Advantage: provides for dynamic storage management

Disadvantage: inefficient and unreliable

Example:
int *intnode;
. . .
intnode = new int;
. . .
delete intnode;

COME 214. 24

Implicit heap-dynamic

Implicit heap-dynamic variables -- Allocation and

deallocation caused by assignment statements

and types not determined until assignment.

e.g. all variables in APL; all strings and arrays in

Perl, JavaScript, and PHP

Advantage:
– flexibility

Disadvantages:
– Inefficient, because all attributes are dynamic

– Loss of error detection

Copyright © 2012 Addison-Wesley. All rights reserved. 1-25

Variable Attributes: Scope

• The scope of a variable is the range of statements over which
it is visible

• The scope rules of a language determine how references to
names are associated with variables

int x, y;

int scope_function (int y) {

int x;

x = y + 3;  which x?

}

• The local variables of a program unit are those that are
declared in that unit

• The nonlocal variables of a program unit are those that are
visible in the unit but not declared there

• Global variables are a special category of nonlocal variables

COME 214. 26

Variable Scope

• The scope of a variable is the range of statements in a

program over which it’s visible

• Typical cases:

• Explicitly declared => local variables

• Explicitly passed to a subprogram => parameters

• The nonlocal variables of a program unit are those that

are visible but not declared.

• Global variables => visible everywhere.

• The scope rules of a language determine how references

to names are associated with variables.

• The two major schemes are static scoping and dynamic

scoping

COME 214. 27

Static Scope
• Aka “lexical scope”

• Based on program text and can be determined prior to

execution (e.g., at compile time)

• To connect a name reference to a variable, you (or the

compiler) must find the declaration

• Search process: search declarations, first locally, then in

increasingly larger enclosing scopes, until one is found

for the given name

• Enclosing static scopes (to a specific scope) are called

its static ancestors; the nearest static ancestor is called a

static parent

COME 214. 28

Static Scoping

Example in Ada:

procedure Big is

X: Integer;

procedure Sub1 is

begin -- of Sub1

… X …

end; -- of Sub1

procedure Sub2 is

X: Integer;

begin -- of Sub1

… X …

end; -- of Sub1

begin -- of Big

…

end; -- of Big

First search for declaration of

X in Sub1

If no declaration found, search

continues to the next larger

enclosing unit

COME 214. 29

Blocks

• A block is a section of code in which local

variables are allocated/deallocated at the

start/end of the block.

• Provides a method of creating static scopes

inside program units

• Introduced by ALGOL 60 and found in most

PLs.

• Variables can be hidden from a unit by having

a "closer" variable with same name
• C++ and Ada allow access to these "hidden" variables

In Ada: unit.name
In C++: class_name::name

COME 214. 30

Examples of Blocks

C and C++:

for (...) {

int index;

...

}

Ada:
declare LCL : FLOAT;

begin

...

end

Common Lisp:

(let ((a 1)

(b foo)

(c))

(setq a (* a a))

(bar a b c))

COME 214. 31

Static scoping example

MAIN MAIN

A B A B

C D E C D E

MAIN

A

C

D

B

E

MAIN

A B

C D E

MAIN calls A and B

A calls C and D

B calls A and E

COME 214. 32

Evaluation of Static Scoping
Suppose the spec is changed so that D must now

access some data in B

Solutions:

1. Put D in B (but then C can no longer call it and D cannot access

A's variables)

2. Move the data from B that D needs to MAIN (but then all

procedures can access them)

Same problem for procedure access!

Overall: static scoping often encourages many globals

Declaration Order

• C99, C++, Java, and C# allow variable
declarations to appear anywhere a statement
can appear

– In C99, C++, and Java, the scope of all local
variables is from the declaration to the end of the
block

– In C#, the scope of any variable declared in a block is
the whole block, regardless of the position of the
declaration in the block

• However, a variable still must be declared before it can
be used

Copyright © 2012 Addison-Wesley. All rights reserved. 1-33

The LET Construct

• Most functional languages include some form
of let construct

• A let construct has two parts
– The first part binds names to values

– The second part uses the names defined in the first part

• In Scheme:
(LET (

(name1 expression1)

…

(namen expressionn)

)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-34

The LET Construct (continued)

• In ML:
let

val name1 = expression1

…

val namen = expressionn

in

expression

end;

• In F#:

– First part: let left_side = expression

– (left_side is either a name or a tuple pattern)

– All that follows is the second part

Copyright © 2012 Addison-Wesley. All rights reserved. 1-35

Declaration Order (continued)

• In C++, Java, and C#, variables can be declared
in for statements

– The scope of such variables is restricted to the for
construct

Copyright © 2012 Addison-Wesley. All rights reserved. 1-36

Global Scope

• C, C++, PHP, and Python support a
program structure that consists of a
sequence of function definitions in a file

– These languages allow variable declarations to
appear outside function definitions

• C and C++have both declarations (just
attributes) and definitions (attributes and
storage)

– A declaration outside a function definition
specifies that it is defined in another file

Copyright © 2012 Addison-Wesley. All rights reserved. 1-37

Global Scope (continued)

• PHP

– Programs are embedded in HTML markup
documents, in any number of fragments, some
statements and some function definitions

– The scope of a variable (implicitly) declared in a
function is local to the function

– The scope of a variable implicitly declared outside
functions is from the declaration to the end of the
program, but skips over any intervening functions

• Global variables can be accessed in a function through
the $GLOBALS array or by declaring it global

Copyright © 2012 Addison-Wesley. All rights reserved. 1-38

Global Scope (continued)

• Python

– A global variable can be referenced in functions, but
can be assigned in a function only if it has been
declared to be global in the function

Copyright © 2012 Addison-Wesley. All rights reserved. 1-39

Copyright © 2012 Addison-Wesley. All rights reserved. 1-40

Evaluation of Static Scoping

• Works well in many situations

• Problems:

– In most cases, too much access is possible

– As a program evolves, the initial structure is
destroyed and local variables often become global;
subprograms also gravitate toward become global,
rather than nested

COME 214. 41

Dynamic Scope

• Based on calling sequences of program units, not their textual

layout (temporal versus spatial)

• References to variables are connected to declarations by

searching back through the chain of subprogram calls that forced

execution to this point

• Used in APL, Snobol and LISP
– Note that these languages were all (initially) implemented as interpreters rather

than compilers.

• Consensus is that PLs with dynamic scoping leads to programs

which are difficult to read and maintain.
– Lisp switch to using static scoping as it’s default circa 1980, though dynamic

scoping is still possible as an option.

COME 214. 42

Dynamic Scoping

• Scope of variable is based on calling sequence of
subprograms

procedure Big is

X: Integer;

procedure Sub1 is

begin -- of Sub1

… X …

end; -- of Sub1

procedure Sub2 is

X: Integer;

begin -- of Sub1

… X …

end; -- of Sub1

begin -- of Big

…

end; -- of Big

Calling sequence:

Big calls Sub2

Sub2 calls Sub1

• X in Sub1 refers to the

declaration in Sub2

• Sub2 is the dynamic parent

of Sub1

COME 214. 43

Static vs. dynamic scope

Define MAIN

declare x

Define SUB1

declare x

...

call SUB2

...

Define SUB2

...

reference x

...

...

call SUB1

...

MAIN calls SUB1

SUB1 calls SUB2

SUB2 uses x

• Static scoping - reference to x is

to MAIN's x

• Dynamic scoping - reference to x

is to SUB1's x

COME 214. 44

Dynamic Scoping

Evaluation of Dynamic Scoping:

• Advantage: convenience

• Disadvantage:
1. While a subprogram is executing, its variables are visible

to all subprograms it calls

2. Impossible to statically type check

3. Poor readability- it is not possible to statically

determine the type of a variable

COME 214. 45

Scope vs. Lifetime

• While these two issues seem related, they
can differ

• In Pascal, the scope of a local variable and
the lifetime of a local variable seem the
same

• In C/C++, a local variable in a function
might be declared static but its lifetime
extends over the entire execution of the
program and therefore, even though it is
inaccessible, it is still in memory

COME 214. 46

Referencing Environments

• The referencing environment of a statement is the

collection of all names that are visible in the statement

• In a static scoped language, that is the local variables plus

all of the visible variables in all of the enclosing scopes.

See book example (p. 220)

• A subprogram is active if its execution has begun

but has not yet terminated

• In a dynamic-scoped language, the referencing

environment is the local variables plus all visible

variables in all active subprograms. See book example (p.

221)

COME 214. 47

Referencing Environment (static scoping)

procedure Example is

A, B: Integer;

…

procedure Sub1 is

X, Y: Integer;

begin -- of Sub1

…

end; -- of Sub1

procedure Sub2 is

X: Integer;

procedure Sub3 is

X: Integer;

begin -- of Sub3

…

end -- of Sub3

begin -- of Sub2

…

end -- of Sub2

begin -- of Example

…

end -- of Example

1

2

3

4

Referencing Environment:

1: X and Y of Sub1, A and B of

Example

2: X of Sub3, (X of Sub2 is hidden),

A and B of Example

3: X of Sub2, A and B of Example

4: A and B of Example

(Example in Ada)

COME 214. 48

Referencing Environments (assuming dynamic scoping)

void sub1() {

int a, b;

…

} /* end of sub1 */

void sub2() {

int b, c;

…

sub1

} /* end of sub2 */

void main() {

int c, d;

…

sub2();

} /* end of main */

1

2

3

Referencing Environment:

1: a and b of sub1, c of sub2, d of

main, (c of main and b of sub2 are

hidden)

2: b and c of sub2, d of main, (c of

main is hidden)

3: c and d of main

COME 214. 49

Named Constants

• A named constant is a variable that is bound to a value

only when it is bound to storage.

• The value of a named constant can’t be changed while

the program is running.

• The binding of values to named constants can be

either static (called manifest constants) or dynamic

• Languages:
Pascal: literals only

Modula-2 and FORTRAN 90: constant-valued expressions

Ada, C++, and Java: expressions of any kind

• Advantages: increased readability and modifiability

without loss of efficiency

COME 214. 50

Example in Pascal

Procedure example;

type a1[1..100] of integer;

a2[1..100] of real;

...

begin

...

for I := 1 to 100 do

begin ... end;

...

for j := 1 to 100 do

begin ... end;

...

avg = sum div 100;

...

Procedure example;

type const MAX 100;

a1[1..MAX] of integer;

a2[1..MAX] of real;

...

begin

...

for I := 1 to MAX do

begin ... end;

...

for j := 1 to MAX do

begin ... end;

...

avg = sum div MAX;

...

COME 214. 51

Variable Initialization

• For convenience, variable initialization can
occur prior to execution

• FORTRAN: Integer Sum
Data Sum /0/

• Ada: Sum : Integer :=0;

• ALGOL 68: int first := 10;

• Java: int num = 5;

• LISP (Let (x y (z 10) (sum 0)) ...)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-52

Summary

• Case sensitivity and the relationship of names to
special words represent design issues of names

• Variables are characterized by the sextuples: name,
address, value, type, lifetime, scope

• Binding is the association of attributes with program
entities

• Scalar variables are categorized as: static, stack
dynamic, explicit heap dynamic, implicit heap dynamic

• Strong typing means detecting all type errors

COME 214. 53

Summary

In this chapter, we see the following concepts being
described

• Variable Naming, Aliases

• Binding and Lifetimes

• Scoping

• Referencing environments

• Named Constants

