Chapter 5

Variables:
Names, Bindings,
and Scope

Chapter 5

Variables:

Names, Bindings,
Type Checking and
Scope

-
CONCEPTS OF

Programming
Languages

TENTH EDITION

COME 214.

Introduction

This chapter introduces the fundamental semantic
Issues of variables.
— It covers the nature of names and special words in

programming languages, attributes of variables,
concepts of binding and binding times.

— It Investigates type checking, strong typing and type
compatibility rules.

— At the end It discusses named constraints and
variable initialization techniques.

COME 214.

Names

Names

Design issues:
Maximum length?
Are connector characters allowed?
Are names case sensitive?
Are special words reserved words or keywords?

Length

FORTRAN I: maximum 6

COBOL: maximum 30

FORTRAN 90 and ANSI C: maximum 31

Ada: no limit, and all are significant

C++: no limit, but implementors often impose one

Connectors

Pascal, Modula-2, and FORTRAN 77 don't allow
Others do

Names (continued)

- Special characters
- PHP: all variable names must begin with dollar signs

- Perl: all variable names begin with special characters,
which specify the variable’s type

- Ruby: variable names that begin with @ are instance
variables; those that begin with ee are class variables

Copyright © 2012 Addison-Wesley. All rights reserved. 1-5

Case sensitivity

* Foo = foo?
 The first languages only had upper case
« Case sensitivity was probably introduced by Unix and hence
C.
 Disadvantage:
 Poor readability, since names that look alike to a human are different;

worse in Modula-2 because predefined names are mixed case (e.qg.
WriteCard)

« Advantages:
 Larger namespace, ability to use case to signify classes of variables
(e.g., make constants be in uppercase)

« C, C++, Java, and Modula-2 names are case sensitive but the
names in many other languages are not

COME 214.

Special words

Def: A keyword is a word that is special only In

certain contexts

— Disadvantage: poor readability
— Advantage: flexibility

Def: A reserved word is a special word that
cannot be used as a user-defined name

COME 214.

Variables

A variable is an abstraction of a memory cell

* Variables can be characterized as a 6-tuple of attributes:

Name: identifier

Address: memory location(s)

Value: particular value at a moment

Type: range of possible values

Lifetime: when the variable accessible

Scope: where In the program it can be accessed

COME 214.

Variables

« Name - not all variables have them (examples?)

» Address - the memory address with which it is
associated

A variable may have different addresses at different
times during execution

A variable may have different addresses at different
places in a program

* |f two variable names can be used to access the same
memory location, they are called aliases

 Aliases are harmful to readability, but they are useful
under certain circumstances

COME 214.

Allases

 How aliases can be created:
 Pointers, reference variables, Pascal variant
records, C and C++ unions, and FORTRAN
EQUIVALENCE (and through parameters -
discussed in Chapter 8)

« Some of the original justifications for aliases are
no longer valid; e.g. memory reuse in FORTRAN
» replace them with dynamic allocation

10

Variables Type and Value

Type - determines the range of values of variables and the set
of operations that are defined for values of that type; in the
case of floating point, type also determines the precision

Value - the contents of the location with which the variable is
associated

 Abstract memory cell - the physical cell or collection of
cells associated with a variable

COME 214.

11

COME 214.

lvalue and rvalue

Are the two occurrences of “a” in this expression the
same?
a:=a+1;
In a sense,
» The one on the left of the assignment refers to the location
of the variable whose name Is a;

» The one on the right of the assignment refers to the value of
the variable whose name is a;

We sometimes speak of a variable’s lvalue and rvalue
e The lvalue of a variable iIs its address
e The rvalue of a variable is its value

12

Binding

Def: A binding is an association, such as between an attribute and
an entity, or between an operation and a symbol

Def: Binding time Is the time at which a binding takes place.

Possible binding times:

COME 214.

Language design time -- e.g., bind operator symbols to operations
Language implementation time -- e.g., bind floating point type to a
representation

Compile time -- e.g., bind a variable to a type in C or Java

Link time

Load time--e.g., bind a FORTRAN 77 variable to memory cell (ora C
static variable)

Runtime -- e.g., bind a nonstatic local variable to a memory cell

13

COME 214.

Type Bindings

 Def: A binding is static If it occurs before run
time and remains unchanged throughout
program execution.

 Def: A binding Is dynamic If it occurs during
execution or can change during execution of
the program.

 Type binding Issues

« How Is a type specified?

» When does the binding take place?

o |If static, type may be specified by either an explicit or an
Implicit declaration

14

Variable Declarations

Def. An explicit declaration is a program statement used for
declaring the types of variables

Def: An implicit declaration is a default mechanism for specifying
types of variables (the first appearance of the variable in the
program)

— E.qg.: in Perl, variables of type scalar, array and hash begin with a $, @ or %,
respectively.

— E.qg.: In Fortran, variables beginning with I-N are assumed to be of type integer.

— E.g.: ML (and other languages) use sophisticated type inference mechanisms

— Fortran, BASIC, Perl, Ruby, JavaScript, and PHP provide implicit declarations
(Fortran has both explicit and implicit)

Advantages: writability, convenience
Disadvantages: reliability

COME 214. 15

Explicit/Implicit Declaration (continued)

- Some languages use type inferencing to
determine types of variables (context)

- C# - a variable can be declared with var and an
initial value. The initial value sets the type

- Visual BASIC 9.0+, ML, Haskell, F#, and Go use type
inferencing. The context of the appearance of a
variable determines its type

Copyright © 2012 Addison-Wesley. All rights reserved. 1-16

COME 214.

Dynamic Type Binding

 The type of a variable can chance during the course of the

program and, in general, is re-determined on every assignment.

 Usually associated with languages first implemented via an
Interpreter rather than a compiler.

« Dynamic Type Binding (JavaScript, Python, Ruby, PHP, and
C# (limited))

 Specified through an assignment statement, e.g. JavaScript

LIST = [2 4 6 8];
LIST = 17.3;
 Advantages:
« Flexibility

* Obviates the need for “polymorphic” types
« Development of generic functions (e.g. sort)
 Disadvantages:

 High cost (dynamic type checking and interpretation)
 Type error detection by the compiler is difficult

17

Type Inferencing

 Type Inferencing Is used in some programming languages,
including ML, Miranda, and Haskell.

» Types are determined from the context of the reference, rather than
just by assignment statement.

 Legal:

fun circumf(r) =3.14159 *r *r; //infer r is real

fun timel10(x) = 10 * x; Il Infer x Is integer
* lllegal:

fun square(x) = X * x; // can 't deduce anything
 Fixed

fun square(x) : int = X * X; // use explicit declaration

COME 214.

18

COME 214.

Storage Bindings and Lifetime

« Storage Bindings

» Allocation - getting a cell from some pool of

available cells

 Deallocation - putting a cell back into the pool

 Def: The lifetime of a variable is the time during
which it 1s bound to a particular memory cell

» Categories of variables by lifetimes

o Static

» Stack dynamic

 Explicit heap dynamic

 Implicit heap dynamic

19

Static Variables

» Static variables are bound to memory cells before
execution begins and remains bound to the same
memory cell throughout execution.

« Examples:
e all FORTRAN 77 variables
e C static variables

Advantage: efficiency (direct addressing),
history-sensitive subprogram support

Disadvantage: lack of flexibility, no recursion!
20

Stack Dynamic Variables

 Stack-dynamic variables -- Storage bindings are created
for variables when their declaration statements are
elaborated.
(A declaration iIs elaborated when the executable
code associated with it Is executed)

« If scalar, all attributes except address are statically bound
— e.g. local variables in Pascal and C subprograms (not declared static)

» Advantages:

— allows recursion
— conserves storage

 Disadvantages:

— Overhead of allocation and deallocation
— Subprograms cannot be history sensitive
— Inefficient references (indirect addressing)

COME 214.

21

COME 214.

Static and Stack-Dynamic Variables

#include <stdio.h>

main() {

}

int count =0; /* Count is a stack-dynamic variable */
count = count + 1;
printf(“Sum is %d\n”, sumValue(count)); /* sum=1*/
count =count + 1;
printf(“Sum is %d\n”, sumValue(count)); /* sum =3 */
count = count + 1;
printf(“Sum is %d\n”, sumValue(count)); /* sum =6 */

int sumValue(int k)

{

static int total = 0O; [* total is a static variable */
total = total + k;

return total;

22

COME 214.

Explicit heap-dynamic

Explicit heap-dynamic variables are allocated and deallocated by
explicit directives, specified by the programmer, which take
effect during execution

 Referenced only through pointers or references
* e.¢g. dynamic objects in C++ (via new and delete), all
objects in Java

Advantage: provides for dynamic storage management

Disadvantage: inefficient and unreliable

Example:
Int *Intnode;

ihthode = new Int;

déiete Inthode;

23

COME 214.

Implicit heap-dynamic

Implicit heap-dynamic variables -- Allocation and
deallocation caused by assignment statements
and types not determined until assignment.

e.g. all variables in APL; all strings and arrays in
Perl, JavaScript, and PHP
Advantage:
— flexibility
Disadvantages:
— Inefficient, because all attributes are dynamic

— Loss of error detection

24

Variable Attributes: Scope

The scope of a variable is the range of statements over which
it is visible

The scope rules of a language determine how references to
names are associated with variables

int X, v;
int scope_function (intvy) {
int X;
X =y + 3; € which x?

The /ocal variables of a program unit are those that are
declared in that unit

The nonlocal variables of a program unit are those that are
visible in the unit but not declared there

Global variables are a special category of nonlocal variables

Copyright © 2012 Addison-Wesley. All rights reserved. 1-25

Variable Scope

 The scope of a variable Is the range of statements in a
program over which it’s visible
* Typical cases:
 Explicitly declared => local variables
 Explicitly passed to a subprogram => parameters
* The nonlocal variables of a program unit are those that
are visible but not declared.
 Global variables => visible everywhere.
 The scope rules of a language determine how references
to names are associated with variables.
 The two major schemes are static scoping and dynamic
scoping

COME 214.

26

Static Scope

» Aka “lexical scope™

 Based on program text and can be determined prior to
execution (e.g., at compile time)

 To connect a name reference to a variable, you (or the
compiler) must find the declaration

» Search process: search declarations, first locally, then In
Increasingly larger enclosing scopes, until one is found
for the given name

 Enclosing static scopes (to a specific scope) are called
Its static ancestors; the nearest static ancestor is called a
static parent

COME 214.

27

COME 214.

Static Scoping

Example in Ada:

procedure Big is

X: Integer;
procedure Sublis
begin -- of Sub1l
e X P
end; -- of Sub1l
procedure Sub2is
X: Integer,
begin -- of Sub1l
X
end; -- of Sub1l
begin -- of Big
end; -- of Big

First search for declaration of
X in Subl

If no declaration found, search
continues to the next larger
enclosing unit

28

Blocks

* A block Is a section of code in which local
variables are allocated/deallocated at the
start/end of the block.

 Provides a method of creating static scopes
Inside program units

* Introduced by ALGOL 60 and found in most
PLs.

» Variables can be hidden from a unit by having

a ""closer" variable with same name
« C++ and Ada allow access to these "hidden" variables

In Ada: unit.name
In C++: class_name::name

29

Examples of Blocks

C and C++: Common Lisp:
for (...) {
int index;
(let ((a 1)
\ (b foo)
(c))
Ada: (setg a (* a a))
declare LCL : FLOAT; (bar a b c))

begin

end

COME 214.

Static scoping example

MAIN /\
MAIN calls Aand B A _c A B
AcallsCand D L /\ ‘
B callsAand E 3 — C D E
5
 FC

COME 214. 31

COME 214.

Evaluation of Static Scoping

Suppose the spec is changed so that D must now
access some data in B

Solutions:

1. Put D in B (but then C can no longer call it and D cannot access
A's variables)

2. Move the data from B that D needs to MAIN (but then all
procedures can access them)

Same problem for procedure access!

Overall: static scoping often encourages many globals

32

Declaration Order

- C99, C++, Java, and C# allow variable
declarations to appear anywhere a statement

can appear

- In C99, C++, and Java, the scope of all local
variables is from the declaration to the end of the
block

- In C#, the scope of any variable declared in a block is
the whole block, regardless of the position of the
declaration in the block

- However, a variable still must be declared before it can
be used

Copyright © 2012 Addison-Wesley. All rights reserved. 1-33

The LT Construct

- Most functional languages include some form
of 1let construct

- A let construct has two parts

- The first part binds names to values
- The second part uses the names defined in the first part

- In Scheme:
(LET (

(name, expression,)

(name, expression,)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-34

The LT Construct (continued)

- In ML:

let

val name, = expression,

val name_ = expression,
in
expression

end;
- In F#:
— First part: 1et left_side = expression
- (left_side is either a name or a tuple pattern)
- All that follows is the second part

Copyright © 2012 Addison-Wesley. All rights reserved. 1-35

Declaration Order (continued)

- In C++, Java, and C#, variables can be declared
In for statements

- The scope of such variables is restricted to the for
construct

Copyright © 2012 Addison-Wesley. All rights reserved. 1-36

Global Scope

- C, C++, PHP, and Python support a
program structure that consists of a
sequence of function definitions in a file

- These languages allow variable declarations to
appear outside function definitions

- C and C++have both declarations (just
attributes) and definitions (attributes and
storage)

- A declaration outside a function definition
specifies that it is defined in another file

Copyright © 2012 Addison-Wesley. All rights reserved.

1-37

Global Scope (continued)

. PHP

- Programs are embedded in HTML markup
documents, in any number of fragments, some
statements and some function definitions

- The scope of a variable (implicitly) declared in a
function is local to the function

- The scope of a variable implicitly declared outside
functions is from the declaration to the end of the
program, but skips over any intervening functions

- Global variables can be accessed in a function through
the scLoraLs array or by declaring it global

Copyright © 2012 Addison-Wesley. All rights reserved. 1-38

Global Scope (continued)

. Python

- A global variable can be referenced in functions, but
can be assigned in a function only if it has been
declared to be gioba1 in the function

Copyright © 2012 Addison-Wesley. All rights reserved. 1-39

Evaluation of Static Scoping

- Works well in many situations

- Problems:
- In most cases, too much access is possible

- As a program evolves, the initial structure is
destroyed and local variables often become global;
subprograms also gravitate toward become global,
rather than nested

Copyright © 2012 Addison-Wesley. All rights reserved. 1-40

COME 214.

Dynamic Scope

 Based on calling sequences of program units, not their textual
layout (temporal versus spatial)

 References to variables are connected to declarations by
searching back through the chain of subprogram calls that forced

execution to this point
» Used in APL, Snobol and LISP

— Note that these languages were all (initially) implemented as interpreters rather
than compilers.

 Consensus Is that PLs with dynamic scoping leads to programs
which are difficult to read and maintain.

— Lisp switch to using static scoping as it’s default circa 1980, though dynamic
scoping is still possible as an option.

41

Dynamic Scoping

« Scope of variable is based on calling sequence of

subprograms
procedure Big is
X: Integer,
procedure Sublis
begin -- of Subl
e X
end; -- of Subl
procedure Sub2 is
X: Integer,
begin -- of Subl
e X
end; -- of Subl
begin -- of Big
end; -- of Big

COME 214.

Calling sequence:
Big calls Sub2
Sub?2 calls Subl

« X in Sub1 refers to the
declaration in Sub2

* Sub2 is the dynamic parent
of Subl

42

Static vs. dynamic scope

Define MAIN
declare x
Define SUB1

declare x

call SUB2

Define SUB2

reference x

call SUB1

COME 214.

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses X

» Static scoping - reference to X IS
to MAIN's x

« Dynamic scoping - reference to X
Is to SUB1's x

43

Dynamic Scoping

Evaluation of Dynamic Scoping:
« Advantage: convenience
 Disadvantage:

1. While a subprogram is executing, its variables are visible
to all subprograms it calls

2. Impossible to statically type check
3. Poor readability- it is not possible to statically
determine the type of a variable

COME 214.

44

Scope vs. Lifetime

* While these two Issues seem related, they
can differ

» In Pascal, the scope of a local variable and
the lifetime of a local variable seem the
same

 In C/C++, a local variable in a function
might be declared static but its lifetime
extends over the entire execution of the
program and therefore, even though it is
Inaccessible, it is still in memory

COME 214. 45

Referencing Environments

 The referencing environment of a statement is the
collection of all names that are visible in the statement

« In a static scoped language, that is the local variables plus
all of the visible variables in all of the enclosing scopes.
See book example (p. 220)

A subprogram is active if its execution has begun
but has not yet terminated

* In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms. See book example (p.
221)

COME 214, 46

Referencing Environment (static scoping)

procedure Example is (Example |n Ada)

A, B: Integer;

procedure Sublis

Referencing Environment:

X, Y: Integer;
begi -- of Subl
e o 1 1: X and Y of Sub1, A and B of
end; -- of Sub1 Example
procedure Sub2 is
X: Integer; | 2: X of Sub3, (X of Sub2 is hidden),
procedureSbs s A and B of Example
. Integer;
begi -- of Sub3
e e 5 3: X of Sub2, A and B of Example
end -- of Sub3
begin - of Sub2 4: A and B of Example
« 3
end -- of Sub2
begin -- of Example
end -- of Example) 4

COME 214.

COME 214.

Referencing Environments (assuming dynamic scoping)

void subl() {
int a, b;

} /*end of subl */

void sub?2() {
int b, c;

subl
} /*end of sub2 */

void main() {
int c, d;

sub2();
} /*end of main */

Referencing Environment:

1: aand b of subl, c of sub2, d of
main, (c of main and b of sub2 are
hidden)

2: b and ¢ of sub2, d of main, (c of
main is hidden)

3: ¢ and d of main

48

Named Constants

« A named constant is a variable that is bound to a value
only when it is bound to storage.
* The value of a named constant can’t be changed while
the program Is running.
 The binding of values to named constants can be
either static (called manifest constants) or dynamic
« Languages:
Pascal: literals only
Modula-2 and FORTRAN 90: constant-valued expressions
Ada, C++, and Java: expressions of any kind

« Advantages: increased readability and modifiability
without loss of efficiency

COME 214, 49

Example in Pascal

COME 214.

Variable Initialization

e For convenience, variable initialization can
occur prior to execution

 FORTRAN: Integer Sum
Data Sum /0/

« Ada: Sum : Integer :=0;

« ALGOL 68: Int first := 10;

« Java: Int num =5;

* LISP (Let(xy (z10) (sumQ))...)

51

Summary

- Case sensitivity and the relationship of names to
special words represent design issues of names

- Variables are characterized by the sextuples: name,
address, value, type, lifetime, scope

Binding is the association of attributes with program
entities

- Scalar variables are categorized as: static, stack
dynamic, explicit heap dynamic, implicit heap dynamic

- Strong typing means detecting all type errors

Copyright © 2012 Addison-Wesley. All rights reserved. 1-52

COME 214.

Summary

In this chapter, we see the following concepts being
described

 Variable Naming, Aliases
 Binding and Lifetimes
 Scoping

 Referencing environments
» Named Constants

53

