
COME 214. 1

Chapter 5

Variables:
Names, Bindings, 

and Scope



Chapter 5

Variables:
Names, Bindings, 
Type Checking and 
Scope



COME 214. 3

Introduction

This chapter introduces the fundamental semantic 
issues of variables. 

– It covers the nature of names and special words in 
programming languages, attributes of variables, 
concepts of binding and binding times. 

– It investigates type checking, strong typing and type 
compatibility rules. 

– At the end it discusses named constraints and 
variable initialization techniques.
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Names
Names

Design issues:
Maximum length?

Are connector characters allowed?

Are names case sensitive?

Are special words reserved words or keywords?

Length

FORTRAN I: maximum 6

COBOL: maximum 30

FORTRAN 90 and ANSI C: maximum 31

Ada: no limit, and all are significant

C++: no limit, but implementors often impose one

Connectors

Pascal, Modula-2, and FORTRAN 77 don't allow

Others do
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Names (continued)

• Special characters

– PHP: all variable names must begin with dollar signs

– Perl: all variable names begin with special characters, 
which specify the variable’s type

– Ruby: variable names that begin with @ are instance 
variables; those that begin with @@ are class variables
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Case sensitivity

• Foo = foo?

• The first languages only had upper case

• Case sensitivity was probably introduced by Unix and hence 

C.

• Disadvantage: 
• Poor readability, since names that look alike to a human are different; 

worse in Modula-2 because predefined names are mixed case (e.g. 

WriteCard)

• Advantages:
• Larger namespace, ability to use case to signify classes of variables 

(e.g., make constants be in uppercase)

• C, C++, Java, and Modula-2 names are case sensitive but the 

names in many other languages are not
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Special words

Def: A keyword is a word that is special only in 

certain contexts
– Disadvantage: poor readability

– Advantage: flexibility

Def: A reserved word is a special word that  

cannot be used as a user-defined name
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Variables

• A variable is an abstraction of a memory cell

• Variables can be characterized as a 6-tuple of attributes:

Name: identifier

Address: memory location(s)

Value: particular value at a moment

Type: range of possible values

Lifetime: when the variable accessible

Scope: where in the program it can be accessed
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Variables

• Name - not all variables have them (examples?)

• Address - the memory address with which it is 

associated

• A variable may have different addresses at    different 

times during execution

• A variable may have different addresses at    different 

places in a program

• If two variable names can be used to access the    same 

memory location, they are called aliases

• Aliases are harmful to readability, but they  are useful 

under certain circumstances
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Aliases

• How aliases can be created:

• Pointers, reference variables, Pascal variant 

records, C and C++ unions, and FORTRAN 

EQUIVALENCE (and through parameters -

discussed in  Chapter 8)

• Some of the original justifications for aliases are 

no longer valid; e.g. memory reuse in FORTRAN 

• replace them with dynamic allocation
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Variables Type and Value

Type - determines the range of values of variables and the set 

of operations that are defined for values of that type; in the 

case of floating point, type also determines the precision

Value - the contents of the location with which the variable is 

associated

• Abstract memory cell - the physical cell or collection of 

cells associated with a variable
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lvalue and rvalue

Are the two occurrences of “a” in this expression the 

same?

a := a + 1;

In a sense, 
• The one on the left of the assignment refers to the  location 

of the variable whose name is a;

• The one on the right of the assignment refers to the  value of 

the variable whose name is a;

We sometimes speak of a variable’s lvalue and rvalue 
• The lvalue of a variable is its address

• The rvalue of a variable is its value
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Binding

Def: A binding is an association, such as between an attribute and 

an entity, or between an operation and a symbol

Def: Binding time is the time at which a binding takes place.

Possible binding times:
– Language design time -- e.g., bind operator symbols to operations

– Language implementation time -- e.g., bind floating point type to a 

representation

– Compile time -- e.g., bind a variable to a type in C or Java

– Link time

– Load time--e.g., bind a FORTRAN 77 variable to  memory cell (or a C 

static variable)

– Runtime -- e.g., bind a nonstatic local variable to  a memory cell
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Type Bindings

• Def: A binding is static if it occurs before run 

time and remains unchanged throughout 

program execution.

• Def: A binding is dynamic if it occurs during         

execution or can change during execution of         

the program.

• Type binding issues
• How is a type specified?

• When does the binding take place?    

• If static, type may be specified by either an explicit or an 

implicit declaration
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Variable Declarations
Def: An explicit declaration is a program statement          used for 

declaring the types of variables

Def: An implicit declaration is a default mechanism for specifying 

types of variables (the first appearance of the variable in the 

program)
– E.g.: in Perl, variables of type scalar, array and hash begin with a $, @ or %, 

respectively. 

– E.g.: In Fortran, variables beginning with I-N are assumed to be of type integer.

– E.g.: ML (and other languages) use sophisticated type inference mechanisms

– Fortran, BASIC, Perl, Ruby, JavaScript, and PHP provide implicit declarations 

(Fortran has both explicit and implicit)

Advantages: writability, convenience

Disadvantages: reliability



Explicit/Implicit Declaration (continued)

• Some languages use type inferencing to 
determine types of variables (context)

– C# - a variable can be declared with var and an 
initial value. The initial value sets the type

– Visual BASIC 9.0+, ML, Haskell, F#, and Go use type 
inferencing. The context of the appearance of a 
variable determines its type
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Dynamic Type Binding

• The type of a variable can chance during the course of the 

program and, in general, is re-determined on every assignment.

• Usually associated with languages first implemented via an 

interpreter rather than a compiler.

• Dynamic Type Binding (JavaScript, Python, Ruby, PHP, and 

C# (limited))

• Specified through an assignment statement, e.g. JavaScript
LIST = [2 4 6 8];

LIST = 17.3;

• Advantages:
• Flexibility

• Obviates the need for “polymorphic” types

• Development of generic functions (e.g. sort)

• Disadvantages:
• High cost (dynamic type checking and interpretation)

• Type error detection by the compiler is difficult
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Type Inferencing

• Type Inferencing  is used in some programming languages, 

including ML, Miranda, and Haskell.

• Types are determined from the context of the reference, rather than 

just by assignment statement.

• Legal:

fun circumf(r) = 3.14159 * r * r; // infer r is real

fun time10(x) = 10 * x; // infer x is integer

• Illegal:

fun square(x) = x * x; // can’t deduce anything

• Fixed 

fun square(x) : int = x * x; // use explicit declaration
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Storage Bindings and Lifetime

• Storage Bindings

• Allocation - getting a cell from some pool of 

available cells

• Deallocation - putting a cell back into the pool

• Def: The lifetime of a variable is the time during  

which it is bound to a particular memory cell

• Categories of variables by lifetimes

• Static

• Stack dynamic

• Explicit heap  dynamic

• Implicit heap dynamic
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Static Variables

• Static variables are bound to memory cells before 

execution begins and remains bound to the same 

memory cell throughout execution.

• Examples: 

• all FORTRAN 77 variables

• C static variables 

Advantage: efficiency  (direct addressing),                          

history-sensitive subprogram support

Disadvantage: lack of flexibility,  no recursion!
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Stack Dynamic Variables

• Stack-dynamic variables -- Storage bindings are created 
for variables when their declaration statements are 
elaborated.
(A declaration is elaborated when the executable  
code associated with it is executed)

• If scalar, all attributes except address are statically bound
– e.g. local variables in Pascal and C subprograms (not declared static)

• Advantages:
– allows recursion
– conserves storage

• Disadvantages:
– Overhead of allocation and deallocation
– Subprograms cannot be history sensitive
– Inefficient references (indirect addressing)
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Static and Stack-Dynamic Variables

#include <stdio.h>

main() {
int count = 0;     /* Count is a stack-dynamic variable */

count = count + 1;           

printf(“Sum is %d\n”, sumValue(count));   /* sum = 1 */

count = count + 1;

printf(“Sum is %d\n”, sumValue(count));   /* sum = 3 */

count = count + 1;

printf(“Sum is %d\n”, sumValue(count));    /* sum = 6 */

}

int sumValue(int k)

{

static int total = 0; /* total is a static variable */

total = total + k;

return total;

}
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Explicit heap-dynamic

Explicit heap-dynamic variables are  allocated and deallocated by 

explicit directives, specified by the programmer, which take 

effect during execution

• Referenced only through pointers or references

• e.g. dynamic objects in C++ (via new and delete), all 

objects in Java

Advantage: provides for dynamic storage management

Disadvantage: inefficient and unreliable

Example:
int *intnode;
. . .
intnode = new int;
. . .
delete intnode;
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Implicit heap-dynamic

Implicit heap-dynamic variables -- Allocation and 

deallocation caused by assignment statements 

and types not determined until assignment.

e.g. all variables in APL; all strings and arrays in 

Perl, JavaScript, and PHP

Advantage:
– flexibility

Disadvantages:
– Inefficient, because all attributes are dynamic

– Loss of error detection
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Variable Attributes: Scope

• The scope of a variable is the range of statements over which 
it is visible

• The scope rules of a language determine how references to 
names are associated with variables

int x, y;

int scope_function (int y) {

int x;

x = y + 3;  which x?

}

• The local variables of a program unit are those that are 
declared in that unit

• The nonlocal variables of a program unit are those that are 
visible in the unit but not declared there

• Global variables are a special category of nonlocal variables
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Variable Scope

• The scope of a variable is the range of  statements in a 

program over which it’s visible

• Typical cases:

• Explicitly declared => local variables

• Explicitly passed to a subprogram => parameters

• The nonlocal variables of a program unit are those that 

are visible but not declared.

• Global variables => visible everywhere.

• The scope rules of a language determine how references 

to names are associated with variables.

• The two major schemes are static scoping and dynamic

scoping
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Static Scope
• Aka “lexical scope”

• Based on program text and can be determined prior to 

execution (e.g., at compile time)

• To connect a name reference to a variable, you (or the 

compiler) must find the declaration

• Search process: search declarations, first locally, then in 

increasingly larger enclosing scopes, until one is found 

for the given name

• Enclosing static scopes (to a specific scope) are called 

its static ancestors; the nearest static ancestor is called a 

static parent
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Static Scoping

Example in Ada:

procedure Big is 

X: Integer;

procedure Sub1 is

begin -- of Sub1

… X …

end; -- of Sub1

procedure Sub2 is

X: Integer;

begin -- of Sub1

… X …

end; -- of Sub1

begin -- of Big

…

end; -- of Big

First search for declaration of 

X in Sub1

If no declaration found, search 

continues to the next larger 

enclosing unit



COME 214. 29

Blocks

• A block is a section of code in which local 

variables are allocated/deallocated at the 

start/end of the block.

• Provides a method of creating static scopes 

inside program units 

• Introduced by ALGOL 60 and found in most 

PLs.

• Variables can be hidden from a unit by having 

a "closer" variable with same name
• C++ and Ada allow access to these "hidden" variables

In Ada:  unit.name
In C++: class_name::name
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Examples of Blocks

C and C++:

for (...) {

int index;

...

}

Ada:
declare LCL : FLOAT;

begin

...

end

Common Lisp:

(let ((a 1)

(b foo)

(c))

(setq a (* a a))

(bar a b c))
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Static scoping example

MAIN                                                 MAIN

A                                        B            A                                      B

C           D                                 E             C                     D                        E

MAIN

A

C

D

B     

E

MAIN

A                                            B

C             D                                     E

MAIN calls A and B

A calls C and D

B calls A and E
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Evaluation of Static Scoping
Suppose the spec is changed so that D must now

access some data in B

Solutions:

1. Put D in B (but then C can no longer call it and D cannot access 

A's variables)

2. Move the data from B that D needs to MAIN (but then all 

procedures can access them)

Same problem for procedure access!

Overall: static scoping often encourages many globals



Declaration Order

• C99, C++, Java, and C# allow variable 
declarations to appear anywhere a statement 
can appear

– In C99, C++, and Java, the scope of all local 
variables is from the declaration to the end of the 
block

– In C#, the scope of any variable declared in a block is 
the whole block, regardless of the position of the 
declaration in the block

• However, a variable still must be declared before it can 
be used
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The LET Construct

• Most functional languages include some form 
of let construct

• A let construct has two parts
– The first part binds names to values

– The second part uses the names defined in the first part

• In Scheme:
(LET (

(name1 expression1)

…

(namen expressionn)

)
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The LET Construct (continued)

• In ML:
let

val name1 = expression1

…

val namen = expressionn

in

expression

end;

• In F#:

– First part: let left_side = expression

– (left_side is either a name or a tuple pattern)

– All that follows is the second part
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Declaration Order (continued)

• In C++, Java, and C#, variables can be declared 
in for statements

– The scope of such variables is restricted to the for
construct
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Global Scope

• C, C++, PHP, and Python support a 
program structure that consists of a 
sequence of function definitions in a file

– These languages allow variable declarations to 
appear outside function definitions

• C and C++have both declarations (just 
attributes) and definitions (attributes and 
storage)

– A declaration outside a function definition 
specifies that it is defined in another file
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Global Scope (continued)

• PHP 

– Programs are embedded in HTML markup 
documents, in any number of fragments, some 
statements and some function definitions

– The scope of a variable (implicitly) declared in a 
function is local to the function

– The scope of a variable implicitly declared outside 
functions is from the declaration to the end of the 
program, but skips over any intervening functions

• Global variables can be accessed in a function through 
the $GLOBALS array or by declaring it global
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Global Scope (continued)

• Python

– A global variable can be referenced in functions, but 
can be assigned in a function only if it has been 
declared to be global in the function
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Evaluation of Static Scoping

• Works well in many situations

• Problems:

– In most cases, too much access is possible

– As a program evolves, the initial structure is 
destroyed and local variables often become global; 
subprograms also gravitate toward become global, 
rather than nested
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Dynamic Scope

• Based on calling sequences of program units, not their textual 

layout (temporal versus spatial)

• References to variables are connected to declarations by 

searching back through the chain of subprogram calls that forced 

execution to this point

• Used in APL, Snobol and LISP
– Note that these languages were all (initially) implemented as interpreters rather 

than compilers.

• Consensus is that PLs with dynamic scoping leads to programs 

which are difficult to read and maintain.
– Lisp switch to using static scoping as it’s default circa 1980, though dynamic 

scoping is still possible as an option.
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Dynamic Scoping

• Scope of variable is based on calling sequence of 
subprograms

procedure Big is 

X: Integer;

procedure Sub1 is

begin -- of Sub1

… X …

end; -- of Sub1

procedure Sub2 is

X: Integer;

begin -- of Sub1

… X …

end; -- of Sub1

begin -- of Big

…

end; -- of Big

Calling sequence:

Big calls Sub2

Sub2 calls Sub1

• X in Sub1 refers to the 

declaration in Sub2 

• Sub2 is the dynamic parent 

of Sub1
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Static vs. dynamic scope

Define MAIN

declare x

Define SUB1

declare x 

...

call SUB2

...

Define SUB2

...

reference x

...

...

call SUB1

...

MAIN calls SUB1

SUB1 calls SUB2

SUB2 uses x

• Static scoping - reference to x is 

to MAIN's x

• Dynamic scoping - reference to x 

is to SUB1's x
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Dynamic Scoping

Evaluation of Dynamic Scoping:

• Advantage: convenience

• Disadvantage:
1. While a subprogram is executing, its variables are visible 

to all subprograms it calls

2. Impossible to statically type check

3. Poor readability- it is not possible to statically

determine the type of a variable
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Scope vs. Lifetime

• While these two issues seem related, they 
can differ

• In Pascal, the scope of a local variable and 
the lifetime of a local variable seem the 
same

• In C/C++, a local variable in a function 
might be declared static but its lifetime 
extends over the entire execution of the 
program and therefore, even though it is 
inaccessible, it is still in memory 
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Referencing Environments

• The referencing environment of a statement is the 

collection of all names that are visible in the statement

• In a static scoped language, that is the local variables plus 

all of the visible variables in all of the enclosing scopes.  

See book example (p. 220)

• A subprogram is active if its execution has begun

but has not yet terminated

• In a dynamic-scoped language, the referencing

environment is the local variables plus all visible

variables in all active subprograms.  See book example (p. 

221)
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Referencing Environment (static scoping)

procedure Example is

A, B: Integer;

…

procedure Sub1 is

X, Y: Integer;

begin -- of Sub1

…

end; -- of Sub1

procedure Sub2 is

X: Integer;

procedure Sub3 is

X: Integer;

begin -- of Sub3

… 

end -- of Sub3

begin -- of Sub2

…

end -- of Sub2

begin -- of Example

…

end -- of Example

1

2

3

4

Referencing Environment:

1: X and Y of Sub1, A and B of 

Example

2: X of Sub3, (X of Sub2 is hidden),

A and B of Example

3: X of Sub2, A and B of Example

4: A and B of Example

(Example in Ada )
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Referencing Environments (assuming dynamic scoping)

void sub1() {

int a, b;

…

}   /* end of sub1 */

void sub2() {

int b, c;

…

sub1

}   /* end of sub2 */

void main() {

int c, d;

…

sub2();

}   /* end of main */

1

2

3

Referencing Environment:

1: a and b of sub1, c of sub2, d of 

main, (c of main and b of sub2 are 

hidden)

2: b and c of sub2, d of main, (c of 

main is hidden)

3: c and d of main
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Named Constants

• A named constant is a variable that is bound to a value 

only when it is bound to storage.

• The value of a named constant can’t be changed while 

the program is running.

• The binding of values to named constants can be

either static (called manifest constants) or dynamic

• Languages: 
Pascal: literals only

Modula-2 and FORTRAN 90: constant-valued expressions

Ada, C++, and Java: expressions of any kind

• Advantages: increased readability and modifiability 

without loss of efficiency
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Example in Pascal

Procedure example;

type a1[1..100] of integer;

a2[1..100] of real;

... 

begin

...

for I := 1 to 100 do 

begin ... end;

...

for j := 1 to 100 do

begin ... end;

...

avg = sum div 100;

...

Procedure example;

type const MAX 100;

a1[1..MAX] of integer;

a2[1..MAX] of real;

... 

begin

...

for I := 1 to MAX do 

begin ... end;

...

for j := 1 to MAX do

begin ... end;

...

avg = sum div MAX;

...
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Variable Initialization

• For convenience, variable initialization can 
occur prior to execution

• FORTRAN:   Integer Sum
Data Sum /0/ 

• Ada:  Sum : Integer :=0;

• ALGOL 68:  int first := 10;

• Java:  int num = 5;

• LISP  (Let (x y (z 10) (sum 0) ) ... )
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Summary

• Case sensitivity and the relationship of names to 
special words represent design issues of names

• Variables are characterized by the sextuples: name, 
address, value, type, lifetime, scope

• Binding is the association of attributes with program 
entities

• Scalar variables are categorized as: static, stack 
dynamic, explicit heap dynamic, implicit heap dynamic

• Strong typing means detecting all type errors
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Summary

In this chapter, we see the following concepts being 
described

• Variable Naming, Aliases

• Binding and Lifetimes

• Scoping

• Referencing environments

• Named Constants


