T
CONCEPTS OF

Programming
Chapter 6 Languages

TENTH EDITION

Data Types

Chapter 6 Topics

Introduction

Primitive Data Types
Character String Types
User-Defined Ordinal Types
Array Types

Associative Arrays

Record Types

Tuple Types

List Types

Union Types

Pointer and Reference Types
Type Checking

Strong Typing

Type Equivalence

Theory and Data Types

Copyright © 2012 Addison-Wesley. All rights reserved.

Introduction

A data type defines a collection of data
objects and a set of predefined operations
on those objects

A descriptor is the collection of the
attributes of a variable

An object represents an instance of a
user-defined (abstract data) type

One design issue for all data types: What
operations are defined and how are they
specified?

Copyright © 2012 Addison-Wesley. All rights reserved.

1-3

Data Types
[—
» A data type defines
= a collection of data objects, and
= a set of predefined operations on the objects
= EX:

type: integer
operations: +, -, *, /, %, "

» Evolution of Data Types

= Early days:

= all programming problems had to be modeled using only a few data
types
= FORTRAN 1 (1957) provides INTEGER, REAL, arrays

= Nowadays:
= Users can define abstract data types (representation + operations)

Data Types

[
“* Primitive Types
** Strings
» Records
“»*uUnions
“» Arrays
»» Associative Arrays
“» Sets
*» Pointers

Primitive Data Types

—

“» Almost all programming languages provide a set of
primitive data types

“* Primitive data types: Those not defined in terms of
other data types

“* Some primitive data types are merely reflections of
the hardware

¢ Others require only a little non-hardware support for
their implementation

Copyright © 2012 Addison- 1-6
Wesley. All rights reserved.

Primitive Data Types

—

» Those not defined in terms of other data types

= Numeric types
= [nteger
= Floating point
= decimal

= Boolean types
= Character types

Primitive Data Types: Integer

—

“» Almost always an exact reflection of the hardware
so the mapping is trivial

“+ There may be as many as eight different integer
types in a language

*» Java’s signed integer sizes: byte, short, int,
long

Copyright © 2012 Addison- 1-8
Wesley. All rights reserved.

Representing Negative Integers

+ (-1) =7 1
1+(D=" 0000 0001
Ones complement, 8 bits 1111 1111

“ +1 15 0000 0001
% -11s 1111 1110

<% |f we use natural method of Twos complement, 8 bits
summation we get sum 1111 < +11s 0000 0001
1111 % -1is1111 1111
Y rYre re re re re s »» If we use the natural
222222&1— method we get sum 0000
AR ARARARARARANA 0000 (and carry 1 which we
a1 disregard)

Primitive Data Types: Floating Point

[—
*»» Model real numbers, but only as approximations

¢ Languages for scientific use support at least two
floating-point types (e.g., £loat and double,

sometimes more
“» Usually exactly like the hardware, but not always
*» IEEE Floating-Point

Standard 754 S E—

(@

11 bits 52 bits

Exponent Fraction

ALSign bit

Copyright © 2012 Addison- 1-10
Wesley. All rights reserved.

(b)

Floating Point

[—
“* Floating Point
= Approximate real numbers

= Note: even 0.1 cannot be represented exactly by a finite number
of of binary digits!

= Loss of accuracy when performing arithmetic operation

= Languages for scientific use support at least two floating-
point types; sometimes more

1.63245 x 10°

= Precision: accuracy of the fractional part
= Range: combination of range of fraction & exponent

= Most machines use IEEE Floating Point Standard 754
format

Floating Point Representation

I —
**Numerical Form
->-15M 2E
= Sign bit s determines whether number is negative or positive

= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

“*Encoding

S I exp I frac

= MSB Is sign bit
~exp field encodes E
= frac field encodes M

Floating Point Representation

—
“*Encoding

s I exp I frac

= MSB Is sign bit

= exp field encodes E

= frac field encodes M

s Sizes

= Single precision: 8 exp bits, 23 frac bits
= 32 bits total

= Double precision: 11 exp bits, 52 frac bits
= 64 bits total

= Extended precision: 15 exp bits, 63 frac bits

= Only found in Intel-compatible machines

= Stored in 80 bits
> 1 bit wasted

Floating Point Puzzle

—

True or False?

* x == (int) (float) x True
* x == (int) (double) x True
int x = 1; e f == (float) (double) f True
float £ = 0.1; e d == (float) d False
double d = 0.1; e f == -(-f); True
e d>f False
e —-f > -d False
e £ >d True
e -d > -f True
e d == False

(d+£f)-d == £ True

Data Types in C

—

Memory Format
Data Type (bytes) Range Specifier
short int 2 -32,768 to 32,767 %hd
o)
unsigned short int |2 0 to 65,535 fohu
unsigned int 4 0 to 4,294,967,295 %u
int 4 -2,147,483,648 to %d
2,147,483,647

: -2,147,483,648 to 0
long int 4 2,147,483,647 ld
unsigned long int (4 0 to 4,294,967,295 %Ilu

https://en.wikipedia.org/wiki/C_data_types

Data Types in C

—

Format
Data Type Memory (bytes) [Range Specifier
long long int 8 -(2763) to (2"63)-1 %lId
unsigned long long 8 0to %Illu
int 18,446,744,073,709,551,615
signed char 1 -128 to 127 %cC
unsigned char 1 0 to 255 %cC

o)
float 4 1.2E-38 to 3.4E+38 /ot

0
double 8 1.7E-308 to 1.7E+308 oIt

o)
long double 16 3.4E-4932 to 1.1E+4932 LT

Data Types in Java

 There are two types of data types in Java:
1.Primitive data types: The primitive data types include boolean, char, byte,
short, int, long, float and double.
2.Non-primitive data types: The non-primitive data types
include Classes, Interfaces, and Arrays.

Data Type
Primitive Non-Primitive
/\ —— String
Boolean Numeric Array
A — etc.
Character yggral\
Integer Floating-point

boolean chrrar byte short int long float double

Java Primitive Data Types

—

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to
2,147,483,647

long 8 bytes Stores whole numbers from -
9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7
decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15
decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores values from “\u0000’ (0) to “\uffff’ (65535).

The char data type is a single 16-bit Unicode
character.

Primitive Data Types: Complex

—

»» Some languages support a complex type, e.g., C99,
Fortran, and Python

¢ Each value consists of two floats, the real part and
the imaginary part

¢ Literal form (in Python):
(7 + 35), Where 7 1s the real part and 3 Is the
Imaginary part

Copyright © 2012 Addison- 1-19
Wesley. All rights reserved.

Decimal Types

—

% For business applications ($$$) — e.g., COBOL

¢ Store a fixed number of decimal digits, with the decimal
point at a fixed position in the value
“»» Advantage
= can precisely store decimal values
» Disadvantages

= Range of values is restricted because no exponents are allowed

= Representation in memory is wasteful
= Representation is called binary coded decimal (BCD)

decimal

0001 BCD

Comparison of COBOL and Java Data Types

—

fr?/\;aePrlmltlve Description Java Data Range COBOL Data Type | COBOL Data Range
boolean unsigned 8 bits [O (false) or 1 (true) PIC 9(4) BINARY 0to 255
byte signed 8 bits -128 to 127 PIC X -128 to 127
- unsigned 16 0 ("\u0000') to 65535 PIC N USAGE 0 ("\u0000') to
bits ("\uffff') NATIONAL 65535 ("\uffff')
short signed 16 bits -32768 to 32767 PIC S9(4) BINARY ! |-32768 to 32767
: . . -2147483648 to 1 | -2147483648 to
int signed 32 bits 2147483647 PIC S9(9) BINARY 2147483647
. . -9223372036854775808 | R AL
long signed 64 bits t0 9223372036854775807 PIC S9(18) BINARY ;323372036854775807
. 1.40239846e-45f to 0.14012985e-44 to
float 32 bits 3.40282347e+38f USAGE COMP-1 1 3 34028235639
4.94065645841246544e- .111253692925360
. 324 to 09e-307 to
double 64 bits 1.79769313486231570e+3 | > Ct COMP-2 1 1 99769313486231
08 55e+309
void n/a n/a n/a n/a

Boolean Types

[—
¢ Could be implemented as bits, but often as bytes

¢ Introduced in ALGOL 60

“* Included In most general-purpose languages
designed since 1960
“* Ansi C (1989)

= all operands with nonzero values are considered true, and
zero is considered false

“» Advantage: readability

Character Types

[—
¢ Characters are stored in computers as numeric codings

¢ Traditionally use 8-bit code ASCII, which uses 0 to 127
to code 128 different characters

+» |SO 8859-1 also use 8-bit character code, but allows
256 different characters

= Used by Ada

¢+ 16-bit character set named Unicode (UCS-2)
= Includes Cyrillic alphabet used in Serbia, and Thai digits
= First 128 characters are identical to ASCI|I
= used by Java and C#
¢ 32-bit Unicode (UCS-4)
= Supported by Fortran, starting with 2003

Character String Types

R
¢ Values consist of sequences of characters
¢+ Design Issues:
= Is it a primitive type or just a special kind of character array?
= |s the length of objects static or dynamic?
¢ Operations:
= Assignment
= Comparison (=, >, etc.)
= Catenation
= Substring reference
= Pattern matching
s Examples:
= Pascal

= Not primitive; assignment and comparison only

= Fortran 90

= Somewhat primitive; operations include assignment, comparison, catenation,
substring reference, and pattern matching

Character Strings

]
“»» Examples
= Ada

N := N1 & N2 (catenation)
N(2..4) (substring reference)
= Cand C++

= Not primitive; use char arrays and a library of functions that provide
operations

= SNOBOLA4 (a string manipulation language)
= Primitive; many operations, including elaborate pattern matching
= Perl, JavaScript, Ruby, and PHP
= Patterns are defined in terms of regular expressions; a very powerful
facility
= Java
= String class (not arrays of char); Objects are immutable
= StringBuffer is a class for changeable string objects

Character Strings

]
¢ String Length
= Static - FORTRAN 77, Ada, COBOL

= e.g. (FORTRAN 90) CHARACTER (LEN = 15) NAME:

= Limited Dynamic Length — C and C++
= actual length is indicated by a null character

= Dynamic — SNOBOL4, Perl, JavaScript
¢ Evaluation (of character string types)
= Alid to writability
= As a primitive type with static length, they are inexpensive to provide
= Dynamic length is nice, but is it worth the expense?

“* Implementation

Limited dynamic string

Static string Maximum length

Length Current length

Address Address

User-Defined Ordinal Types

“+ An ordinal type is one in which the range of possible
values can be easily associated with the set of
positive integers

“»» Examples of primitive ordinal types in Java

= integer
= char

= boolean

Copyright © 2012 Addison- 1-27
Wesley. All rights reserved.

Enumeration Types
[——
» All possible values, which are named constants, are
provided in the definition (user enumerates all the
possible values, which are symbolic constants)

“ C# example
enum days {mon, tue, wed, thu, fri, sat, sun};
¢ Design issues
= |s an enumeration constant allowed to appear in more than

one type definition, and if so, how is the type of an
occurrence of that constant checked?

= Are enumeration values coerced to integer?
= Any other type coerced to an enumeration type?

Copyright © 2012 Addison- 1-28
Wesley. All rights reserved.

Enumeration Data Types

—
s Examples
= Pascal

= cannot reuse constants; can be used for array subscripts, for variables, case
selectors; can be compared

= Ada

= constants can be reused (overloaded literals); disambiguate with context or
type name’(one of them) (e.g, Integer’Last)

= Cand C++

= enumeration values are coerced into integers when they are put in integer
context

= Java

= Java 4.0 and previous versions do not include an enumeration type, but
provides the Enumeration interface

= Java 5.0 includes enumeration type
= can implement them as classes

class colors {
public final int red = 0;
public final int blue = 1;

}

Java enum

—

A Java Enum is a special Java type used to define collections of
constants. More precisely, a Java enum type Is a special kind of
Java class. An enum can contain constants, methods etc. Java
enums were added in Java 5.

public enum Level {
HIGH,
MEDIUM,
LOW

¥

Level level = Level. HIGH:

Java enum

—

You can add fields to a Java enum. Thus, each constant enum value gets these

fields. The field values must be supplied to the constructor of the enum when
defining the constants. Here is an example:

public enum Level {
HIGH (3), //calls constructor with value 3
MEDIUM(2), //calls constructor with value 2
LOW (1) /lcalls constructor with value 1
; I/ semicolon needed when fields / methods follow

private final int levelCode;

public Level(int levelCode) {
this.levelCode = levelCode;
}

}

Subrange Data Types

—

“+ An ordered contiguous subsequence of an ordinal type
= e.g., 12..14 is a subrange of integer type
= Design Issue: How can they be used?

= Examples:

= Pascal
» subrange types behave as their parent types;

» can be used as for variables and array indices
type pos =0 .. MAXINT;

= Ada

> Subtypes are not new types, just constrained existing types (so they are compatible); can be used
as in Pascal, plus case constants
subtype POS_TYPE is INTEGER range 0 ..INTEGER'LAST;

type Days is (mon, tue, wed, thu, fri, sat, sun);
subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Dayl: Days;

Day2: Weekday;

Day2 := Dayl;

*» Evaluation
= Aid to readability - restricted ranges add error detection

Implementation of Ordinal Types

“+ Enumeration types are implemented as integers

¢ Subrange types are the parent types with code
Inserted (by the compiler) to restrict assignments to
subrange variables

Arrays

“»+ An aggregate of homogeneous data elements in which
an individual element is identified by its position in the
aggregate, relative to the first element

» Design Issues:
= What types are legal for subscripts?

= Are subscripting expressions in element references range
checked?

= When are subscript ranges bound?

= When does allocation take place?

= What is the maximum number of subscripts?
= Can array objects be initialized?

= Are any kind of slices allowed?

Arrays

¢ Indexing Is a mapping from indices to elements
= map(array_name, index_value_list) — an element

“* Index Syntax
= FORTRAN, PL/I, Ada use parentheses: A(3)
= most other languages use brackets: A[3]

¢ Subscript Types:
= FORTRAN, C - integer only
= Pascal - any ordinal type (integer, boolean, char, enum)
= Ada - integer or enum (includes boolean and char)
= Java - integer types only

Arrays

¢ Number of subscripts (dimensions)
= FORTRAN I allowed up to three
= FORTRAN 77 allows up to seven
= Others - no limit

s Array Initialization

= Usually just a list of values that are put in the array in the order in which
the array elements are stored in memory

= Examples:

= FORTRAN - uses the DATA statement

Integer List(3)
Data List /0, 5, 5/

= C and C++ - put the values in braces; can let the compiler count them
int stuff [] = {2, 4, 6, 8};
= Ada - positions for the values can be specified
SCORE :array (1..14,1..2) :=
(1=> (24, 10), 2 => (10, 7),
3 =>(12, 30), others => (0, 0));
= Pascal does not allow array initialization

Arrays

“» Array Operations
= Ada

= Assignment; RHS can be an aggregate constant or an array name
= Catenation between single-dimensioned arrays

- FORTRAN 95
= Includes a number of array operations called elementals because they are
operations between pairs of array elements
» E.g., add (+) operator between two arrays results in an array of the sums of
element pairs of the two arrays
= Slices
= Aslice is some substructure of an array

= FORTRAN 90
INTEGER MAT (1:4,1:4)
MAT(1 : 4, 1) - the first column
MAT(2, 1 : 4) - the second row

= Ada - single-dimensioned arrays only
LIST(4..10)

Arrays

“* Implementation of Arrays

= Access function maps subscript expressions to an address in
the array

= Single-dimensioned array Array

Element type

address(list[k])
= address(list[lower_bound])

+ (k-1)*element_size

Index type

Index lower bound

= (address[lower_bound] — element_size) Index upper bound
+ (k * element_size) Address
= Multi-dimensional arrays 3 47
= Row major order: 3,4,7,6,2,5,1, 3,8 G 2 5
= Column majororder 3,6,1,4,2,3,7,5,8

1 3 8

Subscript Binding and Array Categories

—

“»Static: subscript ranges are statically bound
and storage allocation is static (before run-
time)

= Advantage: efficiency (no dynamic allocation)

*» Fixed stack-dynamic: subscript ranges are statically
bound, but the allocation is done at declaration time

= Advantage: space efficiency

Copyright © 2012 Addison- 1-39
Wesley. All rights reserved.

Subscript Binding and Array Categories (continued)
[——

+»» Stack-dynamic: subscript ranges are dynamically
bound and the storage allocation is dynamic (done at
run-time)

= Advantage: flexibility (the size of an array need not be
known until the array is to be used)

» Fixed heap-dynamic: similar to fixed stack-dynamic:
storage binding is dynamic but fixed after allocation
(i.e., binding is done when requested and storage Is
allocated from heap, not stack)

Copyright © 2012 Addison- 1-40
Wesley. All rights reserved.

Subscript Binding and Array Categories (continued)
[——

“* Heap-dynamic: binding of subscript ranges and
storage allocation Is dynamic and can change any
number of times

= Advantage: flexibility (arrays can grow or shrink during
program execution)

1-41

Subscript Binding and Array Categories (continued)
[——

¢ C and C++ arrays that include static modifier are
static

* C and C++ arrays without static modifier are fixed
stack-dynamic

¢ C and C++ provide fixed heap-dynamic arrays

¢ C# Includes a second array class arrayrist that
provides fixed heap-dynamic

» Perl, JavaScript, Python, and Ruby support heap-
dynamic arrays

Copyright © 2012 Addison- 1-42
Wesley. All rights reserved.

Array Initialization

“»* Some language allow initialization at the time of
storage allocation

= C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

= Character strings in C and C++

char name [] = "freddie'";
= Arrays of strings in C and C++
char *names [] = {"Bob", "Jake", "Joe"];

= Java Initialization of String objects

String[] names = {"Bob", "Jake'", "Joe"};

Copyright © 2012 Addison- 1-43
Wesley. All rights reserved.

Array Initialization

¢ C-based languages

» int list [] = {1, 3, 5, 7}
= char *names [] = {"Mike", "Fred"”, "Mary Lou'"};
**Ada

= List : array (1..5) of Integer :=
(1 => 17, 3 => 34, others => 0);

“*Python
= List comprehensions
list = [x ** 2 for x in range(1l2) 1if x % 3 ==
O]

puts [0, 9, 36, 81]iInlist

Copyright © 2012 Addison- 1-44

Wesley. All rights reserved.

Heterogeneous Arrays

» A heterogeneous array Is one in which the elements
need not be of the same type

¢ Supported by Perl, Python, JavaScript, and Ruby

Copyright © 2012 Addison- 1-45
Wesley. All rights reserved.

Arrays Operations

“»» APL provides the most powerful array processing operations
for vectors and matrixes as well as unary operators (for
example, to reverse column elements)

“* Ada allows array assignment but also catenation

¢ Python’s array assignments, but they are only reference
changes. Python also supports array catenation and element
membership operations

“* Ruby also provides array catenation

¢ Fortran provides elemental operations because they are
between pairs of array elements

= For example, + operator between two arrays results in an array of the
sums of the element pairs of the two arrays

Copyright © 2012 Addison- 1-46
Wesley. All rights reserved.

Rectangular and Jagged Arrays

¢ A rectangular array is a multi-dimensioned array in which all
of the rows have the same number of elements and all
columns have the same number of elements

¢ A jagged matrix has rows with varying number of elements

= Possible when multi-dimensioned arrays actually appear as arrays of
arrays

» C, C++, and Java support jagged arrays

*» Fortran, Ada, and C# support rectangular arrays (C# also
supports jagged arrays)

L)

¢ 00

)

L)

Copyright © 2012 Addison- 1-47
Wesley. All rights reserved.

Slices

—

A slice Is some substructure of an array; nothing
more than a referencing mechanism

¢ Slices are only useful in languages that have array
operations

Copyright © 2012 Addison- 1-48
Wesley. All rights reserved.

Slice Examples
|
“* Python
vector = [2, 4, o6, 8, 10, 12, 14, 16]
mat = [[1/ 2/ 3]/ [4/ 5/ 6]/ [7/ 8/ 9]]

vector (3:6) IS athree-element array
mat [0] [0:2] IS the first and second element of the first row
of mat
“* Ruby supports slices with the s1ice method

list.slice (2, 2) returnsthe third and fourth elements of
list

Copyright © 2012 Addison- 1-49
Wesley. All rights reserved.

Implementation of Arrays

¢ Access function maps subscript expressions to an
address in the array

¢ Access function for single-dimensioned arrays:
address(list[k]) = address (list[lower _bound])
+ ((k-lower_bound) * element_size)

Copyright © 2012 Addison- 1-50
Wesley. All rights reserved.

Accessing Multi-dimensioned Arrays
[—

*» Two common ways:
= Row major order (by rows) — used in most languages
= Column major order (by columns) — used in Fortran
= A compile-time descriptor

for a multidimensional e
array Element type
Index type
Number of dimensions
Index range 0
Index range n — 1
Address
Copyright © 2012 Addison- 1-51

Wesley. All rights reserved.

Locating an Element in a Multi-dimensioned Array
[————————————

- General format
Location (a[l,j]) = address of a [row_Ib,col_lb] +
(((I = row_lb) * n) + (j - col_lb)) * element_size

Copyright © 2012 Addison- 1-52
Wesley. All rights reserved.

Compile-Time Descriptors

—

Multidimensioned array

Array
Element type
Element type Index type
Index type Number of dimensions

Index lower bound Index range 1

Index upper bound

Index range n

Address

Address

Single-dimensioned array Multidimensional array

Copyright © 2012 Addison- 1-53
Wesley. All rights reserved.

Assoclative Arrays

<+ An associative array Is an unordered collection of data elements
that are indexed by an equal number of values called keys

= User-defined keys must be stored
¢ Design issues:
- What is the form of references to elements?
- Is the size static or dynamic?
< Built-in type in Perl, Python, Ruby, and Lua
= In Lua, they are supported by tables
% EX: Python

thisdict = { thisdict = {
“brand”: "Ford", "brand": "Ford",
"model”: "Mustang", "electric": False,
"year": 1964 "year": 1964,
} "colors": ["red", "white", "blue"]
print(thisdict["brand"]) }
Copyright © 2012 Addison- 1-54

Wesley. All rights reserved.

Assoclative Arrays

«¢ Structure and Operations in Perl
= Names begin with %
= Literals are delimited by parentheses
= %h1_temps = ("Monday" => 77, "Tuesday" =>79,...);
= Subscripting iIs done using braces and keys
= e.g., $hi_temps{"Wednesday"} = 83;

++» Elements can be removed with delete
= e.g., delete $hi_temps{''Tuesday"};

Record Types

—

A record Is a possibly heterogeneous aggregate of
data elements in which the individual elements are
Identified by names

¢ Design Issues:
= What is the syntactic form of references to the field?
= Are elliptical references allowed

Copyright © 2012 Addison- 1-56
Wesley. All rights reserved.

Records

—

» Record Definition Syntax

= COBOL uses level numbers to show nested records:
others use recursive definitions
= COBOL

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).
02 HOURLY-RATE PICTURE IS 99V/99.

Level numbers (01,02,05) indicate their relative values in the
hierarchical structure of the record

PICTURE clause show the formats of the field storage locations

X(20): 20 alphanumeric characters
99V99: four decimal digits with decimal point in the middle

Records

—

¢ Ada:

Type Employee_Name_Type is record
First: String (1..20);
Middle: String (1..10);
Last: String (1..20);

end record,;

type Employee Record Type is record
Employee Name: Employee Name_Type;
Hourly Rate: Float;

end record,

Employee Record: Employee Record_Type;

Records

T —
+* References to Record Fields

+» COBOL field references

field name OF record name 1 OF ... OF record name n
e.g. MIDDLE OF EMPLOYEE- NAME OF EMPLOYEE_RECORD

“* Fully qualified references must include all intermediate
record names

» Elliptical references allow leaving out record names as
long as the reference Is unambiguous

- e.¢., the following are equivalent:
FIRST, FIRST OF EMPLOYEE-NAME, FIRST OF EMPLOYEE-RECORD

Records

[—
»* Operations
= Assignment

= Pascal, Ada, and C allow it if the types are identical
» In Ada, the RHS can be an aggregate constant

= Initialization
= Allowed in Ada, using an aggregate constant

= Comparison
= |In Ada, = and /=; one operand can be an aggregate constant

= MOVE CORRESPONDING

= |n COBOL - it moves all fields in the source record to fields with
the same names in the destination record

Comparing Records to Arrays

¢ Records are used when collection of data values Is
heterogeneous

¢+ Access to array elements Is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

“»* Dynamic subscripts could be used with record
field access, but it would disallow type checking
and 1t would be much slower

Implementation of Record Type

Record

Name

Offset address relative to Field 1 4 Type

the beginning of the records Offset
is associated with each field -

Name

Fieldn < Type

Offset

Address

Copyright © 2012 Addison- 1-62
Wesley. All rights reserved.

Tuple Types
[—
“» A tuple Is a data type that is similar to a record,
except that the elements are not named

“+Used in Python, ML, and F# to allow functions to
return multiple values

= Python
= Closely related to its lists, but immutable
= Create with a tuple literal
myTuple = (3, 5.8, 'apple')
Referenced with subscripts (begin at 1)
Catenation with + and deleted with del

Copyright © 2012 Addison- 1-63
Wesley. All rights reserved.

Tuple Types (continued)

—

ML
val myTuple = (3, 5.8, 'apple');
- Access as follows:
#1 (myTuple) IS the first element
- A new tuple type can be defined
type 1ntReal = int * real;
o F#
let tup = (3, 5, 7)

let a, b, ¢ = tup Thisassignsatupletoa
tuple pattern (a, b, c)

1-64

List Types

—

¢ Lists in LISP and Scheme are delimited by
parentheses and use no commas

(a8 c D) and (a (8 ¢) D)

¢ Data and code have the same form
As data, (2 B c) Is literally what it is
As code, (» B ¢) Is the function 2 applied to the
parameters B and c

¢ The interpreter needs to know which a list is, so if it
IS data, we quote It with an apostrophe
(A B C) Is data

Copyright © 2012 Addison- 1-65
Wesley. All rights reserved.

List Types (continued)

—

*¢ List Operations in Scheme
= CAR returns the first element of its list parameter
(CAR ' (A B C)) returns a

= CDR returns the remainder of its list parameter after the first
element has been removed

(CDR '(A B C)) returns (¢)

- CONS puts its first parameter into its second parameter, a
list, to make a new list

(CONS 'A (B C)) returns (A B C)
- LIsT returns a new list of its parameters
(LIST 'A 'B '(C D)) returns (» B (C D))

Copyright © 2012 Addison- 1-66
Wesley. All rights reserved.

List Types (continued)

—

¢ List Operations in ML

= LIsts are written in brackets and the elements are separated
by commas

= LIst elements must be of the same type
= The Scheme cons function is a binary operator in ML, : :
3 :: [5, 7, 9] evaluatesto (3, 5, 7, 9]

= The Scheme car and cpr functions are named hd and t1,
respectively

Copyright © 2012 Addison- 1-67
Wesley. All rights reserved.

List Types (continued)

—

o F# Lists

= Like those of ML, except elements are separated by
semicolons and hd and t1 are methods of the 1.ist class

“»* Python Llists
= The list data type also serves as Python’s arrays

= Unlike Scheme, Common LISP, ML, and F#, Python’s lists
are mutable

= Elements can be of any type
= Create a list with an assignment

myList = [3, 5.8, "grape"]

Copyright © 2012 Addison- 1-68
Wesley. All rights reserved.

List Types (continued)

—

¢ Python Lists (continued)

= List elements are referenced with subscripting, with
Indices beginning at zero

x = myList[1l] Setsx1t05.8

= List elements can be deleted with de1
del myList[1]

= List Comprehensions — derived from set notation
[x * x for x in range (6) i1f x % 3 == 0]
range (7) creates (0, 1, 2, 3, 4, 5, 6]
Constructed list: [0, 9, 36]

Copyright © 2012 Addison- 1-69
Wesley. All rights reserved.

List Types (continued)

_— s Mo e
¢ Haskell’s List Comprehensions

= The original
[n *n | n <= [1..10]]

*» F#’s List Comprehensions

let myArray = [|for 1 in 1 .. 5 -> [1 * 1) |]
»» Both C# and Java supports lists through their generic

heap-dynamic collection classes, rist and arrayrist,
respectively

Copyright © 2012 Addison- 1-70
Wesley. All rights reserved.

Unions Types

—

“* A union is a type whose variables are allowed to store
different type values at different times during execution

¢+ Design Issues for unions:
= What kind of type checking, if any, must be done?
= Should unions be integrated with records?

s Examples:
= FORTRAN - with EQUIVALENCE
= No type checking

= Pascal

= poth discriminated and nondiscriminated unions
type intreal =
record tagg : Boolean of
true : (blint : integer);
false : (blreal : real);
end,
= Problem with Pascal’s design: type checking is ineffective

Unions

—

** Example (Pascal)...

= Reasons why Pascal’s unions cannot be type checked
effectively:
= User can create inconsistent unions
(because the tag can be individually assigned)
var blurb : intreal;
X : real;
blurb.tagg :=true; {itisan integer}
blurb.blint := 47, {ok}
blurb.tagg := false; {itisareal }
X :=blurb.blreal; { assigns an integer to a real }
= The tag is optional!

= Now, only the declaration and the second and last assignments are
required to cause trouble

Unions

—

*» Examples...

= Ada
= discriminated unions

= Reasons they are safer than Pascal:
» Tag must be present

» It is impossible for the user to create an inconsistent union (because tag
cannot be assigned by itself -- All assignments to the union must include
the tag value, because they are aggregate values)

= Cand C++
= free unions (no tags)

= Not part of their records
» No type checking of references

= Java has neither records nor unions

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record
Filled: Boolean;
Color: Colors;
case Form 1is
when Circle => Diameter: Float;
when Triangle =>
Leftside, Rightside: Integer;
Angle: Float;
when Rectangle => Sidel, Side2: Integer;
end case;
end record;

Copyright © 2012 Addison- 1-74
Wesley. All rights reserved.

Ada Union Type lllustrated

Rectangle: Side 1, Side 2
K

'S N\
Circle:Diameter

A
r N

J
Y
Triangle: Left Side, Right Side, Angle
Dlscriminant (Form)
Color
Filled

A discriminated union of three shape variables

Copyright © 2012 Addison- 1-75
Wesley. All rights reserved.

Implementation of Unions

type Node (Tag : Boolean) is
record
case Tag is
when True => Count : Integer;
when False => Sum : Float;
end case;
end record;

Discriminated union
Tag BOOLEAN
Offset Count Name
Case table
® > Integer Type
True —
Address
False ® >
Sum Name
Float Type
Copyright © 2012 Addison- 1-76

Wesley. All rights reserved.

Evaluation of Unions
[——

¢ Free unions are unsafe
= Do not allow type checking

*»+Java and C# do not support unions

= Reflective of growing concerns for safety in programming
language

*» Ada’s descriminated unions are safe

Copyright © 2012 Addison- 1-77
Wesley. All rights reserved.

Sets

—

“» A type whose variables can store unordered collections of distinct
values from some ordinal type

* Design Issue:
= What is the maximum number of elements in any set base type?

s Example
= Pascal

= No maximum size in the language definition
(not portable, poor writability if max is too small)

= Operations: in, union (+), intersection (*), difference (-), =, <>, superset (>=),
subset (<=)

= Ada

= does not include sets, but defines in as set membership operator for all
enumeration types

= Java
= Includes a class for set operations

Sets

—

+s» Evaluation

= |f a language does not have sets, they must be simulated,
either with enumerated types or with arrays

= Arrays are more flexible than sets, but have much slower
set operations

“* Implementation

= Usually stored as bit strings and use logical operations for
the set operations

Pointers

—

“ A pointer type Is a type in which the range of values consists
of memory addresses and a special value, nil (or null)
s Uses:
= Addressing flexibility
= Dynamic storage management

¢ Design Issues:
= What is the scope and lifetime of pointer variables?
= What is the lifetime of heap-dynamic variables?
= Are pointers restricted to pointing at a particular type?

= Are pointers used for dynamic storage management, indirect
addressing, or both?

= Should a language support pointer types, reference types, or both?
“+ Fundamental Pointer Operations:

= Assignment of an address to a pointer
= References (explicit versus implicit dereferencing)

Pointers

—

¢ Problems with pointers:

= Dangling pointers (dangerous)
= A pointer points to a heap-dynamic variable that has been deallocated

= Creating one (with explicit deallocation):
» Allocate a heap-dynamic variable and set a pointer to point at it
» Set a second pointer to the value of the first pointer
» Deallocate the heap-dynamic variable, using the first pointer
= Lost Heap-Dynamic Variables (wasteful)

= A heap-dynamic variable that is no longer referenced by any program
pointer

= Creating one:
» Pointer pl is set to point to a newly created heap-dynamic variable
> plis later set to point to another newly created heap-dynamic variable

¢+ The process of losing heap-dynamic variables is called
memory leakage

Pointers

R
“»» Examples:
= Pascal
used for dynamic storage management only
Explicit dereferencing (postfix ")

Dangling pointers are possible (dispose)
Dangling objects are also possible

= Ada

= a little better than Pascal

= Some dangling pointers are disallowed because dynamic objects can
be automatically deallocated at the end of pointer's type scope

= All pointers are initialized to null

= Similar dangling object problem (but rarely happens, because explicit
deallocation is rarely done)

Pointers
[——————

*» Examples. ..

= FORTRAN 90 Pointers
= Can point to heap and non-heap variables
Implicit dereferencing
Pointers can only point to variables that have the TARGET attribute
The TARGET attribute is assigned in the declaration, as in:
INTEGER, TARGET :: NODE
A special assignment operator is used for non-dereferenced references
REAL, POINTER :: ptr (POINTER is an attribute)

ptr => target (where target is either a pointer or a non-
pointer with the TARGET attribute))
This sets ptr to have the same value as target

Pointers

—

*» Examples...

= C++ Reference Types
= Constant pointers that are implicitly dereferenced
= Used for parameters
= Advantages of both pass-by-reference and pass-by-value

= Java

= Only references
No pointer arithmetic
Can only point at objects (which are all on the heap)
No explicit deallocator (garbage collection is used)
Means there can be no dangling references
Dereferencing is always implicit

Pointers

—

+s» Evaluation

= Dangling pointers and dangling objects are problems, as is
heap management

= Pointers are like goto's--they widen the range of cells that
can be accessed by a variable

= Pointers or references are necessary for dynamic data
structures--so we can't design a language without them

Pointers

_—
*» Examples...

= C and C++
Used for dynamic storage management and addressing
Explicit dereferencing and address-of operator
Can do address arithmetic in restricted forms
Domain type need not be fixed (void *)
float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+1) Is equivalent to stuff[i] and p[i]
(Implicit scaling)

void * - Can point to any type and can be type checked (cannot be
dereferenced)

Pointers

—

A pointer Is a variable holding an address value

int x 10;
int *p; P

Y

10 |x

p = &x;

p contains the address of x In memory.

Pointers

—

A pointer Is a variable holding an address value

int x 10;
int *p; P

Y

p = &x; 20 |x

*p refers to the value stored in x.

Pointers

Declares a pointer
int x = 10; to an integer

= & Is address operator

gets address of X

= 20;

* dereference operator
gets value at p

Pointers

—

¢ Pointers are designed for two kinds of uses
= Provide a method for indirect addressing
(see example on the previous slides)
= Provide a method of dynamic storage management
int *ip = new int[100];

¢ Pointer dereferencing

= Implicit: dereferenced automatically

= In Fortran 90, pointers have no associated storage until it is allocated or
associated by pointer assignment

REAL, POINTER :: var
ALLOCATE (var)
var =var + 2.3

(no special symbol needed to dereference)

= Explicit: In C++, use dereference operator (*)

Problems with Pointers

R
+ Dangling pointers (dangerous)
= points to deallocated memory
int *p;
void trouble () {
Int X;
*p = &X;
return;
¥
main() {
trouble();
¥
* Lost Heap-Dynamic Variables
Int *p = new int[10]; [* p points to anonymous variable */
Inty;
p =&Yy, [* space for anonymous variable lost */

Solutions to Dangling Pointer Problem

—

+¢» Tombstones

= Every heap-dynamic variable includes a special cell, called a
tombstone, that is itself a pointer to the heap-dynamic variable

= Actual pointer points only at tombstones and never to heap dynamic
variables

= When heap-dynamic variable is deallocated, tombstone remains but
set to nil

= This prevents pointer from ever pointing to a deallocated variable

= Any reference to any pointer that points to nil tombstone can be
detected as an error

= Problem: costly in both time and space

= Every access to heap-dynamic variable through a tombstone requires one
more level of indirection, which consumes an additional machine cycle
on most computers

Solutions to Dangling Pointer Problem

—

¢ Locks-and-keys approach
= Pointer values are represented as ordered pairs (key,address)

= Heap-dynamic variables are represented as storage for variable plus a
header cell that stores an integer lock value

= When heap-dynamic variable is allocated, a lock value is created and
placed both in the lock cell (of heap-dynamic variable) and key cell
(of pointer)

= Every access to the dereferenced pointer compares key value of
pointer to lock value of heap-dynamic variable

= When heap-dynamic variable is deallocated, its lock value is cleared
to an illegal lock value

= When dangling pointer is dereferenced, its address value is still intact,
but its key value no longer match the lock

¢ Leave deallocation to the runtime system
= Garbage collection in Java

Type Checking

—

Generalize the concept of operands and operators to include

subprograms and assignments
 Type checking is the activity of ensuring that the operands of an
operator are of compatible types
« A compatible type is one that is either legal for the operator, or is
allowed under language rules to be implicitly converted, by
compiler-generated code, to a legal type.
 This automatic conversion is called a coercion.
A type error is the application of an operator to an operand of an
Inappropriate type
* Note:
If all type bindings are static, nearly all checking can be static
If type bindings are dynamic, type checking must be dynamic

Strong Typing

—

A programming language Is strongly typed if

 type errors are always detected

 There is strict enforcement of type rules with no
exceptions.

 All types are known at compile time, i.e. are statically
bound.

« With variables that can store values of more than one
type, Incorrect type usage can be detected at run-time.
 Strong typing catches more errors at compile time than
weak typing, resulting in fewer run-time exceptions.

Which languages have strong typing?

—

“»Fortran 77 i1sn’t because it doesn’t check parameters and because of
variable equivalence statements.

*»The languages Ada, Java, and Haskell are strongly typed.

ssPascal Is (almost) strongly typed, but variant records screw it up.

*+C and C++ are sometimes described as strongly typed, but are
perhaps better described as weakly typed because parameter type
checking can be avoided and unions are not type checked

*»Coercion rules strongly affect strong typing—they can weaken it
considerably (C++ versus Ada)

Type Compatibility

—

Type compatibility by name means the two variables have compatible
types if they are in either the same declaration or in declarations that
use the same type name

 Easy to implement but highly restrictive:
« Subranges of integer types aren’t compatible with integer types
« Formal parameters must be the same type as their corresponding
actual parameters (Pascal)

Type compatibility by structure means that two variables have compatible
types if their types have identical structures
« More flexible, but harder to implement

Type Compatibility
[——
Consider the problem of two structured types.

Suppose they are circularly defined

* Are two record types compatible if they are structurally the
same but use different field names?

 Are two array types compatible if they are the same except that
the subscripts are different? (e.g. [1..10] and [-5..4])

 Are two enumeration types compatible if their components are
spelled differently?

With structural type compatibility, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

Type Compatibility Language examples
—ree __——

Pascal: usually structure, but in some cases name is used (formal
parameters)

C: structure, except for records

Ada: restricted form of name
= Derived types allow types with the same structure to be different
= Anonymous types are all unique, even in:
A, B :array (1..10) of INTEGER:

Summary

—

¢ The data types of a language are a large part of what
determines that language’s style and usefulness

“* The primitive data types of most imperative languages
Include numeric, character, and Boolean types

¢+ The user-defined enumeration and subrange types are
convenient and add to the readability and reliability of
programs

¢ Arrays and records are included in most languages

¢ Pointers are used for addressing flexibility and to control
dynamic storage management

1-100

