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Introduction

• A data type defines a collection of data 
objects and a set of predefined operations 
on those objects

• A descriptor is the collection of the 
attributes of a variable

• An object represents an instance of a 
user-defined (abstract data) type

• One design issue for all data types: What 
operations are defined and how are they 
specified?



Data Types

❖A data type defines 

 a collection of data objects, and 

 a set of predefined operations on the objects

Ex:

type: integer 

operations: +, -, *, /, %, ^

❖Evolution of Data Types

Early days: 

▪ all programming problems had to be modeled using only a few data 
types

▪ FORTRAN I (1957) provides INTEGER, REAL, arrays

Nowadays:

▪ Users can define abstract data types (representation + operations)



Data Types

❖Primitive Types

❖Strings

❖Records

❖Unions

❖Arrays

❖Associative Arrays

❖Sets

❖Pointers
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Primitive Data Types

❖Almost all programming languages provide a set of 

primitive data types

❖Primitive data types: Those not defined in terms of 

other data types

❖Some primitive data types are merely reflections of 

the hardware

❖Others require only a little non-hardware support for 

their implementation



Primitive Data Types

❖Those not defined in terms of other data types

Numeric types

▪ Integer

▪ Floating point

▪ decimal

Boolean types

Character types
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Primitive Data Types: Integer

❖Almost always an exact reflection of the hardware 

so the mapping is trivial

❖There may be as many as eight different integer 

types in a language 

❖Java’s signed integer sizes: byte, short, int, 

long



Representing Negative Integers

Ones complement, 8 bits

❖ +1 is 0000 0001

❖ -1 is 1111 1110

❖ If we use natural method of 

summation we get sum 1111 

1111

Twos complement, 8 bits

❖ +1 is 0000 0001

❖ -1 is 1111 1111

❖ If we use the natural 

method we get sum 0000 

0000 (and carry 1 which we 

disregard)

+

1 + (-1) = ?
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Primitive Data Types: Floating Point

❖Model real numbers, but only as approximations

❖Languages for scientific use support at least two 

floating-point types (e.g., float and double; 

sometimes more

❖Usually exactly like the hardware, but not always

❖IEEE Floating-Point

Standard 754



Floating Point

❖Floating Point

Approximate real numbers

▪ Note: even 0.1 cannot be represented exactly by a finite number 
of of binary digits!

▪ Loss of accuracy when performing arithmetic operation

Languages for scientific use support at least two floating-
point types; sometimes more

1.63245 x 105

Precision: accuracy of the fractional part

Range: combination of range of fraction & exponent

Most machines use IEEE Floating Point Standard 754 
format



❖Numerical Form

–1s M  2E

▪ Sign bit s determines whether number is negative or positive

▪ Significand M  normally a fractional value in range [1.0,2.0).

▪ Exponent E weights value by power of two

❖Encoding

MSB is sign bit

exp field encodes E

frac field encodes M

s exp frac

Floating Point Representation



❖Encoding

MSB is sign bit

exp field encodes E

frac field encodes M

❖Sizes
Single precision: 8 exp bits, 23 frac bits

▪ 32 bits total

Double precision: 11 exp bits, 52 frac bits

▪ 64 bits total

Extended precision: 15 exp bits, 63 frac bits

▪ Only found in Intel-compatible machines

▪ Stored in 80 bits

➢1 bit wasted

s exp frac

Floating Point Representation



True

True

True

False

True

False

False

True

True

False

True

int x = 1;

float f = 0.1;

double d = 0.1;

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• d > f

• -f > -d

• f > d

• -d > -f

• d == f

• (d+f)-d == f

True or False?

Floating Point Puzzle



Data Types in C

Data Type
Memory 

(bytes)
Range

Format 

Specifier

short int 2 -32,768 to 32,767 %hd

unsigned short int 2 0 to 65,535
%hu

unsigned int 4 0 to 4,294,967,295 %u

int 4
-2,147,483,648 to 

2,147,483,647

%d

long int 4
-2,147,483,648 to 

2,147,483,647
%ld

unsigned long int 4 0 to 4,294,967,295 %lu

https://en.wikipedia.org/wiki/C_data_types

https://en.wikipedia.org/wiki/C_data_types


Data Types in C

Data Type Memory (bytes) Range
Format 

Specifier

long long int 8 -(2^63) to (2^63)-1 %lld

unsigned long long 

int
8

0 to 

18,446,744,073,709,551,615

%llu

signed char 1 -128 to 127 %c

unsigned char 1 0 to 255 %c

float 4
1.2E-38 to 3.4E+38

%f

double 8
1.7E-308 to 1.7E+308

%lf

long double 16
3.4E-4932 to 1.1E+4932

%Lf



Data Types in Java

• There are two types of data types in Java:
1.Primitive data types: The primitive data types include boolean, char, byte,
short, int, long, float and double.
2.Non-primitive data types: The non-primitive data types
include Classes, Interfaces, and Arrays.



Java Primitive Data Types

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to 

2,147,483,647

long 8 bytes Stores whole numbers from -

9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 

decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15 

decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores values from ‘\u0000’ (0) to ‘\uffff’ (65535). 

The char data type is a single 16-bit Unicode 

character.
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Primitive Data Types: Complex

❖Some languages support a complex type, e.g., C99, 

Fortran, and Python

❖Each value consists of two floats, the real part and 

the imaginary part

❖Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is the

imaginary part



Decimal Types

❖For business applications ($$$) – e.g., COBOL

❖ Store a fixed number of decimal digits, with the decimal 

point at a fixed position in the value

❖Advantage 

 can precisely store decimal values

❖Disadvantages

Range of values is restricted because no exponents are allowed

Representation in memory is wasteful

▪ Representation is called binary coded decimal (BCD)

1263

0001 0010 0110 0011 BCD

decimal



Comparison of COBOL and Java Data Types

Java Primitive 
Type

Description Java Data Range COBOL Data Type COBOL Data Range

boolean unsigned 8 bits 0 (false) or 1 (true) PIC 9(4) BINARY 0 to 255

byte signed 8 bits -128 to 127 PIC X -128 to 127

char
unsigned 16 
bits

0 ('\u0000') to 65535 
('\uffff')

PIC N USAGE 
NATIONAL

0 ('\u0000') to 
65535 ('\uffff')

short signed 16 bits -32768 to 32767 PIC S9(4) BINARY 1 -32768 to 32767

int signed 32 bits
-2147483648 to 
2147483647

PIC S9(9) BINARY 1 -2147483648 to 
2147483647

long signed 64 bits
-9223372036854775808 
to 9223372036854775807

PIC S9(18) BINARY 1
-9223372036854775808 
to 
9223372036854775807

float 32 bits
1.40239846e-45f to 
3.40282347e+38f

USAGE COMP-1
0.14012985e-44 to 
0.34028235e39

double 64 bits

4.94065645841246544e-
324 to 
1.79769313486231570e+3
08

USAGE COMP-2

.111253692925360
09e-307 to 
.179769313486231
55e+309

void n/a n/a n/a n/a



Boolean Types

❖Could be implemented as bits, but often as bytes

❖Introduced in ALGOL 60

❖Included in most general-purpose languages 

designed since 1960

❖Ansi C (1989)

 all operands with nonzero values are considered true, and 

zero is considered false

❖Advantage: readability



Character Types

❖Characters are stored in computers as numeric codings

❖Traditionally use 8-bit code ASCII, which uses 0 to 127 
to code 128 different characters

❖ISO 8859-1 also use 8-bit character code, but allows 
256 different characters

Used by Ada

❖16-bit character set named Unicode (UCS-2)

 Includes Cyrillic alphabet used in Serbia, and Thai digits

First 128 characters are identical to ASCII

used by Java and C#

❖32-bit Unicode (UCS-4)

Supported by Fortran, starting with 2003



Character String Types

❖ Values consist of sequences of characters

❖ Design issues:

 Is it a primitive type or just a special kind of character array?

 Is the length of objects static or dynamic?

❖ Operations:

 Assignment 

 Comparison (=, >, etc.)  

 Catenation

 Substring reference

 Pattern matching

❖ Examples:

 Pascal

▪ Not primitive; assignment and comparison only 

 Fortran 90 

▪ Somewhat primitive; operations include assignment, comparison, catenation, 
substring reference, and pattern matching



Character Strings

❖ Examples

 Ada

N := N1 & N2 (catenation)

N(2..4)  (substring reference)

 C and C++

▪ Not primitive; use char arrays and a library of functions that provide 

operations 

 SNOBOL4 (a string manipulation language)

▪ Primitive; many operations, including elaborate pattern matching

 Perl, JavaScript, Ruby, and PHP 

▪ Patterns are defined in terms of regular expressions; a very powerful 

facility

 Java

▪ String class (not arrays of char); Objects are immutable

▪ StringBuffer is a class for changeable string objects 



Character Strings

❖ String Length

 Static – FORTRAN 77, Ada, COBOL

▪ e.g. (FORTRAN 90)   CHARACTER (LEN = 15) NAME;

 Limited Dynamic Length – C and C++

▪ actual length is indicated by a null character

 Dynamic – SNOBOL4, Perl, JavaScript

❖ Evaluation (of character string types)

 Aid to writability

 As a primitive type with static length, they are inexpensive to provide

 Dynamic length is nice, but is it worth the expense?

❖ Implementation
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User-Defined Ordinal Types

❖An ordinal type is one in which the range of possible 

values can be easily associated with the set of 

positive integers

❖Examples of primitive ordinal types in Java

integer

char

boolean
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Enumeration Types

❖All possible values, which are named constants, are 
provided in the definition (user enumerates all the 
possible values, which are symbolic constants)

❖C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

❖Design issues

 Is an enumeration constant allowed to appear in more than 
one type definition, and if so, how is the type of an 
occurrence of that constant checked?

Are enumeration values coerced to integer?

Any other type coerced to an enumeration type?



Enumeration Data Types

❖ Examples
 Pascal

▪ cannot reuse constants; can be used for array subscripts, for variables, case 
selectors; can be compared

 Ada
▪ constants can be reused (overloaded literals); disambiguate with context or 

type_name’(one of them)    (e.g,  Integer’Last)

 C and C++ 
▪ enumeration values are coerced into integers when they are put in integer 

context

 Java 
▪ Java 4.0 and previous versions do not include an enumeration type, but 

provides the Enumeration interface

▪ Java 5.0 includes enumeration type

▪ can implement them as classes

class colors {

public final int red = 0;

public final int blue = 1;

}



Java enum

A Java Enum is a special Java type used to define collections of 

constants. More precisely, a Java enum type is a special kind of 

Java class. An enum can contain constants, methods etc. Java 

enums were added in Java 5.

public enum Level {

HIGH,

MEDIUM,

LOW

}

Level level = Level.HIGH;



Java enum

You can add fields to a Java enum. Thus, each constant enum value gets these 

fields. The field values must be supplied to the constructor of the enum when 

defining the constants. Here is an example:

public enum Level {

HIGH  (3),  //calls constructor with value 3

MEDIUM(2),  //calls constructor with value 2

LOW   (1)   //calls constructor with value 1

; // semicolon needed when fields / methods follow

private final int levelCode;

public Level(int levelCode) {

this.levelCode = levelCode;

}

}



Subrange Data Types

❖ An ordered contiguous subsequence of an ordinal type
 e.g., 12..14 is a subrange of integer type 

 Design Issue: How can they be used?

 Examples:
▪ Pascal 

➢ subrange types behave as their parent types;  

➢ can be used as for variables and array indices
type pos = 0 .. MAXINT; 

▪ Ada 
➢ Subtypes are not new types, just constrained existing types (so they are compatible); can be used 

as in Pascal, plus case constants
subtype POS_TYPE is INTEGER range 0 ..INTEGER'LAST;

type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

❖ Evaluation
▪ Aid to readability - restricted ranges add error detection



Implementation of Ordinal Types

❖Enumeration types are implemented as integers

❖Subrange types are the parent types with code 

inserted (by the compiler) to restrict assignments to 

subrange variables



Arrays

❖An aggregate of homogeneous data elements in which 
an individual element is identified by its position in the 
aggregate, relative to the first element

❖Design Issues:

What types are legal for subscripts?

Are subscripting expressions in element references range 
checked?

When are subscript ranges bound?

When does allocation take place?

What is the maximum number of subscripts?

Can array objects be initialized?

Are any kind of slices allowed?



Arrays

❖Indexing is a mapping from indices to elements

map(array_name, index_value_list) → an element

❖Index Syntax

FORTRAN, PL/I, Ada use parentheses:    A(3)

most other languages use brackets: A[3]

❖Subscript Types:

FORTRAN, C - integer only

Pascal - any ordinal type (integer, boolean, char, enum)

Ada - integer or enum (includes boolean and char)

 Java - integer types only



Arrays

❖ Number of subscripts (dimensions)

 FORTRAN I allowed up to three

 FORTRAN 77 allows up to seven

 Others - no limit

❖ Array Initialization 

 Usually just a list of values that are put in the array in the order in which 
the array elements are stored in memory

 Examples:

▪ FORTRAN - uses the DATA statement

Integer List(3)
Data List /0, 5, 5/

▪ C and C++ - put the values in braces; can let the compiler count them 

int stuff [] = {2, 4, 6, 8};

▪ Ada - positions for the values can be specified

SCORE : array (1..14, 1..2) :=

(1 => (24, 10), 2 => (10, 7), 

3 =>(12, 30), others => (0, 0));  

▪ Pascal does not allow array initialization



Arrays

❖ Array Operations

 Ada

▪ Assignment; RHS can be an aggregate constant or an array name

▪ Catenation between single-dimensioned arrays 

 FORTRAN 95 

▪ Includes a number of array operations called elementals because they are 
operations between pairs of array elements

➢ E.g., add (+) operator between two arrays results in an array of the sums of 
element pairs of the two arrays

 Slices

▪ A slice is some substructure of an array

▪ FORTRAN 90
INTEGER MAT (1 : 4, 1 : 4)

MAT(1 : 4, 1) - the first column

MAT(2, 1 : 4) - the second row

▪ Ada - single-dimensioned arrays only
LIST(4..10)



Arrays

❖Implementation of Arrays

Access function maps subscript expressions to an address in 
the array 

Single-dimensioned array

address(list[k]) 
= address(list[lower_bound])

+ (k-1)*element_size

= (address[lower_bound] – element_size)
+ (k * element_size)

Multi-dimensional arrays

▪ Row major order:   3, 4, 7, 6, 2, 5, 1, 3, 8

▪ Column major order 3, 6, 1, 4, 2, 3, 7, 5, 8

3 4 7

6 2   5

1    3   8
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Subscript Binding and Array Categories

❖Static: subscript ranges are statically bound

and storage allocation is static (before run-

time)
Advantage: efficiency (no dynamic allocation)

❖Fixed stack-dynamic: subscript ranges are statically 

bound, but the allocation is done at declaration time

Advantage: space efficiency 



Copyright © 2012 Addison-

Wesley. All rights reserved.

1-40

Subscript Binding and Array Categories (continued)

❖Stack-dynamic: subscript ranges are dynamically 

bound and the storage allocation is dynamic (done at 

run-time)

Advantage: flexibility (the size of an array need not be 

known until the array is to be used)

❖Fixed heap-dynamic: similar to fixed stack-dynamic: 

storage binding is dynamic but fixed after allocation 

(i.e., binding is done when requested and storage is 

allocated from heap, not stack)
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Subscript Binding and Array Categories (continued)

❖Heap-dynamic: binding of subscript ranges and 

storage allocation is dynamic and can change any 

number of times

Advantage: flexibility (arrays can grow or shrink during 

program execution)
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Subscript Binding and Array Categories (continued)

❖C and C++ arrays that include static modifier are 

static

❖C and C++ arrays without static modifier are fixed 

stack-dynamic

❖C and C++ provide fixed heap-dynamic arrays

❖C# includes a second array class ArrayList that 

provides fixed heap-dynamic

❖Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays
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Array Initialization

❖Some language allow initialization at the time of 

storage allocation

C, C++, Java, C# example

int list [] = {4, 5, 7, 83} 

Character strings in C and C++

char name [] = ″freddie″;

Arrays of strings in C and C++

char *names [] = {″Bob″, ″Jake″, ″Joe″];

 Java initialization of String objects

String[] names = {″Bob″, ″Jake″, ″Joe″};



Array Initialization

❖C-based languages
 int list [] = {1, 3, 5, 7}

 char *names [] = {″Mike″, ″Fred″, ″Mary Lou″};

❖Ada

 List : array (1..5) of Integer :=

(1 => 17, 3 => 34, others => 0);

❖Python

List comprehensions

list = [x ** 2 for x in range(12) if x % 3 == 

0]

puts [0, 9, 36, 81] in list

Copyright © 2012 Addison-
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Heterogeneous Arrays

❖A heterogeneous array is one in which the elements 

need not be of the same type

❖Supported by Perl, Python, JavaScript, and Ruby



Copyright © 2012 Addison-

Wesley. All rights reserved.

1-46

Arrays Operations

❖ APL provides the most powerful array processing operations 
for vectors and matrixes as well as unary operators (for 
example, to reverse column elements)

❖ Ada allows array assignment but also catenation

❖ Python’s array assignments, but they are only reference 
changes. Python also supports array catenation and element 
membership operations

❖ Ruby also provides array catenation

❖ Fortran provides elemental operations because they are 
between pairs of array elements

 For example, + operator between two arrays results in an array of the 
sums of the element pairs of the two arrays
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Rectangular and Jagged Arrays

❖ A rectangular array is a multi-dimensioned array in which all 
of the rows have the same number of elements and all 
columns have the same number of elements

❖ A jagged matrix has rows with varying number of elements
 Possible when multi-dimensioned arrays actually appear as arrays of 

arrays

❖ C, C++, and Java support jagged arrays
❖ Fortran, Ada, and C# support rectangular arrays (C# also 

supports jagged arrays)
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Slices

❖A slice is some substructure of an array; nothing 

more than a referencing mechanism

❖Slices are only useful in languages that have array 

operations    
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Slice Examples

❖Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]

mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

vector (3:6) is a three-element array

mat[0][0:2] is the first and second element of the first row 

of mat

❖Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth elements of 
list
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Implementation of Arrays

❖Access function maps subscript expressions to an 

address in the array 

❖Access function for single-dimensioned arrays:

address(list[k]) = address (list[lower_bound])

+ ((k-lower_bound) * element_size)
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Accessing Multi-dimensioned Arrays

❖Two common ways:

Row major order (by rows) – used in most languages

Column major order (by columns) – used in Fortran

A compile-time descriptor

for a multidimensional

array
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Locating an Element in a Multi-dimensioned Array

•General format
Location (a[I,j]) = address of a [row_lb,col_lb] + 
(((I - row_lb) * n) + (j - col_lb)) * element_size
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Compile-Time Descriptors

Single-dimensioned array Multidimensional array
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Associative Arrays

❖ An associative array is an unordered collection of data elements 
that are indexed by an equal number of values called keys 
 User-defined keys must be stored

❖ Design issues: 

- What is the form of references to elements?

- Is the size static or dynamic?

❖ Built-in type in Perl, Python, Ruby, and Lua
 In Lua, they are supported by tables

❖ Ex: Python

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}
print(thisdict["brand"])

thisdict = {
"brand": "Ford",
"electric": False,
"year": 1964,
"colors": ["red", "white", "blue"]

}



Associative Arrays

❖Structure and Operations in Perl

Names begin with %

Literals are delimited by parentheses

%hi_temps = ("Monday" => 77, "Tuesday" => 79,…);

Subscripting is done using braces and keys

 e.g., $hi_temps{"Wednesday"} = 83;

❖Elements can be removed with delete

 e.g., delete $hi_temps{"Tuesday"};
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Record Types

❖A record is a possibly heterogeneous aggregate of 

data elements in which the individual elements are 

identified by names

❖Design issues:

What is the syntactic form of references to the field? 

Are elliptical references allowed



Records

❖Record Definition Syntax

COBOL uses level numbers to show nested records; 

others use recursive definitions

COBOL
01 EMPLOYEE-RECORD.

02      EMPLOYEE-NAME.

05   FIRST PICTURE IS X(20).

05   MIDDLE PICTURE IS X(10).

05 LAST PICTURE IS X(20).

02      HOURLY-RATE PICTURE IS 99V99.

Level numbers (01,02,05) indicate their relative values in the 

hierarchical structure of the record

PICTURE clause show the formats of the field storage locations

X(20): 20 alphanumeric characters

99V99: four decimal digits with decimal point in the middle



Records

❖Ada:

Type Employee_Name_Type is record

First: String (1..20);

Middle: String (1..10);

Last: String (1..20);

end record;

type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;

Hourly_Rate: Float;

end record; 

Employee_Record: Employee_Record_Type;



Records

❖References to Record Fields

❖COBOL field references
field_name OF record_name_1 OF … OF record_name_n

e.g. MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE_RECORD

❖Fully qualified references must include all intermediate 

record names

❖Elliptical references allow leaving out record names as 

long as the reference is unambiguous

- e.g., the following are equivalent:

FIRST,   FIRST OF EMPLOYEE-NAME, FIRST OF EMPLOYEE-RECORD



Records

❖Operations

Assignment

▪ Pascal, Ada, and C allow it if the types are identical

➢ In Ada, the RHS can be an aggregate constant

 Initialization

▪ Allowed in Ada, using an aggregate constant

Comparison

▪ In Ada, = and /=; one operand can be an aggregate constant

MOVE CORRESPONDING

▪ In COBOL - it moves all fields in the source record to fields with 

the same names in the destination record



Comparing Records to Arrays

❖Records are used when collection of data values is 

heterogeneous

❖Access to array elements is much slower than        

access to record fields, because subscripts are        

dynamic (field names are static)

❖Dynamic subscripts could be used with record         

field access, but it would disallow type checking       

and it would be much slower
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Implementation of Record Type

Offset address relative to 
the beginning of the records 
is associated with each field



Tuple Types

❖A tuple is a data type that is similar to a record, 

except that the elements are not named

❖Used in Python, ML, and F# to allow functions to 

return multiple values

Python

▪ Closely related to its lists, but immutable

▪ Create with a tuple literal

myTuple = (3, 5.8, ′apple′)

Referenced with subscripts (begin at 1)

Catenation with + and deleted with del
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Tuple Types (continued)

❖ML

val myTuple = (3, 5.8, ′apple′);

- Access as follows:

#1(myTuple) is the first element

- A new tuple type can be defined

type intReal = int * real;

❖F#

let tup = (3, 5, 7)

let a, b, c = tup  This assigns a tuple to a 

tuple pattern (a, b, c)
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List Types

❖Lists in LISP and Scheme are delimited by 

parentheses and use no commas

(A B C D) and (A (B C) D)

❖Data and code have the same form

As data, (A B C) is literally what it is

As code, (A B C) is the function A applied to the  

parameters B and C

❖The interpreter needs to know which a list is, so if it 

is data, we quote it with an apostrophe

′(A B C) is data
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List Types (continued)

❖List Operations in Scheme

 CAR returns the first element of its list parameter

(CAR ′(A B C)) returns A

 CDR returns the remainder of its list parameter after the first 

element has been removed

(CDR ′(A B C)) returns (B C)

- CONS puts its first parameter into its second parameter, a 

list, to make a new list

(CONS ′A (B C)) returns (A B C)

- LIST returns a new list of its parameters

(LIST ′A ′B ′(C D)) returns (A B (C D))
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List Types (continued)

❖List Operations in ML

Lists are written in brackets and the elements are separated 

by commas

List elements must be of the same type

The Scheme CONS function is a binary operator in ML, ::

3 :: [5, 7, 9] evaluates to [3, 5, 7, 9]

The Scheme CAR and CDR functions are named hd and tl, 

respectively
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List Types (continued)

❖F# Lists 

Like those of ML, except elements are separated by 

semicolons and hd and tl are methods of the List class

❖Python Lists

The list data type also serves as Python’s arrays

Unlike Scheme, Common LISP, ML, and F#, Python’s lists 

are mutable

Elements can be of any type

Create a list with an assignment

myList = [3, 5.8, "grape"]
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List Types (continued)

❖Python Lists (continued)

List elements are referenced with subscripting, with 

indices beginning at zero

x = myList[1] Sets x to 5.8

List elements can be deleted with del

del myList[1]

List Comprehensions – derived from set notation

[x * x for x in range(6) if x % 3 == 0]

range(7) creates [0, 1, 2, 3, 4, 5, 6]

Constructed list: [0, 9, 36]

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-69



List Types (continued)

❖Haskell’s List Comprehensions

The original

[n * n | n <- [1..10]]

❖F#’s List Comprehensions

let myArray = [|for i in 1 .. 5 -> [i * i) |]

❖Both C# and Java supports lists through their generic 

heap-dynamic collection classes, List and ArrayList, 

respectively

Copyright © 2012 Addison-

Wesley. All rights reserved.

1-70



Unions Types

❖ A union is a type whose variables are allowed to store 
different type values at different times during execution

❖ Design Issues for unions:

 What kind of type checking, if any, must be done?

 Should unions be integrated with records?

❖ Examples:

 FORTRAN - with EQUIVALENCE

▪ No type checking

 Pascal

▪ both discriminated and nondiscriminated unions

type intreal =

record tagg : Boolean of

true : (blint : integer);

false : (blreal : real);

end; 

▪ Problem with Pascal’s design: type checking is ineffective



Unions

❖Example (Pascal)…

Reasons why Pascal’s unions cannot be type checked 

effectively:

▪ User can create inconsistent unions 

(because the tag can be individually assigned)

var blurb : intreal;

x : real;

blurb.tagg := true;   { it is an integer }

blurb.blint := 47;    { ok }      

blurb.tagg := false;  { it is a real }

x := blurb.blreal;    { assigns an integer to a real }

▪ The tag is optional!

▪ Now, only the declaration and the second and last assignments are 

required to cause trouble



Unions

❖ Examples…

 Ada 

▪ discriminated unions

▪ Reasons they are safer than Pascal:

➢ Tag must be present

➢ It is impossible for the user to create an inconsistent union (because tag 

cannot be assigned by itself -- All assignments to the       union must include 

the tag value, because they are aggregate values)

 C and C++ 

▪ free unions (no tags)

▪ Not part of their records

➢ No type checking of references

 Java has neither records nor unions
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Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

Filled: Boolean;

Color: Colors;

case Form is

when Circle => Diameter: Float;

when Triangle =>

Leftside, Rightside: Integer;

Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case;

end record;
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Ada Union Type Illustrated

A discriminated union of three shape variables



Implementation of Unions

type Node (Tag : Boolean) is

record

case Tag is

when True => Count : Integer;

when False => Sum : Float;

end case;

end record;
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Evaluation of Unions

❖Free unions are unsafe

Do not allow type checking

❖Java and C# do not support unions

Reflective of growing concerns for safety in programming 

language

❖Ada’s descriminated unions are safe



Sets

❖ A type whose variables can store unordered collections of distinct 
values from some ordinal type

❖ Design Issue:

 What is the maximum number of elements in any set base type?

❖ Example 

 Pascal

▪ No maximum size in the language definition
(not portable, poor writability if max is too small)

▪ Operations:  in, union (+), intersection (*), difference (-), =, <>, superset (>=), 
subset (<=)

 Ada

▪ does not include sets, but defines in as set membership operator for all 
enumeration types

 Java 

▪ includes a class for set operations



Sets

❖Evaluation

 If a language does not have sets, they must be simulated, 

either with enumerated types or with arrays

Arrays are more flexible than sets, but have much slower 

set operations

❖Implementation

Usually stored as bit strings and use logical operations for 

the set operations



Pointers

❖ A pointer type is a type in which the range of values consists 
of memory addresses and a special value, nil (or null)

❖ Uses:

 Addressing flexibility

 Dynamic storage management

❖ Design Issues:

 What is the scope and lifetime of pointer variables?

 What is the lifetime of heap-dynamic variables?

 Are pointers restricted to pointing at a particular type?

 Are pointers used for dynamic storage management, indirect 
addressing, or both?

 Should a language support pointer types, reference types, or both?

❖ Fundamental Pointer Operations:

 Assignment of an address to a pointer

 References (explicit versus implicit dereferencing)



Pointers

❖ Problems with pointers:

 Dangling pointers (dangerous)

▪ A pointer points to a heap-dynamic variable that has been deallocated

▪ Creating one (with explicit deallocation):

➢ Allocate a heap-dynamic variable and set a pointer to point at it

➢ Set a second pointer to the value of the first pointer

➢ Deallocate the heap-dynamic variable, using the first pointer

 Lost Heap-Dynamic Variables ( wasteful)

▪ A heap-dynamic variable that is no longer referenced by any program 

pointer

▪ Creating one:

➢ Pointer p1 is set to point to a newly created heap-dynamic variable

➢ p1 is later set to point to another newly created heap-dynamic variable

❖ The process of losing heap-dynamic variables is called 

memory leakage



Pointers

❖Examples:

Pascal

▪ used for dynamic storage management only

▪ Explicit dereferencing (postfix ^)

▪ Dangling pointers are possible (dispose)

▪ Dangling objects are also possible

Ada

▪ a little better than Pascal

▪ Some dangling pointers are disallowed because dynamic objects can 

be automatically deallocated at the end of pointer's type scope

▪ All pointers are initialized to null

▪ Similar dangling object problem (but rarely happens, because explicit 

deallocation is rarely done)



Pointers

❖Examples…

FORTRAN 90 Pointers

▪ Can point to heap and non-heap variables

▪ Implicit dereferencing

▪ Pointers can only point to variables that have the TARGET attribute

▪ The TARGET attribute is assigned in the declaration, as in:

INTEGER, TARGET :: NODE

▪ A special assignment operator is used for non-dereferenced references 

REAL, POINTER :: ptr  (POINTER is an attribute)

ptr => target (where target is either a pointer or a non-

pointer with the TARGET attribute))

This sets ptr to have the same value as target



Pointers

❖Examples…

C++ Reference Types

▪ Constant pointers that are implicitly dereferenced

▪ Used for parameters

▪ Advantages of both pass-by-reference and pass-by-value 

 Java 

▪ Only references

▪ No pointer arithmetic

▪ Can only point at objects (which are all on the heap)

▪ No explicit deallocator (garbage collection is used)

▪ Means there can be no dangling references

▪ Dereferencing is always implicit



Pointers

❖Evaluation

Dangling pointers and dangling objects are problems, as is 

heap management

Pointers are like goto's--they widen the range of cells that 

can be accessed by a variable

Pointers or references are necessary for dynamic data 

structures--so we can't design a language without them



Pointers

❖Examples…

C and C++

▪ Used for dynamic storage management and addressing

▪ Explicit dereferencing and address-of operator

▪ Can do address arithmetic in restricted forms

▪ Domain type need not be fixed (void * )

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and  p[5]

*(p+i) is equivalent to stuff[i] and  p[i]

(Implicit scaling)

void * - Can point to any type and can be type checked (cannot be 
dereferenced)



Pointers

int x = 10;

int *p;

p = &x;

p contains the address of x in memory.

p

x10

❖A pointer is a variable holding an address value



Pointers

int x = 10;

int *p;

p = &x;

*p = 20;

*p refers to the value stored in x.

p

x20

❖A pointer is a variable holding an address value



Pointers

int x = 10;

int *p;

p = &x;

*p = 20;

Declares a pointer 

to an integer

& is address operator

gets address of x 

* dereference operator

gets value at p



Pointers

❖ Pointers are designed for two kinds of uses

 Provide a method for indirect addressing

(see example on the previous slides)

 Provide a method of dynamic storage management

int *ip = new int[100];

❖ Pointer dereferencing

 Implicit: dereferenced automatically

▪ In Fortran 90, pointers have no associated storage until it is allocated or 
associated by pointer assignment

REAL, POINTER :: var

ALLOCATE (var)

var = var + 2.3

(no special symbol needed to dereference)

 Explicit: In C++, use dereference operator (*)



Problems with Pointers

❖ Dangling pointers (dangerous)

 points to deallocated memory

int *p;

void trouble () {

int x;

*p = &x;

return;

}

main() {

trouble();

}

❖ Lost Heap-Dynamic Variables

int *p = new int[10]; /* p points to anonymous variable */

int y;

p = &y;         /* space for anonymous variable lost */



Solutions to Dangling Pointer Problem

❖ Tombstones

 Every heap-dynamic variable includes a special cell, called a 

tombstone, that is itself a pointer to the heap-dynamic variable

 Actual pointer points only at tombstones and never to heap dynamic 

variables

 When heap-dynamic variable is deallocated, tombstone remains but 

set to nil

 This prevents pointer from ever pointing to a deallocated variable

 Any reference to any pointer that points to nil tombstone can be 

detected as an error

 Problem: costly in both time and space

▪ Every access to heap-dynamic variable through a tombstone requires one 

more level of indirection, which consumes an additional machine cycle 

on most computers



Solutions to Dangling Pointer Problem

❖ Locks-and-keys approach

 Pointer values are represented as ordered pairs (key,address)

 Heap-dynamic variables are represented as storage for variable plus a 
header cell that stores an integer lock value

 When heap-dynamic variable is allocated, a lock value is created and 
placed both in the lock cell (of heap-dynamic variable) and key cell 
(of pointer)

 Every access to the dereferenced pointer compares key value of 
pointer to lock value of heap-dynamic variable

 When heap-dynamic variable is deallocated, its lock value is cleared 
to an illegal lock value

 When dangling pointer is dereferenced, its address value is still intact, 
but its key value no longer match the lock 

❖ Leave deallocation to the runtime system

 Garbage collection in Java



Type Checking

Generalize the concept of operands and operators to include 

subprograms and assignments
• Type checking is the activity of ensuring that the operands of an 

operator are of compatible types

• A compatible type is one that is either legal for the operator, or is 

allowed under language rules to be implicitly converted, by 

compiler-generated code, to a legal type.  

• This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand of an 

inappropriate type

• Note:

If all type bindings are static, nearly all checking can be static

If type bindings are dynamic, type checking must be dynamic



Strong Typing

A programming language is strongly typed if

• type errors are always detected

• There is strict enforcement of type rules with no 

exceptions. 

• All types are known at compile time, i.e. are statically 

bound. 

• With variables that can store values of more than one 

type, incorrect type usage can be detected at run-time. 

• Strong typing catches more errors at compile time than 

weak typing, resulting in fewer run-time exceptions. 



Which languages have strong typing?

❖Fortran 77 isn’t because it doesn’t check parameters and because of 

variable equivalence statements.

❖The languages Ada, Java, and Haskell are strongly typed. 

❖Pascal is (almost) strongly typed, but variant records screw it up.

❖C and C++ are sometimes described as strongly typed, but are 

perhaps better described as weakly typed because parameter type 

checking  can be avoided and unions are not type checked

❖Coercion rules strongly affect strong typing—they can weaken it 

considerably (C++ versus Ada)



Type Compatibility

Type compatibility by name means the two variables have compatible 

types if they are in either the same declaration or in declarations that 

use the same type name

• Easy to implement but highly restrictive:

• Subranges of integer types aren’t compatible with integer types

• Formal parameters must be the same type as  their corresponding 

actual parameters (Pascal)

Type compatibility by structure means that two variables have compatible 

types if their types have identical structures 

• More flexible, but harder to implement



Type Compatibility

Consider the problem of two structured types.

Suppose they are circularly defined 

• Are two record types compatible if they are  structurally the 
same but use different field names?

• Are two array types compatible if they are the same except that 
the subscripts are different?  (e.g. [1..10] and [-5..4])

• Are two enumeration types compatible if their  components are 
spelled differently?

With structural type compatibility, you cannot 
differentiate between types of the same structure 
(e.g. different units of speed, both float)



Type Compatibility Language examples

Pascal: usually structure, but in some cases name is used (formal 

parameters)

C: structure, except for records

Ada: restricted form of name

Derived types allow types with the same structure to be different

Anonymous types are all unique, even in:

A, B : array (1..10) of INTEGER:



Summary

❖ The data types of a language are a large part of what 

determines that language’s style and usefulness

❖ The primitive data types of most imperative languages 

include numeric, character, and Boolean types

❖ The user-defined enumeration and subrange types are 

convenient and add to the readability and reliability of 

programs

❖ Arrays and records are included in most languages

❖ Pointers are used for addressing flexibility and to control 

dynamic storage management
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