Chapter 7

Expressions and
Assignment Statements

Chapter 7 Topics

—
¢ Introduction

»» Arithmetic Expressions

*»» Overloaded Operators

“* Type Conversions

» Relational and Boolean Expressions
¢ Short-Circuit Evaluation

“* Assignment Statements

**» Mixed-Mode Assignment

Copyright © 2017 Pearson 1-2
Education, Ltd. All rights reserved.

Introduction
[—
“» Expressions are the fundamental means of
specifying computations in a programming language
¢ To understand expression evaluation, need to be
familiar with the orders of operator and operand
evaluation

*»» Essence of imperative languages is dominant role of
assignment statements

1-3

Arithmetic Expressions

»» Arithmetic evaluation was one of the motivations for
the development of the first programming languages

» Arithmetic expressions consist of operators,
operands, parentheses, and function calls

1-4

Arithmetic Expressions: Design Issues
[—
s Design issues for arithmetic expressions
= Qperator precedence rules?
Operator associativity rules?
Order of operand evaluation?
Operand evaluation side effects?
Operator overloading?
Type mixing in expressions?

4 4 4 4 U

Copyright © 2017 Pearson 1-5
Education, Ltd. All rights reserved.

Arithmetic Expressions: Operators

¢+ A unary operator has one operand
“* A binary operator has two operands
¢ A ternary operator has three operands

- A ternary operator has three operands // average = (count ==0) ? 0 : sum/count;
using System; /*Learning C# */
public class ThreelnputValues {
static void Main() {
int valueOne = 10;
int valueTwo = 20;
int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

Console.WriteLine(valueOne, valueTwo, maxValue); }}

Copyright © 2017 Pearson 1-6
Education, Ltd. All rights reserved.

Arithmetic Expressions

¢ Types of operators
= A unary operator has one operand:
- X
= A binary operator has two operands:
X+y
= Infix: operator appears between two operands
= Prefix: operator precede their operands

= Aternary operator has three operands:
(x>10)?0:1

¢ Evaluation Order
= Qperator evaluation order
= QOperand evaluation order

Operator Evaluation Order

» Four rules to specify order of evaluation for operators

= Operator precedence rules

= Define the order in which the operators of different precedence levels
are evaluated (e.g., + vs *)

= Qperator associativity rules

= Define the order in which adjacent operators with the same
precedence level are evaluated (e.g., left/right associative)

= Parentheses
= Precedence and associativity rules can be overriden with parentheses

= Conditional Expressions (?: operator in C/C++/Perl)
= Equivalent to if-then-else statement

Arithmetic Expressions: Operator Precedence Rules
[——

¢+ The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated
“* Typical precedence levels
= parentheses
= unary operators
= ** (if the language supports it)
> * f
<> + -

1-9

Example in C

—

#include <stdio.h>
int fun (int *);
int
main ()
{
int a, b, ¢, d;
int n[5] = { 9, 2, 4, 6, 8 };
int *ip = &n[0@];
printf ("%p %d \n", ip, *(ip + 3));
printf ("%p %d \n", ip, *ip + 1);
a=7;
b = 3;

c=a%b*4;
printf ("%d \n", c);

int count = 5;

int countl = -count++; //-5
printf ("%d \n", countl);
countl = -++count; //-7

printf ("%d \n", countl);

Arithmetic Expressions: Operator Associativity Rule
[——

¢ The operator associativity rules for
expression evaluation define the order in
which adjacent operators with the same
precedence level are evaluated

“* Typical associativity rules
= Left to right, except **, which is right to left 2%% 3 ** 4 in Python:

= Sometimes unary operators associate right to - (2%%*3)**4; or
left (e.g., in FORTRAN) - 2%%(3%%4);

> APL is different; all operators have equal
precedence and all operators associate
right to left

¢ Precedence and associativity rules can be
overriden with parentheses

1-11

Expressions in Ruby and Scheme

—

“* Ruby
= All arithmetic, relational, and assignment operators, as

well as array indexing, shifts, and bit-wise logic operators,
are implemented as methods

- One result of this is that these operators can all
be overriden by application programs

¢ Scheme (and Common L.isp)

- All arithmetic and logic operations are by explicitly called
subprograms

~a+b *clscodedas (+ a (* b c))

Copyright © 2017 Pearson 1-12
Education, Ltd. All rights reserved.

Arithmetic Expressions: Conditional Expressions
[—

»» Conditional Expressions
= C-based languages (e.g., C, C++)
= An example:

average = (count == 0)? 0 : sum / count

= Evaluates as If written as follows:
if (count == 0)
average = 0
else

average = sum /count

Copyright © 2017 Pearson 1-13
Education, Ltd. All rights reserved.

Arithmetic Expressions: Operand Evaluation Order
[——

» Operand evaluation order
1. VMariables: fetch the value from memory

2. Constants: sometimes a fetch from memory; sometimes
the constant is in the machine language instruction

3. Parenthesized expressions: evaluate all operands and
operators first

4. The most interesting case is when an operand Is a
function call

Copyright © 2017 Pearson 1-14
Education, Ltd. All rights reserved.

Arithmetic Expressions: Potentials for Side Effects
[——

1 Functional side effects: when a function changes a two-way
parameter or a non-local variable

L Problem with functional side effects:

= When a function referenced in an expression alters another operand of
the expression; e.g., for a parameter change:

a = 10;
/* assume that fun changes its parameter */
b = a + fun(&a);

= |f fun does not have the side effect of changing a, then the order evaluation
of the two operands, a and fun(a), does not matter

= |If fun does have the side effect of changing a, order of evaluation matters

1-15

Functional Side Effects

\/

s Two possible solutions to the problem

1. Write the language definition to disallow functional side effects
= No two-way parameters in functions
= No non-local references in functions
= Advantage: it works!

= Disadvantage: inflexibility of one-way parameters and lack of non-
local references

2. Write the language definition to demand that operand evaluation order
be fixed

= Disadvantage: limits some compiler optimizations
= Java requires that operands appear to be evaluated in left-to-right order

Copyright © 2017 Pearson 1-16
Education, Ltd. All rights reserved.

Referential Transparency
[——
= A program has the property of referential
transparency If any two expressions Iin the program
that have the same value can be substituted for one
another anywhere in the program, without affecting
the action of the program

resultl = (fun(a) + b) / (fun(a) - c);
temp = fun(a);
result?2 = (temp + b) / (temp - c);

= |f fun has no side effects, resultl = result?2
Otherwise, not, and referential transparency is violated

1-17

Referential Transparency (continued)

—

»» Advantage of referential transparency

= Semantics of a program is much easier to understand if it
has referential transparency
*» Because they do not have variables, programs in
pure functional languages are referentially
transparent

= Functions cannot have state, which would be stored in
local variables

= If a function uses an outside value, it must be a constant
(there are no variables). So, the value of a function
depends only on its parameters

Copyright © 2017 Pearson 1-18
Education, Ltd. All rights reserved.

Overloaded Operators

“+ Use of an operator for more than one purpose Is
called operator overloading

*s» Some are common

= E.g., use + for
= integer addition and
= floating-point addition,
= concatenation
“ C, C++, F#, Python and Ada allow user-defined overloaded
operators

= When sensibly used, such operators can be an aid to readability (avoid
method calls, expressions appear natural)

1-19

Overloaded Operators

s Some drawbacks of operator overloading
= Users can define nonsense operations

= May affect readability
= E.g., the ampersand (&) operator in C is used to specify
> bitwise logical AND operation
» Address of a variable
= May affect reliability
= Program does not behave the way we want
= intx,y;floatz;, z=x/y
= Problem can be avoided by introducing new symbols
(e.g., Pascal’s div for integer division and / for floating point division)
= Loss of compiler error detection (omission of an operand should be a
detectable error)

Type Conversions
[——
* A narrowing conversion is one that converts an
object to a type that cannot include all of the values
of the original type
€.0., floattoint

“* A widening conversion is one in which an object Is
converted to a type that can include at least
approximations to all of the values of the original
type €.0., intto float

Copyright © 2017 Pearson 1-21
Education, Ltd. All rights reserved.

Type Conversions: Mixed Mode

“* A mixed-mode expression is one that has operands of different
types

“* A coercion is an implicit type conversion. It is useful for
mixed-mode expression, which contains operands of different

types
¢ Disadvantage of coercions:
= They decrease in the type error detection ability of the compiler

* In most languages, all numeric types are coerced in
expressions, using widening conversions

“ In ML and F#, there are no coercions in expressions

Copyright © 2017 Pearson 1-22
Education, Ltd. All rights reserved.

Explicit Type Conversions

—

¢ Called casting in C-based languages
“»» Examples

= C: (int)angle

> F#: float (sum)

> Ada : Float (Index)

Note that F#’s syntax is similar to that of function calls

Copyright © 2017 Pearson 1-23
Education, Ltd. All rights reserved.

Errors in Expressions
I ——

¢ Causes
= Inherent limitations of arithmetic e.g.,
division by zero
= Limitations of computer arithmetic e.g.
overflow

s+ Often ignored by the run-time system

Copyright © 2017 Pearson 1-24
Education, Ltd. All rights reserved.

Relational and Boolean Expressions

—

¢ Relational operator is an operator that compares the
values of its two operands

+» Relational Expressions
= Use relational operators and operands of various types

= Evaluate to some Boolean representation
= QOperator symbols used vary somewhat among languages (! =,

/=, ~=, .NE., <>, #)
+»» JavaScript and PHP have two additional relational
operator, === and ! ==

- Similar to their cousins, == and ! =, except that they do not
coerce their operands
- E.g., “7”==17 is true in Javascript but “7”===7 is false
= Ruby uses == for equality relation operator that uses coercions
and eq1? for those that do not

1-25

Relational and Boolean Expressions
[—

“+ Boolean Expressions

= Consist of Boolean variables, Boolean constants, relational expressions,
and Boolean operators

= QOperands are Boolean and the result is Boolean
¢+ Boolean Operators:

FORTRAN 77 FORTRAN 90 C Ada
AND. and && and
.OR. or | or
.NOT. not ! not

“* C has no Boolean type--it uses int type with O for false and
nonzero for true

“* One odd characteristic of C’s expressions: a<b<clsa
legal expression, but the result is not what you might expect:

= Left operator is evaluated, producing O or 1
= The evaluation result is then compared with the third operand (i.e., ¢)

Short Circuit Evaluation

—

“ An expression in which the result is determined without evaluating
all of the operands and/or operators

¢+ Short-circuit evaluation of an expression
= Example: (13*a) *(b/13-1) If ais zero, there is no need to evaluate (b /13 - 1)
= result is determined without evaluating all the operands & operators
inta=-1, b =4
If (a>0) && (b <10)) {

}

“* Problem: suppose Java did not use short-circuit evaluation
index = 1;
while (index <= length) && (LIST[index] != value)
Index++;

When index=length, LIST[index] will cause an indexing problem (assuming LIST
Is length - 1 long)

Short Circuit Evaluation (continued)

—

% C, C++, and Java:
= use short-circuit evaluation for usual Boolean operators (&& and ||),
= also provide bitwise Boolean operators that are not short circuit (&
and |)
s All logic operators in Ruby, Perl, ML, F#, and Python are
short-circuit evaluated

¢ Short-circuit evaluation exposes the potential problem of side
effects in expressions
eg. (a > b) || (b++ / 3)

1-28

Assignment Statements

¢ The general syntax
<target var> <assign operator> <expression>
¢+ The assignment operator
= Fortran, BASIC, the C-based languages
.= Ada
= can be bad when it is overloaded for the relational

operator for equality (that’s why the C-based
languages use == as the relational operator)

~e.g. (PL/1) A=B =C;

Assignment Statements: Conditional Targets

—

¢ Conditional targets (Perl)
(sflag ? Stotal : S$Ssubtotal) = 0

Which is equivalent to

if (Sflag) {
Stotal = 0

} else {
$subtotal = 0

}

1-30

Assignment Statements: Compound Assignment Operators
[——

¢ A shorthand method of specifying a commonly
needed form of assignment

» Introduced in ALGOL; adopted by C and the C-
based languaes

= Example
a = a + b
can be written as

a +t= Db

1-31

Assignment Statements: Unary Assignment Operators
[——

“* Unary assignment operators in C-based languages
combine increment and decrement operations with
assignment

“* Examples

sum = ++count (count incremented, then assigned to sum)
sum = count++ (count assigned to sum, then incremented

count++ (count incremented)
—count++ (count incremented then negated)

Copyright © 2017 Pearson 1-32
Education, Ltd. All rights reserved.

Assignment as an Expression

** In the C-based languages, Perl, and JavaScript, the
assignment statement produces a result and can be
used as an operand

while ((ch = getchar())!= EOF) {...}

ch = getchar () IS carried out; the result (assigned to

ch) IS used as a conditional value for the whiie
statement

¢ Disadvantage: another kind of expression side effect

1-33

Assignment Statements

*» C, C++, and Java treat = as an arithmetic binary operator
> eg. a=b*(c=d*2+1)+1
= This is inherited from ALGOL 68

o» EXercise: a=1, b=2, c=3,d=4
a=b+(c=d/b++)—1

CoUt << a<<“”<<b<<“<<¢c <<’ <<d<<endl

Multiple Assignments

» Perl, Ruby, and Lua allow multiple-target multiple-
source assignments

(Sfirst, S$second, S$third) = (20, 30, 40);

Also, the following is legal and performs an interchange:

(Sfirst, S$second) = ($second, S$first);

*» Multiple targets (PL/I)
= A, B=10

Copyright © 2017 Pearson 1-35
Education, Ltd. All rights reserved.

Assignment in Functional Languages
[—

» ldentifiers in functional languages are only names of

values
ML
=> Names are bound to values with va1
val fruit = apples + oranges;
- If another val for fruit follows, it is a new and different
name

% F#
= F#’s 1let 1s like ML’s val, except 1et also creates a new
scope

1-36

Mixed-Mode Assignment

“* Assignment statements can also be mixed-mode

¢ In Fortran, C, Perl, and C++, any numeric type
value can be assigned to any numeric type variable

**In Java and C#, only widening assignment
coercions are done

“* In Ada, there Is no assignment coercion

Copyright © 2017 Pearson 1-37
Education, Ltd. All rights reserved.

Summary

[—
“* EXxpressions
¢ Operator precedence and associativity
¢+ Operator overloading
“* Mixed-type expressions
¢ Various forms of assignment

Copyright © 2017 Pearson 1-38
Education, Ltd. All rights reserved.

