
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 4 Mathematical Functions,

Characters, and Strings

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Motivations

Suppose you need to estimate the area enclosed by four
cities, given the GPS locations (latitude and longitude) of
these cities, as shown in the following diagram. How
would you write a program to solve this problem? You will
be able to write such a program after completing this
chapter.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Objectives
 To solve mathematics problems by using the methods in the Math class (§4.2).

 To represent characters using the char type (§4.3).

 To encode characters using ASCII and Unicode (§4.3.1).

 To represent special characters using the escape sequences (§4.4.2).

 To cast a numeric value to a character and cast a character to an integer (§4.3.3).

 To compare and test characters using the static methods in the Character class (§4.3.4).

 To introduce objects and instance methods (§4.4).

 To represent strings using the String objects (§4.4).

 To return the string length using the length() method (§4.4.1).

 To return a character in the string using the charAt(i) method (§4.4.2).

 To use the + operator to concatenate strings (§4.4.3).

 To read strings from the console (§4.4.4).

 To read a character from the console (§4.4.5).

 To compare strings using the equals method and the compareTo methods (§4.4.6).

 To obtain substrings (§4.4.7).

 To find a character or a substring in a string using the indexOf method (§4.4.8).

 To program using characters and strings (GuessBirthday) (§4.5.1).

 To convert a hexadecimal character to a decimal value (HexDigit2Dec) (§4.5.2).

 To revise the lottery program using strings (LotteryUsingStrings) (§4.5.3).

 To format output using the System.out.printf method (§4.6).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Mathematical Functions

Java provides many useful methods in the Math

class for performing common mathematical

functions.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

The Math Class

Class constants:

– PI

– E

Class methods:

– Trigonometric Methods

– Exponent Methods

– Rounding Methods

– min, max, abs, and random Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Trigonometric Methods

 sin(double a)

 cos(double a)

 tan(double a)

 acos(double a)

 asin(double a)

 atan(double a)

Radians

toRadians(90)

Examples:

Math.sin(0) returns 0.0

Math.sin(Math.PI / 6)

returns 0.5

Math.sin(Math.PI / 2)

returns 1.0

Math.cos(0) returns 1.0

Math.cos(Math.PI / 6)

returns 0.866

Math.cos(Math.PI / 2)

returns 0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Exponent Methods

 exp(double a)

Returns e raised to the power of a.

 log(double a)

Returns the natural logarithm of a.

 log10(double a)

Returns the 10-based logarithm of
a.

 pow(double a, double b)

Returns a raised to the power of b.

 sqrt(double a)

Returns the square root of a.

Examples:

Math.exp(1) returns 2.71

Math.log(2.71) returns 1.0

Math.pow(2, 3) returns 8.0

Math.pow(3, 2) returns 9.0

Math.pow(3.5, 2.5) returns

22.91765

Math.sqrt(4) returns 2.0

Math.sqrt(10.5) returns 3.24

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

Rounding Methods

 double ceil(double x)

x rounded up to its nearest integer. This integer is returned as a double
value.

 double floor(double x)

x is rounded down to its nearest integer. This integer is returned as a
double value.

 double rint(double x)

x is rounded to its nearest integer. If x is equally close to two integers,
the even one is returned as a double.

 int round(float x)

Return (int)Math.floor(x+0.5).

 long round(double x)

Return (long)Math.floor(x+0.5).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

Rounding Methods Examples
Math.ceil(2.1) returns 3.0

Math.ceil(2.0) returns 2.0

Math.ceil(-2.0) returns –2.0

Math.ceil(-2.1) returns -2.0

Math.floor(2.1) returns 2.0

Math.floor(2.0) returns 2.0

Math.floor(-2.0) returns –2.0

Math.floor(-2.1) returns -3.0

Math.rint(2.1) returns 2.0

Math.rint(2.0) returns 2.0

Math.rint(-2.0) returns –2.0

Math.rint(-2.1) returns -2.0

Math.rint(2.5) returns 2.0

Math.rint(-2.5) returns -2.0

Math.round(2.6f) returns 3

Math.round(2.0) returns 2

Math.round(-2.0f) returns -2

Math.round(-2.6) returns -3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

min, max, and abs

 max(a, b)and min(a, b)

Returns the maximum or

minimum of two parameters.

 abs(a)

Returns the absolute value of the

parameter.

 random()

Returns a random double value

in the range [0.0, 1.0).

Examples:

Math.max(2, 3) returns 3

Math.max(2.5, 3) returns

3.0

Math.min(2.5, 3.6)

returns 2.5

Math.abs(-2) returns 2

Math.abs(-2.1) returns

2.1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

The random Method

Generates a random double value greater than or equal to 0.0 and less

than 1.0 (0 <= Math.random() < 1.0).

Examples:

(int)(Math.random() * 10)
Returns a random integer

between 0 and 9.

50 + (int)(Math.random() * 50)
Returns a random integer

between 50 and 99.

In general,

a + Math.random() * b

Returns a random number between

a and a + b, excluding a + b.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Case Study: Computing Angles

of a Triangle

Write a program that prompts the user to enter the
x- and y-coordinates of the three corner points in a
triangle and then displays the triangle’s angles.

A

B

C

a

b

c

A = acos((a * a - b * b - c * c) / (-2 * b * c))

B = acos((b * b - a * a - c * c) / (-2 * a * c))

C = acos((c * c - b * b - a * a) / (-2 * a * b))

x1, y1

x2, y2

x3, y3

IMPORTANT NOTE: If you cannot run the buttons, see
https://liveexample.pearsoncmg.com/slide/javaslidenote.doc.

ComputeAngles Run

http://www.cs.armstrong.edu/liang/javaslidenote.doc
https://liveexample.pearsoncmg.com/html/ComputeAngles.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Character Data Type

char letter = 'A'; (ASCII)

char numChar = '4'; (ASCII)

char letter = '\u0041'; (Unicode)

char numChar = '\u0034'; (Unicode)

Four hexadecimal digits.

NOTE: The increment and decrement operators can also be used

on char variables to get the next or preceding Unicode character.

For example, the following statements display character b.

char ch = 'a';

System.out.println(++ch);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

Unicode Format

Java characters use Unicode, a 16-bit encoding scheme

established by the Unicode Consortium to support the

interchange, processing, and display of written texts in the

world’s diverse languages. Unicode takes two bytes,

preceded by \u, expressed in four hexadecimal numbers

that run from '\u0000' to '\uFFFF'. So, Unicode can
represent 65535 + 1 characters.

Unicode \u03b1 \u03b2 \u03b3 for three Greek

letters

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

ASCII Code for Commonly Used

Characters

Characters Code Value in Decimal Unicode Value

'0' to '9' 48 to 57 \u0030 to \u0039

'A' to 'Z' 65 to 90 \u0041 to \u005A

'a' to 'z' 97 to 122 \u0061 to \u007A

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Escape Sequences for Special Characters

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Appendix B: ASCII Character Set

ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

ASCII Character Set, cont.

ASCII Character Set is a subset of the Unicode from \u0000 to \u007f

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Casting between char and

Numeric Types

int i = 'a'; // Same as int i = (int)'a';

char c = 97; // Same as char c = (char)97;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Comparing and Testing

Characters

if (ch >= 'A' && ch <= 'Z')

System.out.println(ch + " is an uppercase letter");

else if (ch >= 'a' && ch <= 'z')

System.out.println(ch + " is a lowercase letter");

else if (ch >= '0' && ch <= '9')

System.out.println(ch + " is a numeric character");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

Methods in the Character Class

Method Description

isDigit(ch) Returns true if the specified character is a digit.

isLetter(ch) Returns true if the specified character is a letter.

isLetterOfDigit(ch) Returns true if the specified character is a letter or digit.

isLowerCase(ch) Returns true if the specified character is a lowercase letter.

isUpperCase(ch) Returns true if the specified character is an uppercase letter.

toLowerCase(ch) Returns the lowercase of the specified character.

toUpperCase(ch) Returns the uppercase of the specified character.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

The String Type
The char type only represents one character. To represent a string

of characters, use the data type called String. For example,

String message = "Welcome to Java";

String is actually a predefined class in the Java library just like the

System class and Scanner class. The String type is not a primitive

type. It is known as a reference type. Any Java class can be used

as a reference type for a variable. Reference data types will be

thoroughly discussed in Chapter 9, “Objects and Classes.” For the

time being, you just need to know how to declare a String

variable, how to assign a string to the variable, how to concatenate

strings, and to perform simple operations for strings.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Simple Methods for String Objects

Method Description

Returns the number of characters in this string.

Returns the character at the specified index from this string.

Returns a new string that concatenates this string with string s1.

Returns a new string with all letters in uppercase.

Returns a new string with all letters in lowercase.

Returns a new string with whitespace characters trimmed on both sides.

length()

charAt(index)

concat(s1)

toUpperCase()

toLowerCase()

trim()

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Simple Methods for String Objects

Strings are objects in Java. The methods in the preceding

table can only be invoked from a specific string instance.

For this reason, these methods are called instance methods.

A non-instance method is called a static method. A static

method can be invoked without using an object. All the

methods defined in the Math class are static methods. They

are not tied to a specific object instance. The syntax to

invoke an instance method is

referenceVariable.methodName(arguments).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

Getting String Length

String message = "Welcome to Java";

System.out.println("The length of " + message + " is "

+ message.length());

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Getting Characters from a String

String message = "Welcome to Java";

System.out.println("The first character in message is "

+ message.charAt(0));

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Converting Strings

"Welcome".toLowerCase() returns a new string, welcome.

"Welcome".toUpperCase() returns a new string,

WELCOME.

" Welcome ".trim() returns a new string, Welcome.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

String Concatenation

String s3 = s1.concat(s2); or String s3 = s1 + s2;

// Three strings are concatenated

String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2

String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B

String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Reading a String from the Console
Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

Reading a Character from the

Console

Scanner input = new Scanner(System.in);

System.out.print("Enter a character: ");

String s = input.nextLine();

char ch = s.charAt(0);

System.out.println("The character entered is " + ch);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Comparing Strings

Method Description

Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1; it is case insensitive.

Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether

this string is greater than, equal to, or less than s1.

Same as compareTo except that the comparison is case insensitive.

Returns true if this string starts with the specified prefix.

Returns true if this string ends with the specified suffix.

equals(s1)

equalsIgnoreCase(s1)

compareTo(s1)

compareToIgnoreCase(s1)

startsWith(prefix)

endsWith(suffix)

OrderTwoCities Run

https://liveexample.pearsoncmg.com/html/OrderTwoCities.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Obtaining Substrings

Method Description

Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and

extends to the character at index endIndex – 1, as shown in Figure 9.6.

Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,

endIndex)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Finding a Character or a Substring

in a String

Method Description

Returns the index of the first occurrence of ch in the string. Returns -1 if not

matched.

Returns the index of the first occurrence of ch after fromIndex in the string.

Returns -1 if not matched.

Returns the index of the first occurrence of string s in this string. Returns -1 if

not matched.

Returns the index of the first occurrence of string s in this string after

fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string. Returns -1 if not

matched.

Returns the index of the last occurrence of ch before fromIndex in this

string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if not matched.

Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

indexOf(ch)

indexOf(ch, fromIndex)

indexOf(s)

indexOf(s, fromIndex)

lastIndexOf(ch)

lastIndexOf(ch,

fromIndex)

lastIndexOf(s)

lastIndexOf(s,

fromIndex)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Finding a Character or a Substring

in a String
int k = s.indexOf(' ');

String firstName = s.substring(0, k);

String lastName = s.substring(k + 1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

Conversion between Strings and

Numbers

int intValue = Integer.parseInt(intString);

double doubleValue = Double.parseDouble(doubleString);

String s = number + "";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

Problem: Guessing Birthday

The program can guess your birth date. Run

to see how it works.

GuessBirthday Run

https://liveexample.pearsoncmg.com/html/GuessBirthday.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

Mathematics Basis for the Game

19 is 10011 in binary. 7 is 111 in binary. 23 is 11101 in binary

 10000

 10

+ 1

 10011

 00110

 10

+ 1

 00111

 19 7

 10000

 1000

100

+ 1

 11101

 23

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

Case Study: Converting a

Hexadecimal Digit to a Decimal Value

Write a program that converts a hexadecimal digit

into a decimal value.

HexDigit2Dec Run

https://liveexample.pearsoncmg.com/html/HexDigit2Dec.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

Case Study: Revising the

Lottery Program Using Strings

A problem can be solved using many different approaches.

This section rewrites the lottery program in Listing 3.7

using strings. Using strings simplifies this program.

LotteryUsingStrings Run

https://liveexample.pearsoncmg.com/html/HexDigit2Dec.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Formatting Output

Use the printf statement.

System.out.printf(format, items);

Where format is a string that may consist of substrings and

format specifiers. A format specifier specifies how an item

should be displayed. An item may be a numeric value,

character, boolean value, or a string. Each specifier begins

with a percent sign.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
41

Frequently-Used Specifiers

Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200

%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01

%s a string "Java is cool"

int count = 5;

double amount = 45.56;

System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
42

FormatDemo

The example gives a program that uses printf to display a

table.

FormatDemo Run

https://liveexample.pearsoncmg.com/html/FormatDemo.html

