
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. All rights reserved. 1

Chapter 5 Loops

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Motivations

Suppose that you need to print a string (e.g.,
"Welcome to Java!") a hundred times. It would be
tedious to have to write the following statement a
hundred times:

System.out.println("Welcome to Java!");

So, how do you solve this problem?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Opening Problem

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

…

…

…
System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

System.out.println("Welcome to Java!");

Problem:

100

times

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Introducing while Loops

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java");

count++;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. All rights reserved. 5

Objectives
 To write programs for executing statements repeatedly using a while loop

(§5.2).

 To follow the loop design strategy to develop loops (§§5.2.1–5.2.3).

 To control a loop with a sentinel value (§5.2.4).

 To obtain large input from a file using input redirection rather than typing

from the keyboard (§5.2.5).

 To write loops using do-while statements (§5.3).

 To write loops using for statements (§5.4).

 To discover the similarities and differences of three types of loop statements

(§5.5).

 To write nested loops (§5.6).

 To learn the techniques for minimizing numerical errors (§5.7).

 To learn loops from a variety of examples (GCD, FutureTuition,

Dec2Hex) (§5.8).

 To implement program control with break and continue (§5.9).

 To write a program that displays prime numbers (§5.11).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

while Loop Flow Chart

while (loop-continuation-condition) {

// loop-body;

Statement(s);

}

int count = 0;

while (count < 100) {

System.out.println("Welcome to Java!");

count++;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Trace while Loop

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Initialize count

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is true

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Increase count by 1

count is 1 now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is still true since count

is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

Increase count by 1

count is 2 now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

Trace while Loop, cont.

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

(count < 2) is false since count is 2

now

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

Trace while Loop

int count = 0;

while (count < 2) {

System.out.println("Welcome to Java!");

count++;

}

The loop exits. Execute the next

statement after the loop.

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Problem: Repeat Addition Until Correct

Recall that Listing 3.1 AdditionQuiz.java gives a

program that prompts the user to enter an answer

for a question on addition of two single digits.

Using a loop, you can now rewrite the program to

let the user enter a new answer until it is correct.

IMPORTANT NOTE: If you cannot run the buttons, see
https://liveexample.pearsoncmg.com/slide/javaslidenote.doc.

RepeatAdditionQuiz Run

http://www.cs.armstrong.edu/liang/javaslidenote.doc
https://liveexample.pearsoncmg.com/html/RepeatAdditionQuiz.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Problem: Guessing Numbers

Write a program that randomly generates an

integer between 0 and 100, inclusive. The program

prompts the user to enter a number continuously

until the number matches the randomly generated

number. For each user input, the program tells the

user whether the input is too low or too high, so

the user can choose the next input intelligently.

Here is a sample run:

GuessNumberOneTime Run

GuessNumber Run

https://liveexample.pearsoncmg.com/html/GuessNumberOneTime.html
https://liveexample.pearsoncmg.com/html/GuessNumber.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Problem: An Advanced Math Learning Tool

The Math subtraction learning tool program

generates just one question for each run. You can

use a loop to generate questions repeatedly. This

example gives a program that generates five

questions and reports the number of the correct

answers after a student answers all five questions.

SubtractionQuizLoop Run

https://liveexample.pearsoncmg.com/html/SubtractionQuizLoop.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Ending a Loop with a Sentinel Value

Often the number of times a loop is executed is not

predetermined. You may use an input value to

signify the end of the loop. Such a value is known

as a sentinel value.

Write a program that reads and calculates the sum

of an unspecified number of integers. The input 0

signifies the end of the input.

SentinelValue Run

https://liveexample.pearsoncmg.com/html/SentinelValue.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Caution

Don’t use floating-point values for equality checking in a
loop control. Since floating-point values are
approximations for some values, using them could result
in imprecise counter values and inaccurate results.
Consider the following code for computing 1 + 0.9 + 0.8
+ ... + 0.1:

double item = 1; double sum = 0;

while (item != 0) { // No guarantee item will be 0

sum += item;

item -= 0.1;

}

System.out.println(sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

do-while Loop

do {

// Loop body;

Statement(s);

} while (loop-continuation-condition);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

for Loops
for (initial-action; loop-

continuation-condition; action-
after-each-iteration) {

// loop body;
Statement(s);

}

int i;

for (i = 0; i < 100; i++) {

System.out.println(

"Welcome to Java!");

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Trace for Loop

int i;

for (i = 0; i < 2; i++) {

System.out.println(

"Welcome to Java!");

}

Declare i

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println(

"Welcome to Java!");

}

Execute initializer

i is now 0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

(i < 2) is true

since i is 0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Execute adjustment statement

i now is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

(i < 2) is still true

since i is 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Print Welcome to Java

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Execute adjustment statement

i now is 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

(i < 2) is false

since i is 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Trace for Loop, cont.

int i;

for (i = 0; i < 2; i++) {

System.out.println("Welcome to Java!");

}

Exit the loop. Execute the next

statement after the loop

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Note

The initial-action in a for loop can be a list of zero or more

comma-separated expressions. The action-after-each-

iteration in a for loop can be a list of zero or more comma-

separated statements. Therefore, the following two for

loops are correct. They are rarely used in practice,

however.

for (int i = 1; i < 100; System.out.println(i++));

for (int i = 0, j = 0; (i + j < 10); i++, j++) {

// Do something

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Note

If the loop-continuation-condition in a for loop is omitted,

it is implicitly true. Thus the statement given below in (a),

which is an infinite loop, is correct. Nevertheless, it is

better to use the equivalent loop in (b) to avoid confusion:

 for (; ;) {
 // Do something

}

(a)

Equivalent while (true) {

 // Do something

}

(b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

Caution

Adding a semicolon at the end of the for clause before

the loop body is a common mistake, as shown below:

Logic

Error

for (int i=0; i<10; i++);

{

System.out.println("i is " + i);

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

Caution, cont.
Similarly, the following loop is also wrong:
int i=0;
while (i < 10);
{
System.out.println("i is " + i);
i++;

}

In the case of the do loop, the following semicolon is
needed to end the loop.
int i=0;
do {
System.out.println("i is " + i);
i++;

} while (i<10);

Logic Error

Correct

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

Which Loop to Use?
The three forms of loop statements, while, do-while, and for, are

expressively equivalent; that is, you can write a loop in any of these

three forms. For example, a while loop in (a) in the following figure

can always be converted into the following for loop in (b):

A for loop in (a) in the following figure can generally be converted into the

following while loop in (b) except in certain special cases (see Review Question

3.19 for one of them):

 for (initial-action;
 loop-continuation-condition;

 action-after-each-iteration) {

 // Loop body;

}

(a)

Equivalent

(b)

initial-action;

while (loop-continuation-condition) {

 // Loop body;

 action-after-each-iteration;

}

 while (loop-continuation-condition) {
 // Loop body

}

(a)

Equivalent

(b)

for (; loop-continuation-condition;) {

 // Loop body

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

Recommendations

Use the one that is most intuitive and comfortable for

you. In general, a for loop may be used if the number of

repetitions is known, as, for example, when you need to

print a message 100 times. A while loop may be used if

the number of repetitions is not known, as in the case of

reading the numbers until the input is 0. A do-while loop

can be used to replace a while loop if the loop body has to

be executed before testing the continuation condition.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

Nested Loops

Problem: Write a program that uses nested for

loops to print a multiplication table.

MultiplicationTable Run

https://liveexample.pearsoncmg.com/html/MultiplicationTable.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Minimizing Numerical Errors

Numeric errors involving floating-point
numbers are inevitable. This section discusses
how to minimize such errors through an
example.

Here is an example that sums a series that
starts with 0.01 and ends with 1.0. The
numbers in the series will increment by 0.01,
as follows: 0.01 + 0.02 + 0.03 and so on.

TestSum Run

https://liveexample.pearsoncmg.com/html/TestSum.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
41

Problem:

Finding the Greatest Common Divisor

Problem: Write a program that prompts the user to enter two positive

integers and finds their greatest common divisor.

Solution: Suppose you enter two integers 4 and 2, their greatest

common divisor is 2. Suppose you enter two integers 16 and 24, their

greatest common divisor is 8. So, how do you find the greatest common

divisor? Let the two input integers be n1 and n2. You know number 1 is

a common divisor, but it may not be the greatest commons divisor. So

you can check whether k (for k = 2, 3, 4, and so on) is a common
divisor for n1 and n2, until k is greater than n1 or n2.

GreatestCommonDivisor Run

https://liveexample.pearsoncmg.com/html/GreatestCommonDivisor.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
42

Problem: Predicting the Future Tuition

Problem: Suppose that the tuition for a university is $10,000 this year

and tuition increases 7% every year. In how many years will the

tuition be doubled?

FutureTuition Run

https://liveexample.pearsoncmg.com/html/FutureTuition.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
43

Problem: Predicating the Future Tuition

double tuition = 10000; int year = 0 // Year 0

tuition = tuition * 1.07; year++; // Year 1

tuition = tuition * 1.07; year++; // Year 2

tuition = tuition * 1.07; year++; // Year 3

...

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
44

Case Study: Converting Decimals to

Hexadecimals
Hexadecimals are often used in computer systems programming (see

Appendix F for an introduction to number systems). How do you

convert a decimal number to a hexadecimal number? To convert a

decimal number d to a hexadecimal number is to find the hexadecimal

digits hn, hn-1, hn-2, ... , h2, h1, and h0 such that

These hexadecimal digits can be found by successively dividing d by

16 until the quotient is 0. The remainders are h0, h1, h2, ... , hn-2, hn-1,

and hn.

01221 161616...161616 01221  
 hhhhhhd nnn

nnn

Dec2Hex Run

https://liveexample.pearsoncmg.com/html/Dec2Hex.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
45

Problem: Monte Carlo Simulation

The Monte Carlo simulation refers to a technique that uses random

numbers and probability to solve problems. This method has a wide

range of applications in computational mathematics, physics,

chemistry, and finance. This section gives an example of using the

Monto Carlo simulation for estimating .

x

y

1 -1

1

-1

circleArea / squareArea =  / 4.

 can be approximated as 4 *

numberOfHits / numberOfTrials

Companion Website

MonteCarloSimulation Run

https://liveexample.pearsoncmg.com/html/MonteCarloSimulation.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
46

Using break and continue

Examples for using the break and continue

keywords:

 TestBreak.java

 TestContinue.java

TestBreak Run

TestContinue Run

https://liveexample.pearsoncmg.com/html/TestBreak.html
https://liveexample.pearsoncmg.com/html/TestContinue.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
47

break

 public class TestBreak {
 public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 sum += number;

 if (sum >= 100)

 break;

 }

 System.out.println("The number is " + number);

 System.out.println("The sum is " + sum);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
48

continue

 public class TestContinue {
 public static void main(String[] args) {

 int sum = 0;

 int number = 0;

 while (number < 20) {

 number++;

 if (number == 10 || number == 11)

 continue;

 sum += number;

 }

 System.out.println("The sum is " + sum);

 }

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
49

Guessing Number Problem Revisited

Here is a program for guessing a number. You can

rewrite it using a break statement.

GuessNumberUsingBreak Run

https://liveexample.pearsoncmg.com/html/GuessNumberUsingBreak.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
50

Problem: Checking Palindrome
A string is a palindrome if it reads the same forward and backward.

The words “mom,” “dad,” and “noon,” for instance, are all

palindromes.

The problem is to write a program that prompts the user to enter a

string and reports whether the string is a palindrome. One solution is

to check whether the first character in the string is the same as the last

character. If so, check whether the second character is the same as the

second-to-last character. This process continues until a mismatch is

found or all the characters in the string are checked, except for the

middle character if the string has an odd number of characters.

String s

low

high

a

b

c

d

e

f

g

n

h

g

f

e

d

c

b

a

Palindrome Run

https://liveexample.pearsoncmg.com/html/Palindrome.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
51

Problem: Displaying Prime Numbers

Problem: Write a program that displays the first 50 prime numbers in

five lines, each of which contains 10 numbers. An integer greater than

1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,

5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

Solution: The problem can be broken into the following tasks:

•For number = 2, 3, 4, 5, 6, ..., test whether the number is prime.

•Determine whether a given number is prime.

•Count the prime numbers.

•Print each prime number, and print 10 numbers per line.

PrimeNumber Run

https://liveexample.pearsoncmg.com/html/PrimeNumber.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
52

Debugging Loops in IDE ToolsCompanion
Website

Supplements II.C, II.E, and II.G.

