Chapter 6 Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Opening Problem

Find the sum of integers from 1 to 10, from 20 to 30, and
from 35 to 45, respectively.

/

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Problem

int sum = 0;
for (int 1 = 1; 1 <= 10; i++)
sum += 1i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int 1 = 20; i <= 30; 1i++)
sum += 1i;
System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)

sum += 1i;
System.out.println("Sum from 35 to 45 is " + sum

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Problem

int sum = 0;
for (int i = 1; 1 <= 10; i++)
sum += 1i;

System.out.println("Sum from 1 to 10 is " + sum);

um = 0;

or (int 1i
sum += 1i;

System.out.println("Sum from 20 to 30 is " + sum);

um = 0;
or (int i = 35; 1 <= 45; i++)

sum += 1i;
System.out.println("Sum from 35 to 45 is " + sum

20; 1 <= 30; i++)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Solution

public static int sum(int i1, int 12) {
Int sum = 0;
for (int1=11;1<=12; i++)
sum +=1;
return sum; MethodDemo -

}

public static void main(String[] args) {
System.out.printin("Sum from 1 to 10 i1s " +|{sum(1, 10}
System.out.printin("Sum from 20 to 30 is " +[sum(20,
System.out.printin("Sum from 35 to 45 is " +[sum(35,

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/MethodDemo.html

Objectives

To define methods with formal parameters (86.2).

To invoke methods with actual parameters (i.e., arguments) (86.2).
To define methods with a return value (86.3).

To define methods without a return value (86.4).

To pass arguments by value (86.5).

To develop reusable code that is modular, easy to read, easy to debug, and
easy to maintain (86.6).

To write a method that converts hexadecimals to decimals (86.7).
To use method overloading and understand ambiguous overloading

(86.8). \
To determine the scope of variables (86.9).

To apply the concept of method abstraction in software development
(86.10).

To design and implement methods using stepwise refinement (86.10).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Defining Methods

A method Is a collection of statements that are
grouped together to perform an operation.

Define a method

public static int max (int numl, int num?2)
int result;

if (numl > num?2)

result = numl;
else
result = num?2;

return result;

{

Invoke a method

int z = max(x, Vy);

()

actual parameters
(arguments)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Defining Methods

A method Is a collection of statements that are
grouped together to perform an operation.

Define a method Invoke a method
B return value method formal
modifier type name parameters
hod / \ ‘L Ac/ X int z = max(x, y);
hmee:de(:)r —>»public static int|max(int numl, int num2) | { T T
. | parameter
int result; actual parameters
method (arguments)
bod . . parameter list
y if (numl > num?2?)
result = numl;
else
1t = 5. method
result = numZ; signature
| return result; €——— retumn value
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Method Signature

Method signature is the combination of the method name and the
parameter list.

Define a method Invoke a method
3 return value method formal
modifier type name parameters

AN

method / \ ¢ 2z 'K’z'/ X int z = maX(T %);

header —>»public static int|max (int numl, int num2) | {

. actual parameters

int result; (arguments)
method > _
body . parameter list
if (numl > num?2?)
result = numl;
else
1t — 5. method
result = numes; signature
return result; €— returnvalue
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Formal Parameters

The variables defined in the method header are known as
formal parameters.

Define a method Invoke a method
B return value method formall
modifier type name parameters
thod / \ ¢ 7 & int z = max(x, Vy);
hmeZde(:)r —>p»public static int|max (int jnuml} int |[num?2) | { T T
. | parameter
int result; actual parameters
method (arguments)
body) . parameter list
if (numl > num?2?)
result = numl;
else
1t = 5. method
result = numZz; signature
| return result; €——— retumn value
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R

All rights reserved.

Actual Parameters

When a method is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument.

Define a method Invoke a method
B return value method formal
modifier type name parameters
hod /\ ‘L Ac/ X int z = max (FE) ;
hmee:de(:)r —>»public static int|max(int numl, int num2) | { T T
. | parameter
int result; actual parameters
method (arguments)
bod . . parameter list
y if (numl > num?2?)
result = numl;
else
method
result = num?2; signature
| return result; €——— retumn value
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P

All rights reserved.

Return Value Type

A method may return a value. The returnValueType is the data type
of the value the method returns. If the method does not return a

value, the returnValueType is the keyword void. For example, the
returnValueType in the main method is void.

Define a method

3 return value method formal
modifier type name parameters
~
method . . T K s \
header —>ppublic static |int|max (int numl, int num2) | {

Invoke a method

int z = max(x, Vy);

1

. actual parameters
int result; (arguments)
method > .
body - parameter list
if (numl > num?2)
result = numl;
else
1t = 5. method
result = nume; signature
return result]|; €—— returnvalue
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?

All rights reserved.

Calling Methods

Testing the max method

This program demonstrates calling a method max
to return the largest of the int values

TestMax - 9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestMax.html

animation

Calling Methods, cont.

pass the value of i
pass the value of j

<
<

public static ivoid main(Strinall aras) ¢ :’public static int max(int numl. int num2) ¢

int 1 = 5: § RO L int result:
int i = 2: § ettt
int k = maxi, S): et if (numl > num2)
<. result = numl:

Svstem.out.printlnf(else

"The maximum between " + i ‘¥-.., . result = num2:

“and " + i+ " is " + k): e .

} return result:;
e,
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R

All rights reserved.

animation

Trace Method Invocation

1 1ISNOW 5]
D i i i i i Y { public static int max(int numl. int num2) {
int 1 = 5: int result:
int 1 = 2:
int k = max(i. iy: if (numl > num2)
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:
1 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

j is now 2]
y

public static wvoid main(Str%V;///ards} { public static int max(int numl. int num2) {
4 |

int 1 =5 int result:
int i = 2:
int k = max(i. iy: if (numl > num2)
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:
1 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

invoke max(i, j)]
public static void main(Strin rasy { public static int max(int numl. int num2) {
int 1 = 5: int result:
int 1 = 2:
int k =|max(i. i) v | if (numl > num2)
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:
1 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

invoke max(i, j)
Pass the value of i to numl
Pass the value of j to num2

\

public static void main(Strinal 1l aras) { EEE;iSTEEEEigLIht max(int numl., int num2)| {
int i = 5: . gsult:
int i = 2: _TT__________—————“‘—_——
int k = max(i. : if (numl > num2)
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:
1 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

[declare variable result
public static void main(Strinal 1 aras) { public static \t max({int numl. int num2) {
int i = 5: I egsu t. |
int i1 = 2: _TT_________—————“‘”——_
int k = max(i. : if (numl > num2)
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:
1 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

(numl > numz2) is true since numl
Is5and num2 is 2

public static woid mainfStrinal 1l aras) { Dubllc stati max(int numl. int num2) {
int i 5: I gsult:
int 1 = 2: _TT__________—————“‘—_——

|if (numl > num2) \ |

int k max(i.
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:
1 return result:

b

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

result is now 5

max(int numl.

public static void main(Strinall aras) {
int i = 5: I
int i1 = 2: _TT__________—————“‘—_——
int k = max(i. :
result numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k3:

return result:

int num2y) {

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

animation

Trace Method Invocation

[return result, which is 5
public static void main(Strinall aras) { pul atic int maxf{int numl. int num2) ¢{
int i = 5: I sult:
int i1 = 2: _TT_________—————“‘”——_
int k = max(i. : > num2)
= numl:
Svstem.out.printlnf
"The maximum between " + i + = num?2:
"and " + 1+ " is " + k3:
1 |return result:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

return max(i, j) and assign the
return value to k

7

public static woid main(Stri7£///é}ds} { public static int max(int numl. int num2) {

int 1 = 5: int result:
int i = 2:
|int k = max(i, _i): v | if (numl > num2)
result = numl:
Svstem.out.printlnf else
"The maximum between " + i + result = num2:
"and " + 1+ " is " + k): ~——_
3 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Method Invocation

Execute the print statement

sy {

public static woid main(String public static int max(int numl. int num2) {
int 1 = 5: int result:
int 1 = 2:
int k = max(i. iy: if (numl > num2)
result = numl:
Svstem.out.printlnf(|4 else
"The maximum between " + i + result = num2:
"and " + 1 + " is " + k):
1 return result:
13

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

CAUTION

A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

public static int sign(int n) { public static int sign(int n) {

return —1;

return —1;

if (n > 0) Should be if (n > 0)
return 1; — return 1;

else i1f (n == 0) else i1f (n == 0)
return 0O; return 0O;

else if (n < 0) else

(a) (b)

N\

To fix this problem, delete if (n < 0) in (a), so that the compiler
see a return statement to be reached regardless of how the if
statement is evaluated.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

D’

Reuse Methods from Other Classes

NOTE: One of the benefits of methods Is for reuse. The max
method can be invoked from any class besides TestMax. If
you create a new class Test, you can invoke the max method
using ClassName.methodName (e.g., TestMax.max).

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

Call Stacks

Activation record for Activation record for
the max method the max method
result: result: Sp==temcmmmccea———y -=;
num2: 2 [<== num2: 2 I
numl: 5 ++-: numl: 5 :
Activation record Activation record for : I Activation record for Activation record :
for the main method| | the main method 1§ | the main method for the main method | 1
k: k: L k: k: 5 |<! |Stackis empty
j: 2 _'_j:2--l= j: 2 j: 2
1: 5 T: Spmm=t 1: 5 1: 5
(a) The main (b) The max (¢) The max method (d) The max method is (e) The main
method is invoked. method is invoked. is being executed. finished and the return method is finished.

value is sent to k.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

I i1s declared and initialized

public static wvoid main(St?EEg;;%f;GST’?_
[int i F

int 1 2:
int k maxfii, 1id:

Svstem.out.printlnf(
"The maximum between " + 1 +
"mand " + i+ " is " + k)Y:

public static int max(int numl. int num2) { \\\\\\\\\\
i:5

int result:

if (numl > num2)

result = numl: The main method
else is invoked.

result = numz:

return result:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

J is declared and initialized

public static wvoid main¢(sStrinall ar
int 1 5:
[1nt 1 2:

int k maxii, 1id:

Svstem.out.printlnf(
"The maximum between " + 1 +
"mand " + i+ " is " + k)Y:

B
int num2)y { \\\\\\\\\\i
1

public static int max(int numl. 2
int result: ii5

if (numl > num2)

result = numl: The main method
else is invoked.

result = numz:

return result:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

Declare k

public static wvoid mainf(s
int 1
int 1

5:

maxfii, 1id:

Svstem.out.println

aras) {

int result:

if (numl > num2)
result = numl:
else
result = num2:

return result:

"The maximum between + 1

"mand " + i+ " is " + k)Y:
} \
public static int max(int numl., int num2) {

Space required for the

vﬁ#mﬂ@ﬁ\\ﬂ

k:
J:
i;

2
5

The main method
is invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

animation

Trace Call Stack

Invoke max(i, j)

public static void main(Strinal 1 aras)
int i = 5:
int 1 = 2;
int k =[max(i, 1): :

Svstem.out.printlnf(
"The maximum between " + 1 |+
"mand " + i+ " is " + k)Y:
B Space required for the
main method
| k:
J:
i;

public static int max(int numl. int num2) {

2
int result: 5

if (numl > num2)

result = numl: The main method
else is invoked.

result = numz:

return result:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

pass the values of i and j to numl

and num2
public static wvoid main¢(sStrinall aras) {
int 1 = 5:
int 1 = 2:
int kK = max(fi., 1):
Svstem.out.printlnf(
"The maximum between " + 1 +
"and " + 1 + " is " + k): num2: 2|«,
¥ /)numl:5(-|u-.
|
. — . - Space required forthe | | 1
public static int|max(int numl. Int num2)/|{ n%"]m;%od L
int result: K- :
. 0
if (numl > num2) !12
result = numl: 15
else
result = numz:
return result: The max method is
+ invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

Declare result

public static void main{(Strinall aras) {
int i 5
int 1 2:
int k max(i. 1):

Svstem.out.printlnf(
"The maximum between " + 1 + result:

"mand " + i+ " is " + k)Y: numz;z(_
€

} I
|
Space required for the [| !

|

I

I

public static int max(int numl., int num?2 .
[int result: main method

if (numl > num2)
result = numl:
else
result = num2:

k:
J:
i;

2
5

return result: The max method is
1 invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

(numl > numz2) is true

public static wvoid main¢(sStrinall aras) {

int 1 = 5:
int 1 = 2:
int kK = max(fi., 1):
Svstem.out.printlnf(
"The maximum between " + 1 + result:
"mand " + i+ " is " + k)Y: num2:2(.,
¥ num1:5(-|u-.
|
: e : . / Space required for the | |, 1
public static int max/iint numl, int num2/ /{ main method ;)
int result: l
k: :
lif (numl > num2) F ji2p -
result = numl: 15
else
result = numz:
return result: The max method is
+ invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

" and " +

int 1 = 5:
int 1 = 2:
int kK = max(i.

i+ "

iY:

Svstem.out.printlnf(
"The maximum between

is

public static wvoid main¢(sStrinall aras) {

"+ 1+
+ ky:

int result:

public static int max(int numl.

int num2)

return result:

if (numl > num2)
| result = numl: /|
else

result = num2:

Assign nu

m1 to result

Space required for the
max method
result: 5

2
numl: 5

/

Sﬁce required for the
main method

k:
j:
i

2
5

The max method is
invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

public static wvoid main¢(sStrinall aras) {

int i = 5;:
int 1 = 2:
int = max(i., 1i)Y:
Svstem.out.printlnf(
"The \maximum between " + i +
"and\" + 1 4+ " is " + k3:

/

public static int max(int numl., int num

int result:

if (numl \> num2)

result numl:;
else
result numz2:

|return result:

+

Return result and assign it to k

Space required for the
max method
result: 5k - -,
num2: 2|, |
numl: 5| =1

Space required for the
main method

/

The max method is
invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Call Stack

Execute print statement

public static wvoid main¢(sStrinall aras) {

int i = 5;:
int 1 = 2:
int k = max(i., i):
Svstem.out.printlnf
"The maximum between " + 1 +
"mand " + i+ " is " + k)y:
B Space required for the
main method
k:5
public static int max(int numl. int num2) { ji2
int result: ii5
if (numl > num2)
result = numl: The main method
else is invoked.

result = numz:

return result:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

vold Method Example

This type of method does not return a value. The method
performs some actions.

TestVoidMethod -
TestReturnGradeMethod - \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestVoidMethod.html
https://liveexample.pearsoncmg.com/html/TestReturnGradeMethod.html

Passing Parameters

public static void nPrintln(String message, int n) {
for (int 1 = 0; 1 < n; i++)
System.out.println (message) ;

Suppose you invoke the method using
nPrintln(“Welcome to Java”, 5);
What is the output?

Suppose you invoke the method using
nPrintln(““Computer Science”, 15); \
What is the output?

Can you invoke the method using
nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Pass by Value

This program demonstrates passing values
to the methods.

Increment -

\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/Increment.html

Pass by Value

Testing Pass by value

This program demonstrates passing values
to the methods.

TestPassByValue - \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestPassByValue.html

Activation record for
the main method

num2: 2

Pass by Value,

The values of numl and hum?2 are

passed to nl and n2.
|

Activation record for |
the swap method I'
temp: ,
h2: 2
nl: 1

Activation record for
the main method

num2: 2=

cont.

The values for nl and n2 are

Activation record for

the swap method /
temp: 1 f

n2: 1

nl: 2

Activation record for
the main method

num2: 2

huml: 1l m==-

huml: 1

The main method
is invoked.

The swap method
is invoked.

huml: 1

swapped, but it does not affect
numl and num?2.

Activation record for
the main method

num2: 2

numl: 1

Stack is empty

The swap method
is executed.

All rights reserved.

The swap method
is finished.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

The main method
is finished.
A

Modularizing Code

Methods can be used to reduce redundant coding
and enable code reuse. Methods can also be used to
modularize code and improve the quality of the
program.

GreatestCommonDivisorMethod -

PrimeNumberMethod - \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/GreatestCommonDivisorMethod.html
https://liveexample.pearsoncmg.com/html/PrimeNumberMethod.html

Case Study: Converting Hexadecimals
to Decimals

Write a method that converts a hexadecimal
number into a decimal number.

ABCD =>
A*1673 + B*16/2 + C*16°1+ D*16"0
= ((A*16 + B)*16 + C)*16+D N
= ((10*16 + 11)*16 + 12)*16+13 = ?

i

Hex2Dec

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Educ
All rights reserved.

https://liveexample.pearsoncmg.com/html/Hex2Dec.html

Overloading Methods

Overloading the max Method

public static double max (double numl, double
num2?) {
if (numl > num?2)
return numl;
else
return num?2;

}
TestMethodOverloading - 9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestMethodOverloading.html

Ambiguous Invocation

Sometimes there may be two or more possible
matches for an invocation of a method, but the
compliler cannot determine the most specific
match. This Is referred to as ambiguous
Invocation. Ambiguous Invocation IS a
compile error. =\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4P
All rights reserved.

Ambiguous Invocation

public class AmbiguousOverloading ({
public static void main(String[] args) {
System.out.println(max (1, 2));

public static double max(int numl, double num2) {
if (numl > num2)
return numl;
else
return num2;

public static double max(double numl, int num2) {
if (numl > num?2) .-~\
return numl;
else
return num2;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Scope of Local Variables

A local variable: a variable defined inside a
method.

Scope: the part of the program where the
variable can be referenced.

The scope of a local variable starts from its
declaration and continues to the end of t
block that contains the variable. A local
variable must be declared before It can be’
used.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?

Scope of Local Variables, cont.

You can declare a local variable with the
same name multiple times In different non-
nesting blocks in a method, but you cannot

declare a local variable twice In nested
blocks.

D\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. Z?
All rights reserved.

Scope of Local Variables, cont.

A variable declared in the initial action part of a for loop
header has its scope In the entire loop. But a variable
declared inside a for loop body has its scope limited in the

loop body from its declaration and to the end of the block
that contains the variable.

public static void methodl () {

— for (= 1; 1 < 10; i++) {

The scope of i - \

The scope 0of] —3=

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Scope of Local Variables, cont.

It is fine to declare i1 in two Tt 1s wrong to declare 1 1n
non-nesting blocks two nesting blocks
public static void methodl () { public static void method2 () {
int x = 1;
int vy = 1; - = 1;
_ int sum = 0;
for (= 1; 1 < 10; 1i++) { |
X += 1ij for (= 1; i < 10; i++)
} N sum += 1i;
—for (= 1; i < 10; 1i++) { }
y += 1i; _)
N
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?

All rights reserved.

Scope of Local Variables, cont.

// Fine with no errors
public static void correctMethod() ({
int x = 1;
int y = 1;
// i is declared
for (int 1 = 1; 1 < 10; i++) {
X += 1;
}
// i is declared again
for (int 1 = 1; i < 10; i++) {
y += 1;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Scope of Local Variables, cont.

// With errors
public static void incorrectMethod() {
int x = 1;
int y = 1;
for (int 1 = 1; 1 < 10; i++) {
int x = 0;
X += 1;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Method Abstraction

You can think of the method body as a black box
that contains the detailed implementation for the
method.

Optional arguments Optional return
for Input value

‘ Method Header ‘
Black Box \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Benefits of Methods

« \Write a method once and reuse It anywhere.

 Information hiding. Hide the implementation
from the user.

» Reduce complexity.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Case Study: Generating Random
Characters

Computer programs process numerical data and characters.
You have seen many examples that involve numerical data.
It Is also important to understand characters and how to
process them.

As introduced In Section 4.3, each character has a unique
Unicode between 0 and FFFF in hexadecimal (65535 In
decimal). To generate a random character Is to generate a
random integer between 0 and 65535 using the followi
expression: (note that since 0 <= Math.random() < 1.0,
have to add 1 to 65535.)

(int)(Math.random() * (65535 + 1))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a’, then for 'o’, 'c', ..., and 'z". The Unicode for ‘a'
IS
(int)'a’
So, a random Integer between (int)'a’ and (int)'z'\
(Int)((int)'a" + Math.random() * ((int)'z' - (int)'a’ +.1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5P
All rights reserved.

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a’, then for 'o’, 'c', ..., and 'z". The Unicode for ‘a'
IS
(int)'a’
So, a random Integer between (int)'a’ and (int)'z'\
(Int)((int)'a" + Math.random() * ((int)'z' - (int)'a’ +.1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Case Study: Generating Random
Characters, cont.

As discussed in Chapter 2, all numeric operators
can be applied to the char operands. The char
operand Is cast into a number If the other operand
IS @ number or a character. So, the preceding
expression can be simplified as follows:

'a' + Math.random() * ('z'-'a' + 1) \

So a random lowercase letter 1Is
(char)(‘a' + Math.random() * ('z' - 'a' + 1))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Case Study: Generating Random
Characters, cont.

To generalize the foregoing discussion, a random character
between any two characters chl and ch2 with chl < ch2
can be generated as follows:

(char)(chl + Math.random() * (ch2 — chl + 1))

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. &
All rights reserved.

The RandomCharacter Class

// RandomCharacter.java: Generate random characters
public class RandomCharacter ({
/** Generate a random character between chl and ch2 */
public static char getRandomCharacter (char chl, char ch2) {
return (char) (chl + Math.random() * (ch2 - chl + 1));

/** Generate a random lowercase letter */
public static char getRandomLowerCaseletter () ({
return getRandomCharacter('a', 'z');

/** Generate a random uppercase letter */
public static char getRandomUpperCaseletter () ({
return getRandomCharacter('A', 'Z');

/** Generate a random digit character */

public static char getRandomDigitCharacter() { RandomCharacter
return getRandomCharacter('0', '9');
} TestRandomCharacter
/** Generate a random character */
public static char getRandomCharacter () ({ -
return getRandomCharacter ('\u0000', '\uFFFF');
}
}
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. &

All rights reserved.

https://liveexample.pearsoncmg.com/html/TestRandomCharacter.html
https://liveexample.pearsoncmg.com/html/RandomCharacter.html

Stepwise Refinement (Optional)

The concept of method abstraction can be applied
to the process of developing programs. When
writing a large program, you can use the “divide
and conquer” strategy, also known as stepwise
refinement, to decompose It into subproblems. The

subproblems can be further decomposed into
smaller, more manageable problems. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 6?
All rights reserved.

PrintCalender Case Study

Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

<+ Command Prompt - 0] x|
C:\book>java PrintCalendar A
Enter full year (e.g., 2001): 2009 1
Enter month in number between 1 and 12: 4

April 2009

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4

5 [T 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25
26 27 28 29 30

C:\book>_ hd
4| Y 4

PrintCalendar -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/PrintCalendar.html

Design Diagram

printCalendar
(main)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Y/

Design Diagram

printCalendar
(main)

2

readInput

4

printMonth

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Y/

Design Diagram

2

readInput

printCalendar
(main)
L4
printMonth
Y Y
printMonthTitle

printMonthBody

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Y/

Design Diagram

printCalendar
(main)

2

readInput

4

printMonth

Y

printMonthTitle

Y

getMonthName

L 4

printMonthBody

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Design Diagram

printCalendar

2

readInput

(main)
L4
printMonth
Y Y
printMonthTitle printMonthBody
N2 v
getMonthName getStartDay

Y

gethJmOfDaysInMonth

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Design Diagram

printCalendar
(main)

A 7 Y

readlnput printMonth
Y Y
printMonthTitle printMonthBody
N2 v
getMonthName getStartDay

Y

getTotaNumOfDays

Y VY

getNumOfDaysInMonth

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Design Diagram

printCalendar
(main)

A 7 Y

readlnput printMonth
Y Y
printMonthTitle printMonthBody
N2 v
getMonthName getStartDay

Y

getTotaNumOfDays

Y VY

getNumOfDaysInMonth
I

Y VY

isLeapYear

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Implementation: Top-Down

Top-down approach is to implement one method in the
structure chart at a time from the top to the bottom. Stubs
can be used for the methods waiting to be implemented. A
stub is a simple but incomplete version of a method. The
use of stubs enables you to test invoking the method from

a caller. Implement the main method first and then use a
stub for the printMonth method. For example, let
printMonth display the year and the month in the stub.
Thus, your program may begin like this: \

A Skeleton for printCalendar !

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/PrintCalendarSkeleton.html

Implementation: Bottom-Up

Bottom-up approach is to implement one method in the
structure chart at a time from the bottom to the top. For
each method implemented, write a test program to test It.
Both top-down and bottom-up methods are fine. Both
approaches implement the methods incrementally and
help to isolate programming errors and makes debugging
easy. Sometimes, they can be used together.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 7?
All rights reserved.

Benefits of Stepwise Refinement

Simpler Program
Reusing Methods
Easier Developing, Debugging, and Testing

Better Facilitating Teamwork \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

