
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 6 Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Opening Problem

Find the sum of integers from 1 to 10, from 20 to 30, and

from 35 to 45, respectively.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Problem

int sum = 0;

for (int i = 1; i <= 10; i++)

sum += i;

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;

for (int i = 20; i <= 30; i++)

sum += i;

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;

for (int i = 35; i <= 45; i++)

sum += i;

System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Problem

int sum = 0;

for (int i = 1; i <= 10; i++)

sum += i;

System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;

for (int i = 20; i <= 30; i++)

sum += i;

System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;

for (int i = 35; i <= 45; i++)

sum += i;

System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Solution

public static int sum(int i1, int i2) {

int sum = 0;

for (int i = i1; i <= i2; i++)

sum += i;

return sum;

}

public static void main(String[] args) {

System.out.println("Sum from 1 to 10 is " + sum(1, 10));

System.out.println("Sum from 20 to 30 is " + sum(20, 30));

System.out.println("Sum from 35 to 45 is " + sum(35, 45));

}

MethodDemo Run

https://liveexample.pearsoncmg.com/html/MethodDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Objectives
▪ To define methods with formal parameters (§6.2).

▪ To invoke methods with actual parameters (i.e., arguments) (§6.2).

▪ To define methods with a return value (§6.3).

▪ To define methods without a return value (§6.4).

▪ To pass arguments by value (§6.5).

▪ To develop reusable code that is modular, easy to read, easy to debug, and

easy to maintain (§6.6).

▪ To write a method that converts hexadecimals to decimals (§6.7).

▪ To use method overloading and understand ambiguous overloading

(§6.8).

▪ To determine the scope of variables (§6.9).

▪ To apply the concept of method abstraction in software development

(§6.10).

▪ To design and implement methods using stepwise refinement (§6.10).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Defining Methods

A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

Define a method Invoke a method

int z = max(x, y);

actual parameters

(arguments)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

Defining Methods

A method is a collection of statements that are

grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

Method Signature

Method signature is the combination of the method name and the

parameter list.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Formal Parameters

The variables defined in the method header are known as

formal parameters.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Actual Parameters

When a method is invoked, you pass a value to the parameter. This

value is referred to as actual parameter or argument.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Return Value Type
A method may return a value. The returnValueType is the data type

of the value the method returns. If the method does not return a

value, the returnValueType is the keyword void. For example, the

returnValueType in the main method is void.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)

 result = num1;

else

 result = num2;

return result;

}

modifier

return value

type
method

name
formal

parameters

return value

method

body

method

header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters

(arguments)

method

signature

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Calling Methods

Testing the max method

This program demonstrates calling a method max
to return the largest of the int values

TestMax Run

https://liveexample.pearsoncmg.com/html/TestMax.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

Calling Methods, cont.

pass the value of i
pass the value of j

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

Trace Method Invocation

i is now 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Trace Method Invocation

j is now 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Trace Method Invocation

invoke max(i, j)

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Trace Method Invocation

invoke max(i, j)

Pass the value of i to num1

Pass the value of j to num2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Trace Method Invocation

declare variable result

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Trace Method Invocation

(num1 > num2) is true since num1

is 5 and num2 is 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

Trace Method Invocation

result is now 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

Trace Method Invocation

return result, which is 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Trace Method Invocation

return max(i, j) and assign the

return value to k

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Trace Method Invocation

Execute the print statement

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

CAUTION
A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

 public static int sign(int n) {
 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else if (n < 0)

 return –1;

}

(a)

Should be

(b)

public static int sign(int n) {

 if (n > 0)

 return 1;

 else if (n == 0)

 return 0;

 else

 return –1;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Reuse Methods from Other Classes

NOTE: One of the benefits of methods is for reuse. The max

method can be invoked from any class besides TestMax. If

you create a new class Test, you can invoke the max method

using ClassName.methodName (e.g., TestMax.max).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Call Stacks

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

Trace Call Stack

i is declared and initialized

The main method

is invoked.

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Trace Call Stack

j is declared and initialized

The main method

is invoked.

j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

Trace Call Stack

Declare k

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Trace Call Stack

Invoke max(i, j)

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Trace Call Stack

Declare result

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Trace Call Stack

(num1 > num2) is true

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

Trace Call Stack

Assign num1 to result

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

Trace Call Stack

Return result and assign it to k

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:5
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

Trace Call Stack

Execute print statement

The main method

is invoked.

Space required for the

main method

 k:5
j: 2

i: 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

void Method Example

This type of method does not return a value. The method

performs some actions.

TestVoidMethod Run

TestReturnGradeMethod Run

https://liveexample.pearsoncmg.com/html/TestVoidMethod.html
https://liveexample.pearsoncmg.com/html/TestReturnGradeMethod.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

Passing Parameters
public static void nPrintln(String message, int n) {

for (int i = 0; i < n; i++)

System.out.println(message);

}

Suppose you invoke the method using

nPrintln(“Welcome to Java”, 5);

What is the output?

Suppose you invoke the method using

nPrintln(“Computer Science”, 15);

What is the output?

Can you invoke the method using

nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Pass by Value

This program demonstrates passing values

to the methods.

Increment Run

https://liveexample.pearsoncmg.com/html/Increment.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
41

Pass by Value

Testing Pass by value

This program demonstrates passing values

to the methods.

TestPassByValue Run

https://liveexample.pearsoncmg.com/html/TestPassByValue.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
42

Pass by Value, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
43

Modularizing Code

Methods can be used to reduce redundant coding
and enable code reuse. Methods can also be used to
modularize code and improve the quality of the
program.

GreatestCommonDivisorMethod Run

PrimeNumberMethod Run

https://liveexample.pearsoncmg.com/html/GreatestCommonDivisorMethod.html
https://liveexample.pearsoncmg.com/html/PrimeNumberMethod.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
44

Case Study: Converting Hexadecimals

to Decimals

Write a method that converts a hexadecimal

number into a decimal number.

ABCD =>

A*16^3 + B*16^2 + C*16^1+ D*16^0

= ((A*16 + B)*16 + C)*16+D

= ((10*16 + 11)*16 + 12)*16+13 = ?

Hex2Dec Run

https://liveexample.pearsoncmg.com/html/Hex2Dec.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
45

Overloading Methods

Overloading the max Method

public static double max(double num1, double

num2) {

if (num1 > num2)

return num1;

else

return num2;

}

TestMethodOverloading Run

https://liveexample.pearsoncmg.com/html/TestMethodOverloading.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
46

Ambiguous Invocation

Sometimes there may be two or more possible

matches for an invocation of a method, but the

compiler cannot determine the most specific

match. This is referred to as ambiguous

invocation. Ambiguous invocation is a

compile error.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
47

Ambiguous Invocation
public class AmbiguousOverloading {

public static void main(String[] args) {

System.out.println(max(1, 2));

}

public static double max(int num1, double num2) {

if (num1 > num2)

return num1;

else

return num2;

}

public static double max(double num1, int num2) {

if (num1 > num2)

return num1;

else

return num2;

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
48

Scope of Local Variables

A local variable: a variable defined inside a
method.

Scope: the part of the program where the
variable can be referenced.

The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
49

Scope of Local Variables, cont.

You can declare a local variable with the

same name multiple times in different non-

nesting blocks in a method, but you cannot

declare a local variable twice in nested

blocks.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
50

Scope of Local Variables, cont.
A variable declared in the initial action part of a for loop

header has its scope in the entire loop. But a variable

declared inside a for loop body has its scope limited in the

loop body from its declaration and to the end of the block

that contains the variable.

public static void method1() {

 .

 .

 for (int i = 1; i < 10; i++) {

 .

 .

 int j;

 .

 .

 .

 }

}

The scope of j

The scope of i

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
51

Scope of Local Variables, cont.

public static void method1() {

 int x = 1;

 int y = 1;

 for (int i = 1; i < 10; i++) {

 x += i;

 }

 for (int i = 1; i < 10; i++) {

 y += i;

 }

}

It is fine to declare i in two

non-nesting blocks

 public static void method2() {

 int i = 1;

 int sum = 0;

 for (int i = 1; i < 10; i++) {

 sum += i;

 }

 }

It is wrong to declare i in

two nesting blocks

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
52

Scope of Local Variables, cont.
// Fine with no errors

public static void correctMethod() {

int x = 1;

int y = 1;

// i is declared

for (int i = 1; i < 10; i++) {

x += i;

}

// i is declared again

for (int i = 1; i < 10; i++) {

y += i;

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
53

Scope of Local Variables, cont.

// With errors

public static void incorrectMethod() {

int x = 1;

int y = 1;

for (int i = 1; i < 10; i++) {

int x = 0;

x += i;

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
54

Method Abstraction

You can think of the method body as a black box

that contains the detailed implementation for the

method.

Method Header

Method body
Black Box

Optional arguments

for Input
Optional return

value

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
55

Benefits of Methods

• Write a method once and reuse it anywhere.

• Information hiding. Hide the implementation

from the user.

• Reduce complexity.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
56

Case Study: Generating Random

Characters
Computer programs process numerical data and characters.
You have seen many examples that involve numerical data.
It is also important to understand characters and how to
process them.

As introduced in Section 4.3, each character has a unique
Unicode between 0 and FFFF in hexadecimal (65535 in
decimal). To generate a random character is to generate a
random integer between 0 and 65535 using the following
expression: (note that since 0 <= Math.random() < 1.0, you
have to add 1 to 65535.)

(int)(Math.random() * (65535 + 1))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
57

Case Study: Generating Random

Characters, cont.

Now let us consider how to generate a random

lowercase letter. The Unicode for lowercase letters

are consecutive integers starting from the Unicode

for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'

is

(int)'a'

So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
58

Case Study: Generating Random

Characters, cont.

Now let us consider how to generate a random

lowercase letter. The Unicode for lowercase letters

are consecutive integers starting from the Unicode

for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'

is

(int)'a'

So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
59

Case Study: Generating Random

Characters, cont.

As discussed in Chapter 2, all numeric operators

can be applied to the char operands. The char

operand is cast into a number if the other operand

is a number or a character. So, the preceding

expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

So a random lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
60

Case Study: Generating Random

Characters, cont.

To generalize the foregoing discussion, a random character

between any two characters ch1 and ch2 with ch1 < ch2

can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
61

The RandomCharacter Class
// RandomCharacter.java: Generate random characters

public class RandomCharacter {

/** Generate a random character between ch1 and ch2 */

public static char getRandomCharacter(char ch1, char ch2) {

return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));

}

/** Generate a random lowercase letter */

public static char getRandomLowerCaseLetter() {

return getRandomCharacter('a', 'z');

}

/** Generate a random uppercase letter */

public static char getRandomUpperCaseLetter() {

return getRandomCharacter('A', 'Z');

}

/** Generate a random digit character */

public static char getRandomDigitCharacter() {

return getRandomCharacter('0', '9');

}

/** Generate a random character */

public static char getRandomCharacter() {

return getRandomCharacter('\u0000', '\uFFFF');

}

}

TestRandomCharacter

Run

RandomCharacter

https://liveexample.pearsoncmg.com/html/TestRandomCharacter.html
https://liveexample.pearsoncmg.com/html/RandomCharacter.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
62

Stepwise Refinement (Optional)

The concept of method abstraction can be applied

to the process of developing programs. When

writing a large program, you can use the “divide

and conquer” strategy, also known as stepwise

refinement, to decompose it into subproblems. The

subproblems can be further decomposed into
smaller, more manageable problems.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
63

PrintCalender Case Study

Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

PrintCalendar Run

https://liveexample.pearsoncmg.com/html/PrintCalendar.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

64

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

65

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

66

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

67

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

68

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

69

Design Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
70

Design Diagram

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
71

Implementation: Top-Down

A Skeleton for printCalendar

Top-down approach is to implement one method in the

structure chart at a time from the top to the bottom. Stubs

can be used for the methods waiting to be implemented. A

stub is a simple but incomplete version of a method. The

use of stubs enables you to test invoking the method from

a caller. Implement the main method first and then use a

stub for the printMonth method. For example, let

printMonth display the year and the month in the stub.

Thus, your program may begin like this:

https://liveexample.pearsoncmg.com/PrintCalendarSkeleton.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
72

Implementation: Bottom-Up

Bottom-up approach is to implement one method in the

structure chart at a time from the bottom to the top. For

each method implemented, write a test program to test it.

Both top-down and bottom-up methods are fine. Both

approaches implement the methods incrementally and

help to isolate programming errors and makes debugging

easy. Sometimes, they can be used together.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
73

Benefits of Stepwise Refinement

Simpler Program

Reusing Methods

Easier Developing, Debugging, and Testing

Better Facilitating Teamwork

