
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 7 Single-Dimensional

Arrays

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Opening Problem

Read one hundred numbers, compute their

average, and find out how many numbers are

above the average.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Objectives
To describe why arrays are necessary in programming (§7.1).

To declare array reference variables and create arrays (§§7.2.1–7.2.2).

To obtain array size using arrayRefVar.length and know default values in an array (§7.2.3).

To access array elements using indexes (§7.2.4).

To declare, create, and initialize an array using an array initializer (§7.2.5).

To program common array operations (displaying arrays, summing all elements, finding the

minimum and maximum elements, random shuffling, and shifting elements) (§7.2.6).

To simplify programming using the foreach loops (§7.2.7).

To apply arrays in application development (AnalyzeNumbers, DeckOfCards) (§§7.3–7.4).

To copy contents from one array to another (§7.5).

To develop and invoke methods with array arguments and return values (§§7.6–7.8).

To define a method with a variable-length argument list (§7.9).

To search elements using the linear (§7.10.1) or binary (§7.10.2) search algorithm.

To sort an array using the selection sort approach (§7.11).

To use the methods in the java.util.Arrays class (§7.12).

To pass arguments to the main method from the command line (§7.13).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Introducing Arrays

Array is a data structure that represents a collection of the

same types of data.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Declaring Array Variables

datatype[] arrayRefVar;

Example:

double[] myList;

datatype arrayRefVar[]; // This style is

allowed, but not preferred

Example:

double myList[];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Creating Arrays

arrayRefVar = new datatype[arraySize];

Example:

myList = new double[10];

myList[0] references the first element in the array.

myList[9] references the last element in the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Declaring and Creating

in One Step

datatype[] arrayRefVar = new

datatype[arraySize];

double[] myList = new double[10];

datatype arrayRefVar[] = new

datatype[arraySize];

double myList[] = new double[10];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

The Length of an Array

Once an array is created, its size is fixed. It cannot be

changed. You can find its size using

arrayRefVar.length

For example,

myList.length returns 10

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

Default Values

When an array is created, its elements are

assigned the default value of

0 for the numeric primitive data types,

'\u0000' for char types, and

false for boolean types.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Indexed Variables

The array elements are accessed through the index. The

array indices are 0-based, i.e., it starts from 0 to

arrayRefVar.length-1. In the example in Figure 6.1,

myList holds ten double values and the indices are

from 0 to 9.

Each element in the array is represented using the

following syntax, known as an indexed variable:

arrayRefVar[index];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Using Indexed Variables

After an array is created, an indexed variable can

be used in the same way as a regular variable.

For example, the following code adds the value

in myList[0] and myList[1] to myList[2].

myList[2] = myList[0] + myList[1];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Array Initializers

Declaring, creating, initializing in one step:

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand syntax must be in one

statement.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Declaring, creating, initializing

Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the

following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

CAUTION

Using the shorthand notation, you
have to declare, create, and initialize
the array all in one statement.
Splitting it would cause a syntax
error. For example, the following is
wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

Declare array variable values, create an

array, and assign its reference to values

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

i becomes 1

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

i (=1) is less than 5

After the array is created

0

1

2

3

4

0

0

0

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this line is executed, value[1] is 1

After the first iteration

0

1

2

3

4

0

1

0

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After i++, i becomes 2

animation

After the first iteration

0

1

2

3

4

0

1

0

0

0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Trace Program with Arrays

public class Test {

public static void main(String[]
args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] +
values[4];

}

}

i (= 2) is less than 5

animation

After the first iteration

0

1

2

3

4

0

1

0

0

0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this line is executed,

values[2] is 3 (2 + 1)

After the second iteration

0

1

2

3

4

0

1

3

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this, i becomes 3.

After the second iteration

0

1

2

3

4

0

1

3

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

i (=3) is still less than 5.

After the second iteration

0

1

2

3

4

0

1

3

0

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this line, values[3] becomes 6 (3 + 3)

After the third iteration

0

1

2

3

4

0

1

3

6

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this, i becomes 4

After the third iteration

0

1

2

3

4

0

1

3

6

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

i (=4) is still less than 5

After the third iteration

0

1

2

3

4

0

1

3

6

0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this, values[4] becomes 10 (4 + 6)

After the fourth iteration

0

1

2

3

4

0

1

3

6

10

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After i++, i becomes 5

animation

After the fourth iteration

0

1

2

3

4

0

1

3

6

10

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

i (=5) < 5 is false. Exit the loop

animation

After the fourth iteration

0

1

2

3

4

0

1

3

6

10

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

Trace Program with Arrays

public class Test {

public static void main(String[] args) {

int[] values = new int[5];

for (int i = 1; i < 5; i++) {

values[i] = i + values[i-1];

}

values[0] = values[1] + values[4];

}

}

After this line, values[0] is 11 (1 + 10)

0

1

2

3

4

11

1

3

6

10

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Processing Arrays

See the examples in the text.

1. (Initializing arrays with input values)

2. (Initializing arrays with random values)

3. (Printing arrays)

4. (Summing all elements)

5. (Finding the largest element)

6. (Finding the smallest index of the largest element)

7. (Random shuffling)

8. (Shifting elements)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Initializing arrays with input values

java.util.Scanner input = new java.util.Scanner(System.in);

System.out.print("Enter " + myList.length + " values: ");

for (int i = 0; i < myList.length; i++)

myList[i] = input.nextDouble();

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Initializing arrays with random values

for (int i = 0; i < myList.length; i++) {

myList[i] = Math.random() * 100;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Printing arrays

for (int i = 0; i < myList.length; i++) {

System.out.print(myList[i] + " ");

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

Summing all elements

double total = 0;

for (int i = 0; i < myList.length; i++) {

total += myList[i];

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

Finding the largest element

double max = myList[0];

for (int i = 1; i < myList.length; i++) {

if (myList[i] > max) max = myList[i];

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

Random shuffling

 for (int i = 0; i < myList.length - 1; i++) {

 // Generate an index j randomly

 int j = (int)(Math.random()

 * myList.length);

 // Swap myList[i] with myList[j]

 double temp = myList[i];

 myList[i] = myList[j];

 myList[j] = temp;

}

myList

[0]

[1]

.

.

.

A random index

i

swap

.

.

.

[i]

 [j]

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

Shifting Elements

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

Enhanced for Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array

sequentially without using an index variable. For example, the following code

displays all elements in the array myList:

for (double value: myList)

System.out.println(value);

In general, the syntax is

for (elementType value: arrayRefVar) {

// Process the value

}

You still have to use an index variable if you wish to traverse the array in a

different order or change the elements in the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Analyze Numbers

Read one hundred numbers, compute their

average, and find out how many numbers are

above the average.

AnalyzeNumbers Run

https://liveexample.pearsoncmg.com/html/AnalyzeNumbers.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
41

Problem: Deck of Cards

The problem is to write a program that picks four cards

randomly from a deck of 52 cards. All the cards can be

represented using an array named deck, filled with initial

values 0 to 51, as follows:

int[] deck = new int[52];

// Initialize cards

for (int i = 0; i < deck.length; i++)

deck[i] = i;

DeckOfCards Run

https://liveexample.pearsoncmg.com/html/DeckOfCards.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
42

Problem: Deck of Cards, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
43

Problem: Deck of Cards, cont.

DeckOfCards Run

https://liveexample.pearsoncmg.com/html/DeckOfCards.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
44

Problem: Deck of Cards

This problem builds a foundation for future more interesting and

realistic applications:

See Exercise 20.15.

https://liveexample.pearsoncmg.com/dsa

nimation/24Point.html

https://liveexample.pearsoncmg.com/dsanimation/24Point.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
45

Copying Arrays
Often, in a program, you need to duplicate an array or a part of an array.
In such cases you could attempt to use the assignment statement (=), as
follows:

list2 = list1;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
46

Copying Arrays

Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new

int[sourceArray.length];

for (int i = 0; i < sourceArrays.length; i++)

targetArray[i] = sourceArray[i];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
47

The arraycopy Utility

arraycopy(sourceArray, src_pos,

targetArray, tar_pos, length);

Example:

System.arraycopy(sourceArray, 0,

targetArray, 0, sourceArray.length);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
48

Passing Arrays to Methods
public static void printArray(int[] array) {

for (int i = 0; i < array.length; i++) {

System.out.print(array[i] + " ");

}

}

Invoke the method

int[] list = {3, 1, 2, 6, 4, 2};

printArray(list);

Invoke the method

printArray(new int[]{3, 1, 2, 6, 4, 2});

Anonymous array

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
49

Anonymous Array

The statement

printArray(new int[]{3, 1, 2, 6, 4, 2});

creates an array using the following syntax:

new dataType[]{literal0, literal1, ..., literalk};

There is no explicit reference variable for the array.

Such array is called an anonymous array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
50

Pass By Value
Java uses pass by value to pass arguments to a method. There
are important differences between passing a value of variables
of primitive data types and passing arrays.

For a parameter of a primitive type value, the actual value is
passed. Changing the value of the local parameter inside the
method does not affect the value of the variable outside the
method.

For a parameter of an array type, the value of the parameter
contains a reference to an array; this reference is passed to the
method. Any changes to the array that occur inside the method
body will affect the original array that was passed as the
argument.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
51

public class Test {

public static void main(String[] args) {

int x = 1; // x represents an int value

int[] y = new int[10]; // y represents an array of int values

m(x, y); // Invoke m with arguments x and y

System.out.println("x is " + x);

System.out.println("y[0] is " + y[0]);

}

public static void m(int number, int[] numbers) {

number = 1001; // Assign a new value to number

numbers[0] = 5555; // Assign a new value to numbers[0]

}

}

Simple Example

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
52

Call Stack

When invoking m(x, y), the values of x and y are passed

to number and numbers. Since y contains the reference

value to the array, numbers now contains the same

reference value to the same array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
53

Call Stack

When invoking m(x, y), the values of x and y are

passed to number and numbers. Since y contains the

reference value to the array, numbers now contains the

same reference value to the same array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
54

Heap

Space required for the

main method

 int[] y:

 int x: 1

reference

The arrays are

stored in a

heap.

Heap

 5555

 0

 0

The JVM stores the array in an area of memory,

called heap, which is used for dynamic memory

allocation where blocks of memory are allocated and

freed in an arbitrary order.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
55

Passing Arrays as Arguments

Objective: Demonstrate differences of

passing primitive data type variables

and array variables.

TestPassArray Run

https://liveexample.pearsoncmg.com/html/TestPassArray.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
56

Example, cont.

Invoke swap(int n1, int n2).

The primitive type values in

a[0] and a[1] are passed to the

swap method.

Space required for the

main method

 int[] a

Stack

Space required for the

swap method
n2: 2

n1: 1

reference
a[1]: 2

a[0]: 1

The arrays are

stored in a

heap.

Invoke swapFirstTwoInArray(int[] array).

The reference value in a is passed to the

swapFirstTwoInArray method.

Heap

Space required for the

main method

 int[] a

Stack
Space required for the

swapFirstTwoInArray

method
 int[] array

reference

reference

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
57

Returning an Array from a Method
public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
58

Trace the reverse Method

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

Declare result and create array

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
59

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

i = 0 and j = 5

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
60

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 0

i (= 0) is less than 6

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
61

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 1

i = 0 and j = 5

Assign list[0] to result[5]

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
62

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 1

After this, i becomes 1 and j

becomes 4

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
63

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 0 1

i (=1) is less than 6

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
64

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 2 1

i = 1 and j = 4

Assign list[1] to result[4]

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
65

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 2 1

After this, i becomes 2 and

j becomes 3

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
66

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 0 2 1

i (=2) is still less than 6

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
67

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 3 2 1

i = 2 and j = 3

Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
68

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 3 2 1

After this, i becomes 3 and

j becomes 2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
69

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 0 3 2 1

i (=3) is still less than 6

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
70

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 4 3 2 1

i = 3 and j = 2

Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
71

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 4 3 2 1

After this, i becomes 4 and

j becomes 1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
72

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 0 4 3 2 1

i (=4) is still less than 6

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
73

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 5 4 3 2 1

i = 4 and j = 1

Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
74

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 5 4 3 2 1

After this, i becomes 5 and

j becomes 0

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
75

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

0 5 4 3 2 1

i (=5) is still less than 6

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
76

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

i = 5 and j = 0

Assign list[i] to result[j]

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
77

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

After this, i becomes 6 and

j becomes -1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
78

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

i (=6) < 6 is false. So exit

the loop.

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
79

Trace the reverse Method, cont.

public static int[] reverse(int[] list) {

int[] result = new int[list.length];

for (int i = 0, j = result.length - 1;

i < list.length; i++, j--) {

result[j] = list[i];

}

return result;

}

int[] list1 = {1, 2, 3, 4, 5, 6};

int[] list2 = reverse(list1);

list

result

1 2 3 4 5 6

6 5 4 3 2 1

Return result

list2

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
80

Problem: Counting Occurrence of Each

Letter
Generate 100 lowercase letters randomly and assign to an array of

characters.

Count the occurrence of each letter in the array.

CountLettersInArray Run

https://liveexample.pearsoncmg.com/html/CountLettersInArray.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
81

Variable-Length Arguments

You can pass a variable number of arguments of the same
type to a method.

VarArgsDemo Run

https://liveexample.pearsoncmg.com/html/VarArgsDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
82

Searching Arrays

 public class LinearSearch {

 /** The method for finding a key in the list */

 public static int linearSearch(int[] list, int key) {

 for (int i = 0; i < list.length; i++)

 if (key == list[i])

 return i;

 return -1;

 }

}

 list

key Compare key with list[i] for i = 0, 1, …

 [0] [1] [2] …

Searching is the process of looking for a specific element in
an array; for example, discovering whether a certain score is
included in a list of scores. Searching is a common task in
computer programming. There are many algorithms and data
structures devoted to searching. In this section, two
commonly used approaches are discussed, linear search and
binary search.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
83

Linear Search

The linear search approach compares the key

element, key, sequentially with each element in

the array list. The method continues to do so

until the key matches an element in the list or

the list is exhausted without a match being

found. If a match is made, the linear search

returns the index of the element in the array

that matches the key. If no match is found, the

search returns -1.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
84

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3

3

3

animation

Key List

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
85

https://liveexample.pearsoncmg.com/dsanimation/LinearS
earcheBook.html

Linear Search Animation
animation

https://liveexample.pearsoncmg.com/dsanimation/LinearSearcheBook.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
86

From Idea to Solution
/** The method for finding a key in the list */

public static int linearSearch(int[] list, int key) {

for (int i = 0; i < list.length; i++)

if (key == list[i])

return i;

return -1;

}

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};

int i = linearSearch(list, 4); // returns 1

int j = linearSearch(list, -4); // returns -1

int k = linearSearch(list, -3); // returns 5

Trace the method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
87

Binary Search

For binary search to work, the elements in the

array must already be ordered. Without loss of

generality, assume that the array is in

ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key with

the element in the middle of the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
88

Binary Search, cont.

If the key is less than the middle element,
you only need to search the key in the first
half of the array.

If the key is equal to the middle element,
the search ends with a match.

If the key is greater than the middle
element, you only need to search the key in
the second half of the array.

Consider the following three cases:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
89

Binary Search

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

8

8

8

Key List

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
90

https://liveexample.pearsoncmg.com/dsanimation/BinaryS
earcheBook.html

Binary Search Animation
animation

https://liveexample.pearsoncmg.com/dsanimation/BinarySearcheBook.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
91

Binary Search, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
92

Binary Search, cont.

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 2 4 7 10 11 45 50 59 60 66 69 70 79

 key is 54

 key > 50

 list

mid

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

 key < 66

 key < 59

high low

mid high low

 list

 [7] [8]

mid high low

 list

 59 60 66 69 70 79

 59 60

 [6] [7] [8]

high low

 59 60

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
93

Binary Search, cont.

The binarySearch method returns the index of the

element in the list that matches the search key if it

is contained in the list. Otherwise, it returns

-insertion point - 1.

The insertion point is the point at which the key

would be inserted into the list.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
94

From Idea to Soluton
/** Use binary search to find the key in the list */

public static int binarySearch(int[] list, int key) {

int low = 0;

int high = list.length - 1;

while (high >= low) {

int mid = (low + high) / 2;

if (key < list[mid])

high = mid - 1;

else if (key == list[mid])

return mid;

else

low = mid + 1;

}

return -1 - low;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
95

The Arrays.binarySearch Method
Since binary search is frequently used in programming, Java provides several
overloaded binarySearch methods for searching a key in an array of int, double,
char, short, long, and float in the java.util.Arrays class. For example, the
following code searches the keys in an array of numbers and an array of
characters.

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};

System.out.println("Index is " +

java.util.Arrays.binarySearch(list, 11));

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};

System.out.println("Index is " +

java.util.Arrays.binarySearch(chars, 't'));

For the binarySearch method to work, the array must be pre-sorted in increasing
order.

Return is 4

Return is –4 (insertion point is
3, so return is -3-1)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
96

Sorting Arrays

Sorting, like searching, is also a common task in

computer programming. Many different algorithms

have been developed for sorting. This section

introduces a simple, intuitive sorting algorithms:

selection sort.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
97

Selection Sort
Selection sort finds the smallest number in the list and places it first. It then finds
the smallest number remaining and places it second, and so on until the list
contains only a single number.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
98

https://liveexample.pearsoncmg.com/dsanimation/Selectio
nSortNew.html

Selection Sort Animation
animation

https://liveexample.pearsoncmg.com/dsanimation/SelectionSortNew.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
99

From Idea to Solution
for (int i = 0; i < list.length; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i+1..listSize-1]

}

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

list[0] list[1] list[2] list[3] ... list[10]

...

list[0] list[1] list[2] list[3] ... list[10]

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
100

Expand

for (int i = 0; i < listSize; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i..listSize-1]

}

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i+1; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
101

Expand

for (int i = 0; i < listSize; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i..listSize-1]

}

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
102

Expand

for (int i = 0; i < listSize; i++) {

select the smallest element in list[i..listSize-1];

swap the smallest with list[i], if necessary;

// list[i] is in its correct position.

// The next iteration apply on list[i..listSize-1]

}

if (currentMinIndex != i) {

list[currentMinIndex] = list[i];

list[i] = currentMin;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
103

Wrap it in a Method
/** The method for sorting the numbers */

public static void selectionSort(double[] list) {

for (int i = 0; i < list.length; i++) {

// Find the minimum in the list[i..list.length-1]

double currentMin = list[i];

int currentMinIndex = i;

for (int j = i + 1; j < list.length; j++) {

if (currentMin > list[j]) {

currentMin = list[j];

currentMinIndex = j;

}

}

// Swap list[i] with list[currentMinIndex] if necessary;

if (currentMinIndex != i) {

list[currentMinIndex] = list[i];

list[i] = currentMin;

}

}

}

Invoke it

selectionSort(yourList)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
104

The Arrays.sort Method

Since sorting is frequently used in programming, Java provides several
overloaded sort methods for sorting an array of int, double, char, short,
long, and float in the java.util.Arrays class. For example, the following
code sorts an array of numbers and an array of characters.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};

java.util.Arrays.sort(numbers);

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'};

java.util.Arrays.sort(chars);

Java 8 now provides Arrays.parallelSort(list) that utilizes the multicore
for fast sorting.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
105

The Arrays.toString(list) Method

The Arrays.toString(list) method can be used to return a string

representation for the list.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
106

Pass Arguments to Invoke the Main

Method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
107

Main Method Is Just a Regular Method

 public class A {
 public static void main(String[] args) {

 String[] strings = {"New York",

 "Boston", "Atlanta"};

 B.main(strings);

 }

}

class B {

 public static void main(String[] args) {

 for (int i = 0; i < args.length; i++)

 System.out.println(args[i]);

 }

}

You can call a regular method by passing actual

parameters. Can you pass arguments to main? Of

course, yes. For example, the main method in class

B is invoked by a method in A, as shown below:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
108

Command-Line Parameters

class TestMain {

public static void main(String[] args) {

...

}

}

java TestMain arg0 arg1 arg2 ... argn

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
109

Processing

Command-Line Parameters

In the main method, get the arguments from

args[0], args[1], ..., args[n], which

corresponds to arg0, arg1, ..., argn in

the command line.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
110

Problem: Calculator

Objective: Write a program that will perform

binary operations on integers. The program

receives three parameters: an operator and two

integers.

java Calculator 2 + 3

java Calculator 2 - 3

java Calculator 2 / 3

java Calculator 2 . 3

Calculator

Run

https://liveexample.pearsoncmg.com/html/Calculator.html

