Chapter 9 Objects and Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Motivations

After learning the preceding chapters, you are capable of
solving many programming problems using selections,
loops, methods, and arrays. However, these Java features
are not sufficient for developing graphical user interfaces
and large scale software systems. Suppose you want to
develop a graphical user interface as shown below. How do
you program it?

h
_ o x|

0K Cangel | Enter Your Name: Type Name Here | Bold Italic ® Red | Yellow | preshman | =

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

o000 D00 DD 00 DO

U 0O 0 O

Objectives

To describe objects and classes, and use classes to model objects (89.2).

To use UML graphical notation to describe classes and objects (89.2).

To demonstrate how to define classes and create objects (89.3).

To create objects using constructors (89.4).

To access objects via object reference variables (§9.5).

To define a reference variable using a reference type (89.5.1).

To access an object’s data and methods using the object member access operator (.) (89.5.2).

To define data fields of reference types and assign default values for an object’s data fields (89.5.3).

To distinguish between object reference variables and primitive data type variables (89.5.4).

To use the Java library classes Date, Random, and Point2D (89.6).

To distinguish between instance and static variables and methods (89.7).

To define private data fields with appropriate get and set methods (89.8).

To encapsulate data fields to make classes easy to maintain (89.9). \
S

To develop methods with object arguments and differentiate between primitive-type argument
object-type arguments (§9.10).

To store and process objects in arrays (89.11).

To create immutable objects from immutable classes to protect the contents of objects (89.12).
To determine the scope of variables in the context of a class (§9.13).

To use the keyword this to refer to the calling object itself (§9.14).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

OO Programming Concepts

Object-oriented programming (OOP) involves
programming using objects. An object represents
an entity in the real world that can be distinctly
Identified. For example, a student, a desk, a circle,

a button, and even a loan can all be viewed as
objects. An object has a unigue identity, state, and
behaviors. The state of an object consists of a set of
data fields (also known as properties) with theitaN
current values. The behavior of an object is defi
by a set of methods.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Objects

Class Name: Circle

Data Fields:
radius is

Methods:
getArea

Circle Object 1

Data Fields:
radius is__10

Circle Object 2

Data Fields:
radius is_25

An object has both a state and behavior. The sta
defines the object, and the behavior defines wha

the object does.

€———— Aclass template

Circle Object 3

Data Fields:
radius is _125

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

<€——— Three objects of
the Circle class

Classes

Classes are constructs that define objects of the
same type. A Java class uses variables to define
data fields and methods to define behaviors.
Additionally, a class provides a special type of
methods, known as constructors, which are invoked
to construct objects from the class.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Classes

class Circle {
/** The radius of this circle */

double radius = 1.0; <€

/** Construct a circle object */ —]
Circle () {

}

/** Construct a circle object */
Circle (double newRadius) {
radius = newRadius;

}

/** Return the area of this circle */
double getArea () { <

return radius * radius * 3.14159;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

/

Use a Class to Make Many Objects

Cookie Dough
(memory) O Aclass is like a cookie cutter that

can be used many times to make
many cookies.

0 There is only one cookie cutter,
but can be used to make many
cookies.

0 Cookies are objects and each one
has its own individuality because
° o each one is made out of a different
0 PO Y section of dough.

o © Candy o Different cookies may have
0 - orinkles different characteristics, even
Cookies . . (values) though they follow the same Wasic
(Objects) "o pattern.For example, cookie
have candy sprinkles or fros
or may be baked for differe
lengths of time.

Cookie Cutter
(Class)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

UML Class Diagram

UML Class Diagram Circle <€———— Class name
radius: double <€——— Data fields
Circle() <€——— Constructors and
methods

Circle(newRadius: double)
getArea(): double
getPerimeter(): double
setRadius(newRadius:

double): void
circlel: Circle circle2: Circle circle3: Circle | «—UML notation
for objects
radius = 1.0 radius = 25 radius = 125

\!

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Example: Defining Classes and
Creating Objects

Objective: Demonstrate creating objects,
accessing data, and using methods.

TestSimpleCircle - \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestSimpleCircle.html

Example: Defining Classes and Creating Objects

The + sign indicates
a public modifier. ——»

TV

channel: int

volumelLevel: int

on: boolean

+TV ()
+turnOn () :
+turnOff () :

void
volid

+setChannel (newChannel: int): wvoid

+setVolume (newVolumelLevel: int): wvoid

+channelUp () : void
+channelDown () : void
+volumeUp () : void

+volumeDown () : void

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

The current channel (1 to 120) of this TV.
The current volume level (1 to 7) of this TV.
Indicates whether this TV is on/off.

Constructs a default TV object.
Turns on this TV,

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.
Increases the channel number by 1.
Decreases the channel number by 1.
Increases the volume level by 1.
Decreases the volume level by 1.

2\

TV

TestTV

https://liveexample.pearsoncmg.com/html/TV.html
https://liveexample.pearsoncmg.com/html/TestTV.html

Constructors

_ Constructors are a special
Circle() { kind of methods that are
} invoked to construct objects.

Circle (double newRadius) {
radius = newRadius;

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. j?
All rights reserved.

Constructors, cont.

A constructor with no parameters Is referred to as a
no-arg constructor.

Constructors must have the same name as the
class I1tself.

Constructors do not have a return type—not

even void. \

Constructors are invoked using the new
operator when an object Is created. Constructors
play the role of initializing objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Creating Objects Using
Constructors

new ClassName () ;

Example:
new Circle() ;

new Circle(5.0);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Default Constructor

A class may be defined without constructors. In
this case, a no-arg constructor with an empty body
Is implicitly defined in the class. This constructor,
called a default constructor, Is provided
automatically only If no constructors are explicitly
defined in the class.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Declaring Object Reference Variables

To reference an object, assign the object to a reference
variable.

To declare a reference variable, use the syntax:

ClassName objectRefVar;

Example:
Circle myCircle;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Declaring/Creating Objects
In a Single Step

ClassName objectRefVar = new ClassName () ;

Assign object reference Create an object

Example:
Circle myCircle = new Circle();

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Accessing Object’s Members

a Referencing the object’s data:
objectRefVar.data

e.d., myCircle.radius

a Invoking the object’s method:

objectRefVar.methodName (arguments)

e.g., myCircle.getArea () .\\\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

animation

Trace Code

Declare myCircle]

Circle myCircle]= new Circle(5.0); myCircle no value

Circle yourCircle = new Circle();

yourCircle.radius = 100;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Circle myCircle 9 new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

[Create a circle

Trace Code, cont.

myCircle no value

/ : Circle

radius: 5.0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

=\

animation

Circle myCirclg F new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100; Assign object reference
to myCircle

Trace Code, cont.

myCircle |referencge value

—

: Circle

J

radius: 5.0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

\

animation

Circle myCircle = new Circle(5.0);

ICircle yourCircle|= new Circle();

yourCircle.radius = 100;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Trace Code, cont.

myCircle |referenge value

/

: Circle

radius: 5.0

yourCircle no value

2\

Declare yourCircle

animation

Trace Code, cont.

Circle myCircle = new Circle(5.0); myCircle |reference value

Circle yourCircle =|new Circle() /

yourCircle.radius = 100; : Circle

radius: 5.0

yourCircle no value

, : Circle

Cl_reate i radius: 1.0
Circle object

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Code, cont.

Circle myCircle = new Circle(5.0); myCircle |reference value

Circle yourCircle|= new Circle(); /

yourCircle.radius = 100; : Circle

radius: 5.0

yourCircle reference value

Assign object reference
to yourCircle drcle

radius: 1.0

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Code, cont.

Circle myCircle = new Circle(5.0); myCircle |reference value

Circle yourCircle = new Circle();

yourCircle.radius = 100; . Circle

radius: 5.0

yourCircle| reference value

/

- Circle

Tadius: 100.0

{ Change radius In
yourCircle

r

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Caution

Recall that you use
Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class. Can you invoke getArea() using
SimpleCircle.getArea()? The answer is no. All the methods used before
this chapter are static methods, which are defined using the static
keyword. However, getArea() is non-static. It must be invoked from an
object using

objectRefVar.methodName(arguments) (e.g., myCircle.getArea()). \

More explanations will be given in the section on “Static Variablg
Constants, and Methods.”

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

Reference Data Fields

"he data fields can be of reference types. For example,
the following Student class contains a data field name of

the String type.

public class Student ({
String name; // name has default value null
int age; // age has default value 0
boolean isScienceMajor; // isScienceMajor has default value false
char gender; // c has default value '\u0000'
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

The null VValue

If a data field of a reference type does not
reference any object, the data field holds a
special literal value, null.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Default VValue for a Data Field

The default value of a data field is null for a
reference type, 0 for a numeric type, false for a
boolean type, and "\u000O0' for a char type.
However, Java assigns no default value to a local
variable inside a method.

public class Test ({
public static void main(String[] args) {
Student student = new Student();
System.out.println("name? " + student.name);
System.out.println("age? " + student.age); \
System.out.println("isScienceMajor? " + student.isScienceMa‘jor
System.out.println("gender? " + student.gender) ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

Example

Java assigns no default value to a local variable
Inside a method.

public class Test {
public static void main(String[] args) ({
int x; // x has no default value
String y; // y has no default value
System.out.println("x is " + x);
System.out.println("y is " 4 y)

Compile error: variable not
initialized

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Differences between Variables of
Primitive Data Types and Object Types

Created using new Circle()

Primitive type inti=1 i 1
Object type Circlec C reference »| c: Circle
radius =1
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Copying Variables of Primitive
Data Types and Object Types

Primitive type assignment i =j

Before: After:
i 1 [2
] 2 j 2
Object type assignment c1 = c2
Before: After:
cl 1 cl — —
c2 J ——l c2 | —
cl: Circle c2: Circle cl: Circle c2: Circle
radius = 5 radius = 9 radius = 5 radius = 9
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?

All rights reserved.

Garbage Collection

As shown In the previous figure, after the
assignment statement c1 = ¢2, c1 points to
the same object referenced by c2. The object
previously referenced by c1 is no longer
referenced. This object is known as garbage.

Garbage Is automatically collected by JVI\/I\

9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?

Garbage Collection, cont

TIP: If you know that an object Is no longer

needed, you can explicitly assign null to a
reference variable for the object. The JVM

will automatically collect the space If the
object Is not referenced by any variable.

The Date Class

Java provides a system-independent encapsulation of date
and time in the java.util.Date class. You can use the Date

class to create an instance for the

current date and time and

use Its toString method to return the date and time as a string.

java.util.Date

The + sign indicates
public modifer ~=——3|+Date()

+Date(elapseTime: long)

+toString(): String
+getTime(): long

+setTime(elapseTime: long): void

Constructs a Date object for the current time.

Constructs a Date object for a given time in
milliseconds elapsed since January 1, 1970, GMT.

Returns a string representing the date and time.
Returns the number of milliseconds since January 1,

1970, GMT.

Sets a new elapse time in the object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?

All rights reserved.

The Date Class Example

For example, the following code

java.util.Date date = new java.util.Date();

System.out.println (date.toString())

displays a string like Sun Mar 09 13:50:19

EST 2003.
A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. :?
All rights reserved.

The Random Class

You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0). A more useful
random number generator Is provided in the java.util.Random
class.

java.util.Random
+Random() Constructs a Random object with the current time as its seed.
+Random(seed: long) Constructs a Random object with a specified seed.
+nextint(): int Returns a random int value.
+nextint(n: int): int Returns a random int value between 0 and n (exclusive).
+nextLong(): long Returns a random long value.
+nextDouble(): double Returns a random double value between 0.0 and 1.0 (exclusive).
+nextFloat(): float Returns a random float value between 0.0F and 1.0F (exclusive).
+nextBoolean(): boolean | Returns a random boolean value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3P
All rights reserved.

The Random Class Example

If two Random objects have the same seed, they will generate
Identical sequences of numbers. For example, the following
code creates two Random objects with the same seed 3.

Random randoml = new Random(3) ;

System.out.print ("From randoml: ") ;

for (int 1 = 0; i < 10; i++)
System.out.print (randoml .nextInt (1000) + " ");

Random random2 = new Random(3) ;

System.out.print ("\nFrom random2: ");

for (int 1 = 0; i < 10; i++) \
System.out.print (random2.nextInt (1000) + " ");

From randoml: 734 660 210 581 128 202 549 564 459 961
From random?2: 734 660 210 581 128 202 549 564 459 961

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

The Point2D Class

Java APl has a conveninent Point2D class in the
Javafx.geometry package for representing a point in a two-
dimensional plane.

javafx.geometry.Point2D
+Point2D(x: double, y: double) Constructs a Point2D object with the specified x- and y-coordinates.
+distance(x: double, y: double): double Returns the distance between this point and the specified point (x, y).
+distance(p: Point2D): double Returns the distance between this point and the specified point p.
+getX(): double Returns the x-coordinate from this point.
+getY(): double Returns the y-coordinate from this point.
+toString(): String Returns a string representation for the point.

TestPoint2D | Run | B

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestPoint2D.html

Instance
Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of
the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Static Variables, Constants,
and Methods

Static variables are shared by all the instances of
the class.

Static methods are not tied to a specific object.

Static constants are final variables shared by all
the Instances of the class. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZP
All rights reserved.

Static Variables, Constants,
and Methods, cont.

To declare static variables, constants, and methods,
use the static modifier.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Static Variables, Constants,
and Methods, cont.

UML Notation:
underline: static variables or methods

instantiate
> circlel: Circle Memory
radius = 1 > | | radius — Aft'er twoCircle
Tl numberQOfObjects = 2 b— Objects were created,
numberOfObjects
radius: double is 2.
numberOfObjects: int) | numberOfObjects
getNumberOfObjects(): int ' .
. nstantiate
IERTIIO ENDLE I > circle2: Circle
radius = 5 \} > 5 | radius
numberOfObjects = 2

2\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Example of

Using Instance and Class Variables
and Method

Objective: Demonstrate the roles of
Instance and class variables and their
uses. This example adds a class variable
numberOfObjects to track the number of

Circle objects created. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

CircleWithStaticMembers
TestCircleWithStaticMembers

https://liveexample.pearsoncmg.com/html/CircleWithStaticMembers.html
https://liveexample.pearsoncmg.com/html/TestCircleWithStaticMembers.html

Visibility Modifiers
Q The modifiers private, protected, and public are Known as

visibility or accessibility modifiers because they specify
how classes and class members are accessed.

Q The visibility of these modifiers increases in this order:

Visibility increases

>
private, default (no modifier), protected, public

TaeLE 1 1.2 Data and Methods Visibility

Modifier Accessed Accessed Accessed from Accessed
on members from the from the a subclass in a from a different
in a class same class same package different package package
public v v v vy
protected v v v -
default (no modifier) v v - -
private v - - -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Visibility Modifiers

public
The class, data, or method is visible to any class in any package.

private

The data or methods can be accessed only by the declaring class.

package-private or default

Use no modifiers (the default) in order to allow the members of the class
to be accessed directly from any class within the same package

but not from other packages.

protected

Use the protected modifier to enable the members of the class to be accessed by the subclasses in
any package or classes in the same package.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

package pl:

public class C1 {
public int x;
protected 1int y;
int z;
private int u;

protected void m() {
}

public class C2 {
Cl o = new C1();
can access 0.X;
can access 0.y;
can access 0.Z;
cannot access o.u;

can invoke o.m();

PN

package p2;

public class C3
extends C1 {
Can access X;
can access y;
can access z;
cannot access u;

can invoke m():

public class C4
extends C1 {
can access Xx;
can access y;
cannot access Zz;
cannot access u;

can invoke m():

public class C5 {
Cl o = new C1Q);
can access 0.X;

cannot
cannot
cannot

cannot

dCCess
dCCess
dCCess

invoke

The private modifier restricts access to within a class, the defa

modifier restricts access to within a package, and the public
modifier enables unrestricted access.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

package pl; package pl; package p2;

class C1 { public class C2 { public class C3 {
- can access (C1 cannot access (C1l;
} } can access (C2;
}

The default modifier on a class restricts access to within a package,
and the public modifier enables unrestricted access. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

NOTE

An object cannot access its private members, as shown in (b).
It Is OK, however, If the object Is declared in its own class, as

shown in ().

public class C { public class Test {

private boolean x; public static void main(String[] args) {

C c = new CQ);
public static void main(String[] args) { System.out.println(c.x);
C c = new CQ); System.out.println(c.cghvert());
System.out.println(c.x); }
System.out.println(c.convert()); }
}
private int convert() {
return x 7?7 1 : -1;

}

}
77
(a) This is okay because object € is used inside the class C. (b) This is wrong because X and convert are private in class C.
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Why Data Fields Should Be
private?
To protect data.

To make code easy to maintain.

The get and set methods are used to read and
modify private properties. (called
Accessor/Mutator Methods)

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Example of
Data Field Encapsulation

Circle

The - sign indicates _ o

private modifier ——>t-radius: double The radius of this circle (default: 1.0).
-numberOfObjects: int The number of circle objects created.
+Circle() Constructs a default circle object.
+Circle(radius: double) Constructs a circle object with the specified radius.
+getRadius(): double Returns the radius of this circle.
+setRadius(radius: double): void Sets a new radius for this circle.
+getNumberOfObjects(): int Returns the number of circle objects created.
+getArea(): double Returns the area of this circle.

CircleWithPrivateDataFields
TestCircleWithPrivateDataFields -
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?

All rights reserved.

https://liveexample.pearsoncmg.com/html/CircleWithPrivateDataFields.html
https://liveexample.pearsoncmg.com/html/TestCircleWithPrivateDataFields.html

Passing Objects to Methods

2 Passing by value for primitive type value
(the value Is passed to the parameter)

Q Passing by value for reference type value
(the value is the reference to the object)

TestPassObject -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestPassObject.html

Passing Objects to Methods, cont.

Stack Pass-by-value (here Heap

the value is 5)
Activation record for the /

printArea method Pass-by-value
int times: 5 <-

i (here the value 1s
C-| I"C-| e C. reference € — - ——— _I/ the Ieference for
the object)

Activation record for the : :

main method | :
TNt N §S ===—————— L:////»-Aﬁrde
myCircle: |referenceft==== — object

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Array of Objects

Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables. So invoking
circleArray[1].getArea() involves two
levels of referencing as shown In the next
figure. circleArray references to the enti

array. circleArray|[1] references to a
Circle object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Array of Objects, cont.

Circle[] circleArray = new Circle[10];

circleArray reference : » circleArray[0] Circle object 0 I
circleArray[1]

—> (Circle object 1 I

circleArray[9] Circle object9 |

P\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Array of Objects, cont.
Summarizing the areas of the circles

TotalArea - 9

Liang, Introduc 0 Java Programming, Elev h Edition, (c) 2018 Pearson Education
All rights ved.

https://liveexample.pearsoncmg.com/html/TotalArea.html

Immutable Objects and Classes

If the contents of an object cannot be

changed once the object

IS created, the object is called an immutable object and its class

IS called an immutable class. If you ¢
the Circle class in Listing 8.10, the ¢

elete the set method In
ass would be immutable

because radius Is private and cannot be changed without a set

method.

A class with all private data fields and without mutators is not

necessarily immutable. For example,

the following class

Student has all private data fields and no mutators, but it'is

mutable.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5P

All rights reserved.

public class Student {

}

Exam ple public class BirthDate ({

private int year;
private int month;

private int id; . .
private int day;

private BirthDate birthDate;

public Student(int ssn, public BirthDate (int newYear,
int year, int month, int day) ({ int newMonth, int newDay) {

id = ssn;
birthDate = new BirthDate (year, month, day) year = newYear;
} month = newMonth;
day = newDay;
public int getId() { }

return id;

}
public void setYear (int newYear)

public BirthDate getBirthDate () { year = newYear;
return birthDate; }

}

{

public class Test {
public static void main(String[] args) {
Student student = new Student (111223333, 1970, 5, 3);
BirthDate date = student.getBirthDate() ;
date.setYear (2010); // Now the student birth year is chan

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

What Class 1s Immutable?

For a class to be immutable, it must mark all data fields private
and provide no mutator methods and no accessor methods that
would return a reference to a mutable data field object.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Scope of Variables

Q The scope of instance and static variables Is the
entire class. They can be declared anywhere inside
a class.

0 The scope of a local variable starts from its
declaration and continues to the end of the block
that contains the variable. A local variable must be\
Initialized explicitly before it can be used.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. &
All rights reserved.

The this Keyword

Q The this keyword Is the name of a reference that
refers to an object itself. One common use of the

this keyword is reference a class’s hidden data
fields.

2 Another common use of the this keyword to
enable a constructor to invoke another \
constructor of the same class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. *
All rights reserved.

Reference the Hidden Data Fields

public class F {

private int 1 = 5;
private static double k =

void setI (int i) {
this.i = i,

}

static void setK(double k)
F.k = k;
}

0;

{

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

Suppose that fl and f2 are
F f1 = new F(); F f2 = new

Invoking fl.setI(10)
this.i = 10,

is to
where this

Invoking f2.setI (45)
this.i = 45,

is to
where this

two objects of F.
QN

execute
refers f1

execute
refers f2

All rights reserved.

Calling Overloaded Constructor

public class Circle {
private double radius;

public Circle (double radius) {
th;gfradius = radius;

} —. this must be explicitly used to reference the data
field radius of the object being constructed

public Circle () {
this (1.0) ;

J — this is used to invoke another constructor

public double getArea () {
return this.radius * tﬁts.radius * Math.PI;

}

J Every instance variable belongs to an instance represented by this,
which is normally omitted

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

	Slide 1: Chapter 9 Objects and Classes
	Slide 2: Motivations
	Slide 3: Objectives
	Slide 4: OO Programming Concepts
	Slide 5: Objects
	Slide 6: Classes
	Slide 7: Classes
	Slide 8: Use a Class to Make Many Objects
	Slide 9: UML Class Diagram
	Slide 10: Example: Defining Classes and Creating Objects
	Slide 11: Example: Defining Classes and Creating Objects
	Slide 12: Constructors
	Slide 13: Constructors, cont.
	Slide 14: Creating Objects Using Constructors
	Slide 15: Default Constructor
	Slide 16: Declaring Object Reference Variables
	Slide 17: Declaring/Creating Objects in a Single Step
	Slide 18: Accessing Object’s Members
	Slide 19: Trace Code
	Slide 20: Trace Code, cont.
	Slide 21: Trace Code, cont.
	Slide 22: Trace Code, cont.
	Slide 23: Trace Code, cont.
	Slide 24: Trace Code, cont.
	Slide 25: Trace Code, cont.
	Slide 26: Caution
	Slide 27: Reference Data Fields
	Slide 28: The null Value
	Slide 29: Default Value for a Data Field
	Slide 30: Example
	Slide 31: Differences between Variables of Primitive Data Types and Object Types
	Slide 32: Copying Variables of Primitive Data Types and Object Types
	Slide 33: Garbage Collection
	Slide 34: Garbage Collection, cont
	Slide 35: The Date Class
	Slide 36: The Date Class Example
	Slide 37: The Random Class
	Slide 38: The Random Class Example
	Slide 39: The Point2D Class
	Slide 40: Instance Variables, and Methods
	Slide 41: Static Variables, Constants, and Methods
	Slide 42: Static Variables, Constants, and Methods, cont.
	Slide 43: Static Variables, Constants, and Methods, cont.
	Slide 44: Example of Using Instance and Class Variables and Method
	Slide 45: Visibility Modifiers
	Slide 46: Visibility Modifiers
	Slide 47
	Slide 48
	Slide 49: NOTE
	Slide 50: Why Data Fields Should Be private?
	Slide 51: Example of Data Field Encapsulation
	Slide 52: Passing Objects to Methods
	Slide 53: Passing Objects to Methods, cont.
	Slide 54: Array of Objects
	Slide 55: Array of Objects, cont.
	Slide 56: Array of Objects, cont.
	Slide 57: Immutable Objects and Classes
	Slide 58: Example
	Slide 59: What Class is Immutable?
	Slide 60: Scope of Variables
	Slide 61: The this Keyword
	Slide 62: Reference the Hidden Data Fields
	Slide 63: Calling Overloaded Constructor

