
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 9 Objects and Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Motivations

After learning the preceding chapters, you are capable of

solving many programming problems using selections,

loops, methods, and arrays. However, these Java features

are not sufficient for developing graphical user interfaces

and large scale software systems. Suppose you want to

develop a graphical user interface as shown below. How do

you program it?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Objectives
❑ To describe objects and classes, and use classes to model objects (§9.2).

❑ To use UML graphical notation to describe classes and objects (§9.2).

❑ To demonstrate how to define classes and create objects (§9.3).

❑ To create objects using constructors (§9.4).

❑ To access objects via object reference variables (§9.5).

❑ To define a reference variable using a reference type (§9.5.1).

❑ To access an object’s data and methods using the object member access operator (.) (§9.5.2).

❑ To define data fields of reference types and assign default values for an object’s data fields (§9.5.3).

❑ To distinguish between object reference variables and primitive data type variables (§9.5.4).

❑ To use the Java library classes Date, Random, and Point2D (§9.6).

❑ To distinguish between instance and static variables and methods (§9.7).

❑ To define private data fields with appropriate get and set methods (§9.8).

❑ To encapsulate data fields to make classes easy to maintain (§9.9).

❑ To develop methods with object arguments and differentiate between primitive-type arguments and

object-type arguments (§9.10).

❑ To store and process objects in arrays (§9.11).

❑ To create immutable objects from immutable classes to protect the contents of objects (§9.12).

❑ To determine the scope of variables in the context of a class (§9.13).

❑ To use the keyword this to refer to the calling object itself (§9.14).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

OO Programming Concepts

Object-oriented programming (OOP) involves

programming using objects. An object represents

an entity in the real world that can be distinctly

identified. For example, a student, a desk, a circle,

a button, and even a loan can all be viewed as

objects. An object has a unique identity, state, and

behaviors. The state of an object consists of a set of

data fields (also known as properties) with their

current values. The behavior of an object is defined

by a set of methods.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Objects

An object has both a state and behavior. The state

defines the object, and the behavior defines what

the object does.

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects of

the Circle class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Classes

Classes are constructs that define objects of the

same type. A Java class uses variables to define

data fields and methods to define behaviors.

Additionally, a class provides a special type of

methods, known as constructors, which are invoked

to construct objects from the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Classes

 class Circle {

/** The radius of this circle */

double radius = 1.0;

/** Construct a circle object */

Circle() {

}

/** Construct a circle object */

Circle(double newRadius) {

 radius = newRadius;

}

/** Return the area of this circle */
double getArea() {

 return radius * radius * 3.14159;

}

 }

Data field

Method

Constructors

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Use a Class to Make Many Objects

❑ A class is like a cookie cutter that

can be used many times to make

many cookies.

❑ There is only one cookie cutter,

but can be used to make many

cookies.

❑ Cookies are objects and each one

has its own individuality because

each one is made out of a different

section of dough.

❑ Different cookies may have

different characteristics, even

though they follow the same basic

pattern.For example, cookies may

have candy sprinkles or frosting,

or may be baked for different

lengths of time.

8

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

UML Class Diagram

Circle

radius: double

Circle()

Circle(newRadius: double)

getArea(): double

getPerimeter(): double

setRadius(newRadius:

double): void

circle1: Circle

radius = 1.0

Class name

 Data fields

 Constructors and

methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation

for objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Example: Defining Classes and
Creating Objects

Objective: Demonstrate creating objects,

accessing data, and using methods.

TestSimpleCircle Run

https://liveexample.pearsoncmg.com/html/TestSimpleCircle.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Example: Defining Classes and Creating Objects

 TV

channel: int

volumeLevel: int

on: boolean

+TV()

+turnOn(): void

+turnOff(): void

+setChannel(newChannel: int): void

+setVolume(newVolumeLevel: int): void

+channelUp(): void

+channelDown(): void

+volumeUp(): void

+volumeDown(): void

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Sets a new channel for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

The + sign indicates

a public modifier.

TV

RunTestTV

https://liveexample.pearsoncmg.com/html/TV.html
https://liveexample.pearsoncmg.com/html/TestTV.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Constructors

Circle() {

}

Circle(double newRadius) {

radius = newRadius;

}

Constructors are a special

kind of methods that are

invoked to construct objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Constructors, cont.

A constructor with no parameters is referred to as a

no-arg constructor.

· Constructors must have the same name as the

class itself.

· Constructors do not have a return type—not

even void.

· Constructors are invoked using the new

operator when an object is created. Constructors

play the role of initializing objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

Creating Objects Using

Constructors

new ClassName();

Example:

new Circle();

new Circle(5.0);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

Default Constructor

A class may be defined without constructors. In

this case, a no-arg constructor with an empty body

is implicitly defined in the class. This constructor,

called a default constructor, is provided

automatically only if no constructors are explicitly

defined in the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Declaring Object Reference Variables

To reference an object, assign the object to a reference
variable.

To declare a reference variable, use the syntax:

ClassName objectRefVar;

Example:

Circle myCircle;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Declaring/Creating Objects

in a Single Step

ClassName objectRefVar = new ClassName();

Example:

Circle myCircle = new Circle();

Create an objectAssign object reference

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Accessing Object’s Members

❑ Referencing the object’s data:

objectRefVar.data

e.g., myCircle.radius

❑ Invoking the object’s method:

objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Trace Code

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

Declare myCircle

no valuemyCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

no valuemyCircle

Create a circle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

Assign object reference

to myCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

no valueyourCircle

Declare yourCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

no valueyourCircle

: Circle

radius: 1.0

Create a new

Circle object

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

reference valueyourCircle

: Circle

radius: 1.0

Assign object reference

to yourCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

Trace Code, cont.

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

: Circle

radius: 5.0

reference valuemyCircle

reference valueyourCircle

: Circle

radius: 100.0

Change radius in

yourCircle

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Caution

Recall that you use

Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class. Can you invoke getArea() using
SimpleCircle.getArea()? The answer is no. All the methods used before
this chapter are static methods, which are defined using the static
keyword. However, getArea() is non-static. It must be invoked from an
object using

objectRefVar.methodName(arguments) (e.g., myCircle.getArea()).

More explanations will be given in the section on “Static Variables,
Constants, and Methods.”

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Reference Data Fields

The data fields can be of reference types. For example,
the following Student class contains a data field name of
the String type.

public class Student {

String name; // name has default value null

int age; // age has default value 0

boolean isScienceMajor; // isScienceMajor has default value false

char gender; // c has default value '\u0000'

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

The null Value

If a data field of a reference type does not

reference any object, the data field holds a

special literal value, null.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Default Value for a Data Field

The default value of a data field is null for a
reference type, 0 for a numeric type, false for a
boolean type, and '\u0000' for a char type.
However, Java assigns no default value to a local
variable inside a method.

public class Test {

public static void main(String[] args) {

Student student = new Student();

System.out.println("name? " + student.name);

System.out.println("age? " + student.age);

System.out.println("isScienceMajor? " + student.isScienceMajor);

System.out.println("gender? " + student.gender);

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

Example

public class Test {

public static void main(String[] args) {

int x; // x has no default value

String y; // y has no default value

System.out.println("x is " + x);

System.out.println("y is " + y);

}

}

Compile error: variable not

initialized

Java assigns no default value to a local variable
inside a method.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Differences between Variables of

Primitive Data Types and Object Types

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Copying Variables of Primitive

Data Types and Object Types

i

Primitive type assignment i = j

Before:

 1

 j

2

i

After:

 2

 j

2

c1

Object type assignment c1 = c2

Before:

 c2

c1

After:

c2

c1: Circle

radius = 5

c2: Circle

radius = 9

c1: Circle

radius = 5

c2: Circle

radius = 9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Garbage Collection

As shown in the previous figure, after the

assignment statement c1 = c2, c1 points to

the same object referenced by c2. The object

previously referenced by c1 is no longer

referenced. This object is known as garbage.

Garbage is automatically collected by JVM.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Garbage Collection, cont

TIP: If you know that an object is no longer

needed, you can explicitly assign null to a

reference variable for the object. The JVM

will automatically collect the space if the

object is not referenced by any variable.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

The Date Class

Java provides a system-independent encapsulation of date
and time in the java.util.Date class. You can use the Date
class to create an instance for the current date and time and
use its toString method to return the date and time as a string.

java.util.Date

+Date()

+Date(elapseTime: long)

+toString(): String

+getTime(): long

+setTime(elapseTime: long): void

Constructs a Date object for the current time.

Constructs a Date object for a given time in

milliseconds elapsed since January 1, 1970, GMT.

Returns a string representing the date and time.

Returns the number of milliseconds since January 1,

1970, GMT.

Sets a new elapse time in the object.

The + sign indicates

public modifer

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

The Date Class Example

For example, the following code

java.util.Date date = new java.util.Date();

System.out.println(date.toString());

displays a string like Sun Mar 09 13:50:19

EST 2003.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

The Random Class

You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0). A more useful
random number generator is provided in the java.util.Random
class.

java.util.Random

+Random()

+Random(seed: long)

+nextInt(): int

+nextInt(n: int): int

+nextLong(): long

+nextDouble(): double

+nextFloat(): float

+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.

Constructs a Random object with a specified seed.

Returns a random int value.

Returns a random int value between 0 and n (exclusive).

Returns a random long value.

Returns a random double value between 0.0 and 1.0 (exclusive).

Returns a random float value between 0.0F and 1.0F (exclusive).

Returns a random boolean value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

The Random Class Example

If two Random objects have the same seed, they will generate
identical sequences of numbers. For example, the following
code creates two Random objects with the same seed 3.

Random random1 = new Random(3);

System.out.print("From random1: ");

for (int i = 0; i < 10; i++)

System.out.print(random1.nextInt(1000) + " ");

Random random2 = new Random(3);

System.out.print("\nFrom random2: ");

for (int i = 0; i < 10; i++)

System.out.print(random2.nextInt(1000) + " ");

From random1: 734 660 210 581 128 202 549 564 459 961

From random2: 734 660 210 581 128 202 549 564 459 961

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

The Point2D Class

Java API has a conveninent Point2D class in the
javafx.geometry package for representing a point in a two-
dimensional plane.

RunTestPoint2D

https://liveexample.pearsoncmg.com/html/TestPoint2D.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Instance

Variables, and Methods

Instance variables belong to a specific instance.

Instance methods are invoked by an instance of

the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
41

Static Variables, Constants,
and Methods

▪ Static variables are shared by all the instances of

the class.

▪ Static methods are not tied to a specific object.

▪ Static constants are final variables shared by all

the instances of the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
42

Static Variables, Constants,
and Methods, cont.

To declare static variables, constants, and methods,

use the static modifier.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
43

Static Variables, Constants,
and Methods, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
44

Example of

Using Instance and Class Variables

and Method

Objective: Demonstrate the roles of
instance and class variables and their
uses. This example adds a class variable
numberOfObjects to track the number of
Circle objects created.

Run

CircleWithStaticMembers

TestCircleWithStaticMembers

https://liveexample.pearsoncmg.com/html/CircleWithStaticMembers.html
https://liveexample.pearsoncmg.com/html/TestCircleWithStaticMembers.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Visibility Modifiers
❑ The modifiers private, protected, and public are known as

visibility or accessibility modifiers because they specify

how classes and class members are accessed.

❑ The visibility of these modifiers increases in this order:

45

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
46

Visibility Modifiers

❑ public

The class, data, or method is visible to any class in any package.

❑ private

The data or methods can be accessed only by the declaring class.

❑ package-private or default

 Use no modifiers (the default) in order to allow the members of the class

 to be accessed directly from any class within the same package

 but not from other packages.

❑ protected

 Use the protected modifier to enable the members of the class to be accessed by the subclasses in

 any package or classes in the same package.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
47

The private modifier restricts access to within a class, the default

modifier restricts access to within a package, and the public

modifier enables unrestricted access.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
48

The default modifier on a class restricts access to within a package,

and the public modifier enables unrestricted access.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
49

NOTE

An object cannot access its private members, as shown in (b).

It is OK, however, if the object is declared in its own class, as

shown in (a).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
50

Why Data Fields Should Be

private?

To protect data.

To make code easy to maintain.

The get and set methods are used to read and
modify private properties. (called
Accessor/Mutator Methods)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
51

Example of

Data Field Encapsulation

 Circle

-radius: double

-numberOfObjects: int

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: double): void

+getNumberOfObjects(): int

+getArea(): double

The radius of this circle (default: 1.0).

The number of circle objects created.

Constructs a default circle object.

Constructs a circle object with the specified radius.

Returns the radius of this circle.

Sets a new radius for this circle.

Returns the number of circle objects created.

Returns the area of this circle.

The - sign indicates

private modifier

Run

CircleWithPrivateDataFields

TestCircleWithPrivateDataFields

https://liveexample.pearsoncmg.com/html/CircleWithPrivateDataFields.html
https://liveexample.pearsoncmg.com/html/TestCircleWithPrivateDataFields.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
52

Passing Objects to Methods

❑ Passing by value for primitive type value

(the value is passed to the parameter)

❑ Passing by value for reference type value

(the value is the reference to the object)

RunTestPassObject

https://liveexample.pearsoncmg.com/html/TestPassObject.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
53

Passing Objects to Methods, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
54

Array of Objects

Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables. So invoking
circleArray[1].getArea() involves two
levels of referencing as shown in the next
figure. circleArray references to the entire
array. circleArray[1] references to a
Circle object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
55

Array of Objects, cont.

Circle[] circleArray = new Circle[10];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
56

Array of Objects, cont.

Summarizing the areas of the circles

RunTotalArea

https://liveexample.pearsoncmg.com/html/TotalArea.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
57

Immutable Objects and Classes
If the contents of an object cannot be changed once the object

is created, the object is called an immutable object and its class

is called an immutable class. If you delete the set method in

the Circle class in Listing 8.10, the class would be immutable

because radius is private and cannot be changed without a set

method.

A class with all private data fields and without mutators is not

necessarily immutable. For example, the following class

Student has all private data fields and no mutators, but it is

mutable.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
58

Example
public class Student {

private int id;

private BirthDate birthDate;

public Student(int ssn,

int year, int month, int day) {

id = ssn;

birthDate = new BirthDate(year, month, day);

}

public int getId() {

return id;

}

public BirthDate getBirthDate() {

return birthDate;

}

}

public class BirthDate {

private int year;

private int month;

private int day;

public BirthDate(int newYear,

int newMonth, int newDay) {

year = newYear;

month = newMonth;

day = newDay;

}

public void setYear(int newYear) {

year = newYear;

}

}

public class Test {

public static void main(String[] args) {

Student student = new Student(111223333, 1970, 5, 3);

BirthDate date = student.getBirthDate();

date.setYear(2010); // Now the student birth year is changed!

}

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
59

What Class is Immutable?

For a class to be immutable, it must mark all data fields private

and provide no mutator methods and no accessor methods that

would return a reference to a mutable data field object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
60

Scope of Variables

❑ The scope of instance and static variables is the

entire class. They can be declared anywhere inside

a class.

❑ The scope of a local variable starts from its

declaration and continues to the end of the block

that contains the variable. A local variable must be

initialized explicitly before it can be used.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
61

The this Keyword

❑The this keyword is the name of a reference that

refers to an object itself. One common use of the

this keyword is reference a class’s hidden data

fields.

❑Another common use of the this keyword to

enable a constructor to invoke another

constructor of the same class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
62

Reference the Hidden Data Fields

public class F {

 private int i = 5;

 private static double k = 0;

 void setI(int i) {

 this.i = i;

 }

 static void setK(double k) {

 F.k = k;

 }

}

Suppose that f1 and f2 are two objects of F.

F f1 = new F(); F f2 = new F();

Invoking f1.setI(10) is to execute

 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute

 this.i = 45, where this refers f2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
63

Calling Overloaded Constructor

public class Circle {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 public Circle() {

 this(1.0);

 }

 public double getArea() {

 return this.radius * this.radius * Math.PI;

 }

}

Every instance variable belongs to an instance represented by this,

which is normally omitted

this must be explicitly used to reference the data

field radius of the object being constructed

this is used to invoke another constructor

	Slide 1: Chapter 9 Objects and Classes
	Slide 2: Motivations
	Slide 3: Objectives
	Slide 4: OO Programming Concepts
	Slide 5: Objects
	Slide 6: Classes
	Slide 7: Classes
	Slide 8: Use a Class to Make Many Objects
	Slide 9: UML Class Diagram
	Slide 10: Example: Defining Classes and Creating Objects
	Slide 11: Example: Defining Classes and Creating Objects
	Slide 12: Constructors
	Slide 13: Constructors, cont.
	Slide 14: Creating Objects Using Constructors
	Slide 15: Default Constructor
	Slide 16: Declaring Object Reference Variables
	Slide 17: Declaring/Creating Objects in a Single Step
	Slide 18: Accessing Object’s Members
	Slide 19: Trace Code
	Slide 20: Trace Code, cont.
	Slide 21: Trace Code, cont.
	Slide 22: Trace Code, cont.
	Slide 23: Trace Code, cont.
	Slide 24: Trace Code, cont.
	Slide 25: Trace Code, cont.
	Slide 26: Caution
	Slide 27: Reference Data Fields
	Slide 28: The null Value
	Slide 29: Default Value for a Data Field
	Slide 30: Example
	Slide 31: Differences between Variables of Primitive Data Types and Object Types
	Slide 32: Copying Variables of Primitive Data Types and Object Types
	Slide 33: Garbage Collection
	Slide 34: Garbage Collection, cont
	Slide 35: The Date Class
	Slide 36: The Date Class Example
	Slide 37: The Random Class
	Slide 38: The Random Class Example
	Slide 39: The Point2D Class
	Slide 40: Instance Variables, and Methods
	Slide 41: Static Variables, Constants, and Methods
	Slide 42: Static Variables, Constants, and Methods, cont.
	Slide 43: Static Variables, Constants, and Methods, cont.
	Slide 44: Example of Using Instance and Class Variables and Method
	Slide 45: Visibility Modifiers
	Slide 46: Visibility Modifiers
	Slide 47
	Slide 48
	Slide 49: NOTE
	Slide 50: Why Data Fields Should Be private?
	Slide 51: Example of Data Field Encapsulation
	Slide 52: Passing Objects to Methods
	Slide 53: Passing Objects to Methods, cont.
	Slide 54: Array of Objects
	Slide 55: Array of Objects, cont.
	Slide 56: Array of Objects, cont.
	Slide 57: Immutable Objects and Classes
	Slide 58: Example
	Slide 59: What Class is Immutable?
	Slide 60: Scope of Variables
	Slide 61: The this Keyword
	Slide 62: Reference the Hidden Data Fields
	Slide 63: Calling Overloaded Constructor

