
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 10 Thinking in Objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Motivations

You see the advantages of object-oriented programming

from the preceding chapter. This chapter will demonstrate

how to solve problems using the object-oriented paradigm.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Objectives
❑ To apply class abstraction to develop software (§10.2).

❑ To explore the differences between the procedural paradigm and object-

oriented paradigm (§10.3).

❑ To discover the relationships between classes (§10.4).

❑ To design programs using the object-oriented paradigm (§§10.5–10.6).

❑ To create objects for primitive values using the wrapper classes (Byte,

Short, Integer, Long, Float, Double, Character, and Boolean) (§10.7).

❑ To simplify programming using automatic conversion between primitive

types and wrapper class types (§10.8).

❑ To use the BigInteger and BigDecimal classes for computing very large

numbers with arbitrary precisions (§10.9).

❑ To use the String class to process immutable strings (§10.10).

❑ To use the StringBuilder and StringBuffer classes to process mutable

strings (§10.11).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides
a description of the class and let the user know how the
class can be used. The user of the class does not need to
know how the class is implemented. The detail of
implementation is encapsulated and hidden from the user.

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Designing the Loan Class

Loan

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: Date

+Loan()

+Loan(annualInterestRate: double,

numberOfYears: int,

loanAmount: double)

+getAnnualInterestRate(): double

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): Date

+setAnnualInterestRate(

 annualInterestRate: double): void

+setNumberOfYears(

 numberOfYears: int): void

+setLoanAmount(
 loanAmount: double): void

+getMonthlyPayment(): double

+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years, and

loan amount.

Returns the annual interest rate of this loan.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.

Sets a new amount to this loan.

Returns the monthly payment of this loan.

Returns the total payment of this loan.

RunLoan TestLoanClass

https://liveexample.pearsoncmg.com/html/Loan.html
https://liveexample.pearsoncmg.com/html/TestLoanClass.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Object-Oriented Thinking

Chapters 1-8 introduced fundamental programming
techniques for problem solving using loops, methods, and
arrays. The studies of these techniques lay a solid
foundation for object-oriented programming. Classes
provide more flexibility and modularity for building
reusable software. This section improves the solution for a
problem introduced in Chapter 3 using the object-oriented
approach. From the improvements, you will gain the
insight on the differences between the procedural
programming and object-oriented programming and see
the benefits of developing reusable code using objects and
classes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

The BMI Class

BMI

-name: String

-age: int

-weight: double

-height: double

+BMI(name: String, age: int, weight:

double, height: double)

+BMI(name: String, weight: double,

height: double)

+getBMI(): double

+getStatus(): String

The name of the person.

The age of the person.

The weight of the person in pounds.

The height of the person in inches.

Creates a BMI object with the specified

name, age, weight, and height.

Creates a BMI object with the specified

name, weight, height, and a default age

20.

Returns the BMI

Returns the BMI status (e.g., normal,

overweight, etc.)

The get methods for these data fields are

provided in the class, but omitted in the

UML diagram for brevity.

RunBMI UseBMIClass

https://liveexample.pearsoncmg.com/html/BMI.html
https://liveexample.pearsoncmg.com/html/UseBMIClass.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

Class Relationships
Association

Aggregation

Composition

Inheritance (Chapter 13)

Association: is a general binary relationship that describes

an activity between two classes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

Object Composition
▪ Composition is actually a special case of the aggregation relationship.

Composition implies that the contained class cannot exist
independently of the container. If the container is destroyed, the child
is also destroyed. It exhibits a strong type of relationship that specify a
whole-part (part-of) relationship.

▪ Aggregation models has-a relationships and represents an ownership
relationship between two objects. The owner object is called an
aggregating object and its class an aggregating class. The subject
object is called an aggregated object and its class an aggregated class.
Aggregation is a weak Association.

Name Address Student

Composition Aggregation

1..3 1 1 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Class Representation

An aggregation relationship is usually represented as a data

field in the aggregating class. For example, the relationship

in Figure 10.6 can be represented as follows:

public class Name {

 ...

}

public class Student {

 private Name name;

 private Address address;

 ...

}

public class Address {

 ...

}

Aggregated class Aggregating class Aggregated class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Aggregation or Composition

Since aggregation and composition

relationships are represented using classes in

similar ways, many texts don’t differentiate

them and call both compositions.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Aggregation Between Same Class

Aggregation may exist between objects of the same class.

For example, a person may have a supervisor.

Person

Supervisor

1

1

public class Person {

// The type for the data is the class itself

private Person supervisor;

...

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Aggregation Between Same Class

What happens if a person has several supervisors?

Person

Supervisor

1

m

public class Person {

 ...

 private Person[] supervisors;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

Example: The Course Class

Course

-courseName: String

-students: String[]

-numberOfStudents: int

+Course(courseName: String)

+getCourseName(): String

+addStudent(student: String): void

+dropStudent(student: String): void

+getStudents(): String[]

+getNumberOfStudents(): int

The name of the course.

An array to store the students for the course.

The number of students (default: 0).

Creates a course with the specified name.

Returns the course name.

Adds a new student to the course.

Drops a student from the course.

Returns the students in the course.

Returns the number of students in the course.

RunCourse TestCourse

https://liveexample.pearsoncmg.com/html/Course.html
https://liveexample.pearsoncmg.com/html/TestCourse.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

Example: The

StackOfIntegers Class

StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()

+StackOfIntegers(capacity: int)

+empty(): boolean

+peek(): int

+push(value: int): int

+pop(): int

+getSize(): int

An array to store integers in the stack.

The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.

Returns true if the stack is empty.

Returns the integer at the top of the stack without

removing it from the stack.

Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

RunTestStackOfIntegers

https://liveexample.pearsoncmg.com/html/TestStackOfIntegers.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Designing the StackOfIntegers Class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Implementing

StackOfIntegers Class

StackOfIntegers

https://liveexample.pearsoncmg.com/html/StackOfIntegers.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1818

Wrapper Classes

❑ Boolean

❑ Character

❑ Short

❑ Byte

❑ Integer

❑ Long

❑ Float

❑ Double

NOTE: (1) The wrapper classes do

not have no-arg constructors. (2)

The instances of all wrapper

classes are immutable, i.e., their

internal values cannot be changed

once the objects are created.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1919

The Integer and Double Classes

java.lang.Integer

-value: int

+MAX_VALUE: int

+MIN_VALUE: int

+Integer(value: int)

+Integer(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Integer): int

+toString(): String

+valueOf(s: String): Integer

+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int

+parseInt(s: String, radix: int): int

java.lang.Double

-value: double

+MAX_VALUE: double

+MIN_VALUE: double

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longVlaue(): long

+floatValue(): float

+doubleValue():double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double

+parseDouble(s: String): double

+parseDouble(s: String, radix: int): double

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2020

The Integer Class

and the Double Class

❑Constructors

❑Class Constants MAX_VALUE, MIN_VALUE

❑Conversion Methods

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2121

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a

primitive data type value or from a string

representing the numeric value. The constructors

for Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2222

Numeric Wrapper Class Constants

▪ Each numerical wrapper class has the constants MAX_VALUE and
MIN_VALUE. MAX_VALUE represents the maximum value of the
corresponding primitive data type.

▪ For Byte, Short, Integer, and Long, MIN_VALUE represents the
minimum byte, short, int, and long values.

▪ For Float and Double, MIN_VALUE represents the minimum
positive float and double values.

▪ The following statements display the maximum integer
(2,147,483,647), the minimum positive float (1.4E-45), and the
maximum double floating-point number
(1.79769313486231570e+308d).

System.out.println("The maximum integer is " + Integer.MAX_VALUE);
System.out.println("The minimum positive float is " + Float.MIN_VALUE);
System.out.println("The maximum double-precision floating-point number is " + Double.MAX_VALUE);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2323

Conversion Methods

▪ Each numeric wrapper class implements

the abstract methods doubleValue,

floatValue, intValue, longValue, and

shortValue, which are defined in the

Number class.

▪ These methods “convert” objects into

primitive type values.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2424

The Static valueOf Methods

The numeric wrapper classes have a useful

class method, valueOf(String s). This method

creates a new object initialized to the value

represented by the specified string. For

example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2525

The Methods for Parsing Strings into

Numbers

▪ You have used the parseInt method in the
Integer class to parse a numeric string into
an int value and the parseDouble method in
the Double class to parse a numeric string
into a double value.

▪ Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2626

Automatic Conversion Between Primitive

Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer(2),

 new Integer(4), new Integer(3)};

(a)

Equivalent

(b)

Integer[] intArray = {2, 4, 3};

New JDK 1.5 boxing

Integer[] intArray = {1, 2, 3};
System.out.println(intArray[0] + intArray[1] + intArray[2]);

Unboxing

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Boxing and Autoboxing
▪ Boxing is the process of converting a primitive datatype into an object wrapper

datatype, and unboxing is the process of converting a value from an object
wrapper type back to the native primitive value. We can say that both boxing
and unboxing operations are a subset of typecasting

▪ Autoboxing is the automatic conversion that the Java compiler makes between
the primitive types and their corresponding object wrapper classes.

27

public class Main {

 Integer wrapper = new Integer(100); // Boxing

 int primitive = wrapper.intValue(); // Unboxing

}

public class Main {

 Integer wrapper = 100; // Boxing

 int primitive = wrapper; // Unboxing (autoboxing)

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2828

BigInteger and BigDecimal

If you need to compute with very large integers or

high precision floating-point values, you can use

the BigInteger and BigDecimal classes in the

java.math package. Both are immutable. Both

extend the Number class and implement the

Comparable interface.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2929

BigInteger and BigDecimal

BigInteger a = new BigInteger("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);

BigDecimal b = new BigDecimal(3);

BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);

System.out.println(c);

RunLargeFactorial

https://liveexample.pearsoncmg.com/html/LargeFactorial.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

The String Class
❑ Constructing a String:

String message = "Welcome to Java“;
String message = new String("Welcome to Java“);

String s = new String();

❑ Obtaining String length and Retrieving Individual Characters in
a string

❑ String Concatenation (concat)

❑ Substrings (substring(index), substring(start, end))

❑ Comparisons (equals, compareTo)

❑ String Conversions

❑ Finding a Character or a Substring in a String

❑ Conversions between Strings and Arrays

❑ Converting Characters and Numeric Values to Strings

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Constructing Strings

String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a

shorthand initializer for creating a string:

String message = "Welcome to Java";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Strings Are Immutable

A String object is immutable; its contents cannot be changed.

Does the following code change the contents of the string?

String s = "Java";

s = "HTML";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Trace Code

String s = "Java";

s = "HTML";

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is

now unreferenced
 s

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Trace Code

String s = "Java";

s = "HTML";

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is

now unreferenced
 s

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

Interned Strings

▪ Since strings are immutable and are frequently

used, to improve efficiency and save memory, the

JVM uses a unique instance for string literals

with the same character sequence.

▪ Such an instance is called interned. For example,

the following statements:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

Examples

display

s1 == s2 is false

s1 == s3 is true

A new object is created if you use the
new operator.

If you use the string initializer, no new
object is created if the interned object is
already created.

 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));

System.out.println("s1 == s3 is " + (s1 == s3));

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

s3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String

Interned string object for

"Welcome to Java"

s1

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String

Interned string object for

"Welcome to Java"

: String

A string object for

"Welcome to Java"

s1

s2

s3

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Replacing and Splitting Strings

java.lang.String

+replace(oldChar: char,

newChar: char): String

+replaceFirst(oldString: String,

newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):

String[]

Returns a new string that replaces all matching character in this

string with the new character.

Returns a new string that replaces the first matching substring in

this string with the new substring.

Returns a new string that replace all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the

delimiter.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
41

Examples

"Welcome".replace('e', 'A') returns a new string, WAlcomA.

"Welcome".replaceFirst("e", "AB") returns a new string,

WABlcome.

"Welcome".replace("e", "AB") returns a new string,

WABlcomAB.

"Welcome".replace("el", "AB") returns a new string,

WABcome.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
42

Splitting a String

String[] tokens = "Java#HTML#Perl".split("#", 0);

for (int i = 0; i < tokens.length; i++)

System.out.print(tokens[i] + " ");

Java HTML Perl

displays

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
43

Matching, Replacing and Splitting by Patterns

You can match, replace, or split a string by specifying a pattern.

This is an extremely useful and powerful feature, commonly

known as regular expression. Regular expression is complex to

beginning students. For this reason, two simple patterns are

used in this section. Please refer to Supplement III.F, “Regular
Expressions,” for further studies.

"Java".matches("Java");

"Java".equals("Java");

"Java is fun".matches("Java.*");

"Java is cool".matches("Java.*");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
44

Matching, Replacing and Splitting by Patterns

The replaceAll, replaceFirst, and split methods can be used with

a regular expression. For example, the following statement

returns a new string that replaces $, +, or # in "a+b$#c" by the

string NNN.

String s = "a+b$#c".replaceAll("[$+#]", "NNN");

System.out.println(s);

Here the regular expression [$+#] specifies a pattern that

matches $, +, or #. So, the output is aNNNbNNNNNNc.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
45

Matching, Replacing and Splitting by Patterns

The following statement splits the string into an array of strings
delimited by some punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)

System.out.println(tokens[i]);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
46

Convert Character and Numbers

to Strings

The String class provides several static valueOf

methods for converting a character, an array of

characters, and numeric values to strings. These

methods have the same name valueOf with

different argument types char, char[], double, long,

int, and float. For example, to convert a double

value to a string, use String.valueOf(5.44). The

return value is string consists of characters ‘5’, ‘.’,

‘4’, and ‘4’.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
47

StringBuilder and StringBuffer

▪ String is immutable whereas StringBuffer and StringBuilder are
mutable classes.

▪ The StringBuilder/StringBuffer class is an alternative to the String
class.

▪ In general, a StringBuilder/StringBuffer can be used wherever a
string is used. StringBuilder/StringBuffer is more flexible than
String.

▪ You can add, insert, or append new contents into a string buffer,
whereas the value of a String object is fixed once the string is created.

▪ What is difference between StringBuilder and StringBuffer?

▪ StringBuffer is thread-safe and synchronized whereas StringBuilder
is not.

▪ StringBuffer is synchronized. This means that multiple threads cannot call
the methods of StringBuffer simultaneously. StringBuilder is
asynchronized. This means that multiple threads can call the methods of
StringBuilder simultaneously. StringBuilder is faster than
StringBuffer.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
48

StringBuilder Constructors

java.lang.StringBuilder

+StringBuilder()

+StringBuilder(capacity: int)

+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.

Constructs a string builder with the specified capacity.

Constructs a string builder with the specified string.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
49

Modifying Strings in the Builder

java.lang.StringBuilder

+append(data: char[]): StringBuilder

+append(data: char[], offset: int, len: int):

StringBuilder

+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder

+delete(startIndex: int, endIndex: int):

StringBuilder

+deleteCharAt(index: int): StringBuilder

+insert(index: int, data: char[], offset: int,

len: int): StringBuilder

+insert(offset: int, data: char[]):

StringBuilder

+insert(offset: int, b: aPrimitiveType):

StringBuilder

+insert(offset: int, s: String): StringBuilder

+replace(startIndex: int, endIndex: int, s:

String): StringBuilder

+reverse(): StringBuilder

+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.

Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this

builder.

Appends a string to this string builder.

Deletes characters from startIndex to endIndex.

Deletes a character at the specified index.

Inserts a subarray of the data in the array to the builder

at the specified index.

Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex

to endIndex with the specified string.

Reverses the characters in the builder.

Sets a new character at the specified index in this

builder.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
50

Examples

stringBuilder.append("Java");

stringBuilder.insert(11, "HTML and ");

stringBuilder.delete(8, 11) changes the builder to Welcome
Java.

stringBuilder.deleteCharAt(8) changes the builder to
Welcome o Java.

stringBuilder.reverse() changes the builder to avaJ ot
emocleW.

stringBuilder.replace(11, 15, "HTML")

changes the builder to Welcome to HTML.

stringBuilder.setCharAt(0, 'w') sets the builder to welcome
to Java.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
51

The toString, capacity, length,

setLength, and charAt Methods

java.lang.StringBuilder

+toString(): String

+capacity(): int

+charAt(index: int): char

+length(): int

+setLength(newLength: int): void

+substring(startIndex: int): String

+substring(startIndex: int, endIndex: int):

String

+trimToSize(): void

Returns a string object from the string builder.

Returns the capacity of this string builder.

Returns the character at the specified index.

Returns the number of characters in this builder.

Sets a new length in this builder.

Returns a substring starting at startIndex.

Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
52

Problem: Checking Palindromes

Ignoring Non-alphanumeric Characters

This example gives a program that counts the

number of occurrence of each letter in a string.

Assume the letters are not case-sensitive.

RunPalindromeIgnoreNonAlphanumeric

https://liveexample.pearsoncmg.com/html/PalindromeIgnoreNonAlphanumeric.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
53

Regular Expressions

A regular expression (abbreviated regex) is a string

that describes a pattern for matching a set of

strings. Regular expression is a powerful tool for

string manipulations. You can use regular

expressions for matching, replacing, and splitting

strings.

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
54

Matching Strings

"Java".matches("Java");

"Java".equals("Java");

"Java is fun".matches("Java.*")

"Java is cool".matches("Java.*")

"Java is powerful".matches("Java.*")

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
55

Regular

Expression

Syntax

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
56

Replacing and Splitting Strings

java.lang.String

+matches(regex: String): boolean

+replaceAll(regex: String,

replacement: String): String

+replaceFirst(regex: String,

replacement: String): String

+split(regex: String): String[]

Returns true if this string matches the pattern.

Returns a new string that replaces all

matching substrings with the replacement.

Returns a new string that replaces the first

matching substring with the replacement.

Returns an array of strings consisting of the

substrings split by the matches.

Appendix H

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
57

Examples

String s = "Java Java Java".replaceAll("v\\w", "wi") ;

String s = "Java Java Java".replaceFirst("v\\w", "wi") ;

String[] s = "Java1HTML2Perl".split("\\d");

Appendix H

	Slide 1: Chapter 10 Thinking in Objects
	Slide 2: Motivations
	Slide 3: Objectives
	Slide 4: Class Abstraction and Encapsulation
	Slide 5: Designing the Loan Class
	Slide 6: Object-Oriented Thinking
	Slide 7: The BMI Class
	Slide 8: Class Relationships
	Slide 9: Object Composition
	Slide 10: Class Representation
	Slide 11: Aggregation or Composition
	Slide 12: Aggregation Between Same Class
	Slide 13: Aggregation Between Same Class
	Slide 14: Example: The Course Class
	Slide 15: Example: The StackOfIntegers Class
	Slide 16: Designing the StackOfIntegers Class
	Slide 17: Implementing StackOfIntegers Class
	Slide 18: Wrapper Classes
	Slide 19: The Integer and Double Classes
	Slide 20: The Integer Class and the Double Class
	Slide 21: Numeric Wrapper Class Constructors
	Slide 22: Numeric Wrapper Class Constants
	Slide 23: Conversion Methods
	Slide 24: The Static valueOf Methods
	Slide 25: The Methods for Parsing Strings into Numbers
	Slide 26: Automatic Conversion Between Primitive Types and Wrapper Class Types
	Slide 27: Boxing and Autoboxing
	Slide 28: BigInteger and BigDecimal
	Slide 29: BigInteger and BigDecimal
	Slide 30: The String Class
	Slide 31: Constructing Strings
	Slide 32: Strings Are Immutable
	Slide 33: Trace Code
	Slide 34: Trace Code
	Slide 35: Interned Strings
	Slide 36: Examples
	Slide 37: Trace Code
	Slide 38: Trace Code
	Slide 39: Trace Code
	Slide 40: Replacing and Splitting Strings
	Slide 41: Examples
	Slide 42: Splitting a String
	Slide 43: Matching, Replacing and Splitting by Patterns
	Slide 44: Matching, Replacing and Splitting by Patterns
	Slide 45: Matching, Replacing and Splitting by Patterns
	Slide 46: Convert Character and Numbers to Strings
	Slide 47: StringBuilder and StringBuffer
	Slide 48: StringBuilder Constructors
	Slide 49: Modifying Strings in the Builder
	Slide 50: Examples
	Slide 51: The toString, capacity, length, setLength, and charAt Methods
	Slide 52: Problem: Checking Palindromes Ignoring Non-alphanumeric Characters
	Slide 53: Regular Expressions
	Slide 54: Matching Strings
	Slide 55: Regular Expression Syntax
	Slide 56: Replacing and Splitting Strings
	Slide 57: Examples

