Chapter 10 Thinking in Objects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Motivations

You see the advantages of object-oriented programming
from the preceding chapter. This chapter will demonstrate
how to solve problems using the object-oriented paradigm.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Objectives

To apply class abstraction to develop software (810.2).

To explore the differences between the procedural paradigm and object-
oriented paradigm (810.3).

To discover the relationships between classes (810.4).
To design programs using the object-oriented paradigm (§810.5-10.6).

To create objects for primitive values using the wrapper classes (Byte,
Short, Integer, Long, Float, Double, Character, and Boolean) (810.7).

To simplify programming using automatic conversion between primitive
types and wrapper class types (§10.8).

To use the Biglnteger and BigDecimal classes for computing very latge
numbers with arbitrary precisions (§10.9). K

To use the String class to process immutable strings (§10.10).

To use the StringBuilder and StringBuffer classes to process mutabl
strings (810.11).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides
a description of the class and let the user know how the
class can be used. The user of the class does not need to
know how the class i1s implemented. The detail of
Implementation is encapsulated and hidden from the user.

Class implementation
is like a black box
hidden from the clients

Class Contract
(Signatures of Clients use the
public methods and €«——>| class through the
public constants) contract of the class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Designing the Loan Class

Loan

-annualInterestRate: double
-numberOfYears: int
-loanAmount: double
-loanDate: Date

+Loan()

+Loan(annualinterestRate: double,
numberOfYears: int,
loanAmount: double)

+getAnnuallinterestRate(): double
+getNumberOfYears(): int
+getLoanAmount(): double
+getLoanDate(): Date

+setAnnuallinterestRate(
annuallnterestRate: double): void

+setNumberOfYears(
numberOfYears: int): void

+setLoanAmount(
loanAmount: double): void

+getMonthlyPayment(): double
+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).
The number of years for the loan (default: 1)
The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years, and
loan amount.

Returns the annual interest rate of this loan.

Returns the number of the years of this loan.
Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.
Sets a new amount to this loan.

Returns the monthly payment of this loan.
Returns the total payment of this loan.

Loan TestLoanClass

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

https://liveexample.pearsoncmg.com/html/Loan.html
https://liveexample.pearsoncmg.com/html/TestLoanClass.html

Object-Oriented Thinking

Chapters 1-8 introduced fundamental programming
techniques for problem solving using loops, methods, and
arrays. The studies of these techniques lay a solid
foundation for object-oriented programming. Classes
provide more flexibility and modularity for building
reusable software. This section improves the solution for a
problem introduced in Chapter 3 using the object-oriented
approach. From the improvements, you will gain the
Insight on the differences between the procedural
programming and object-oriented programming and se\
the benefits of developing reusable code using objects
classes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

The BMI Class

The get methods for these data fields are
provided in the class, but omitted in the

BMI / UML diagram for brevity.
-name: String / The name of the person.
-age: int The age of the person.
-weight: double The weight of the person in pounds.
-height: double The height of the person in inches.

+BMI(name: String, age: int, weight: | Creates a BMI object with the specified

double, height: double) name, age, weight, and height.
+BMI(name: String, weight: double, Creates a BMI object with the specified
height: double) name, weight, height, and a default age
20.
+getBMI(): double Returns the BMI
+getStatus(): String Returns the BMI status (e.g., normal,

overweight, etc.)

BMI UseBMIClass

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/BMI.html
https://liveexample.pearsoncmg.com/html/UseBMIClass.html

Class Relationships

Assoclation
Aggregation
Composition

Inheritance (Chapter 13)

Association: Is a general binary relationship that describes

an activity between two classes.
a

Take p Teach

0.3 1

) 5..60 «
Course | Faculty I

Student |

Teacher
y

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Object Composition

« Composition is actually a special case of the aggregation relationship.
Composition implies that the contained class cannot exist
Independently of the container. If the container is destroyed, the child
IS also destroyed. It exhibits a strong type of relationship that specify a
whole-part (part-of) relationship.

= Aggregation models has-a relationships and represents an ownership
relationship between two objects. The owner object is called an
aggregating object and its class an aggregating class. The subject
object is called an aggregated object and its class an aggregated class.
Aggregation is a weak Association.

Composition Aggregation \

Name ‘| Student O Address

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Class Representation

An aggregation relationship is usually represented as a data
field in the aggregating class. For example, the relationship
In Figure 10.6 can be represented as follows:

public class Name { public class Student { public class Address {
private Name name;
} private Address address; }
}
Aggregated class Aggregating class Aggregated class
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?

All rights reserved.

Aggregation or Composition

Since aggregation and composition
relationships are represented using classes In
similar ways, many texts don’t differentiate
them and call both compositions.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Aggregation Between Same Class

Aggregation may exist between objects of the same class.
For example, a person may have a supervisor.

1

Person

Supervisor
1

public class Person {
// The type for the data Is the class itselt'\
private Person supervisor,

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Aggregation Between Same Class

What happens if a person has several supervisors?

Person ()

Supervisor

public class Person {

private Person|[] supervisors;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

a

Example: The Course Class

Course
—courseName: String The name of the course.
-students: String[] An array to store the students for the course.
—-numberOfStudents: int The number of students (default: 0).
+Course (courseName: String) Creates a course with the specified name.
+getCourseName () : String Returns the course name.
+addStudent (student: String): void | Adds a new student to the course.
+tdropStudent (student: String): void| Drops a student from the course.
+getStudents () : Stringl[] Returns the students in the course.
+getNumberOfStudents () : int Returns the number of students in the course.
N\
Course TestCourse

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/Course.html
https://liveexample.pearsoncmg.com/html/TestCourse.html

Example: The
StackOfIntegers Class

StackOflIntegers

-elements: int[] An array to store integers in the stack.

-size: int The number of integers in the stack.

+StackOfiIntegers() Constructs an empty stack with a default capacity of 16.

+StackOfIntegers(capacity: int) [Constructs an empty stack with a specified capacity.

+empty(): boolean Returns true if the stack is empty.

+peek(): int Returns the integer at the top of the stack without

removing it from the stack.

+push(value: int): int Stores an integer into the top of the stack.

+pop(): int Removes the integer at the top of the stack and returns it. |

+getSize(): int Returns the number of elements in the stack.
TestStackOflIntegers - s

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?

All rights reserved.

https://liveexample.pearsoncmg.com/html/TestStackOfIntegers.html

Designing the StackOfintegers Class

Datalffﬁﬁw\ DataZﬂffﬁw\ DataBEfF“w\

Data?2
Datal Datal
Data3 k\ Data? +—\ Datalf—\
Data?
Datal Datal

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Data3
Data?
Datal

Implementing
StackOfIntegers Class

elements[capacity — 1]

elements[size — 1] top

< capacity

< SiZe

elements[1]
elements[0] bottom _

StackOflIntegers v

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

https://liveexample.pearsoncmg.com/html/StackOfIntegers.html

Wrapper Classes

0 Boolean o Integer NOTE: (1) The wrapper classes do
not have no-arg constructors. (2)
Q Character Q Long The instances of all wrapper
Float classes are immutable, i.e., their
Q Short 4 Floa internal values cannot be changed
0 Byte a Double once the objects are created.
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R

All rights reserved.

The Integer and Double Classes

java.lang.Integer

java.lang.Double

-value: int

+MAX VALUE: int
+MIN VALUE: int
+Integer (value: int)
+Integer (s: String)
+byteValue () : byte
+shortvValue () : short
+intValue () : int
+longVlaue () : long
+floatValue () : float

+doubleValue () :double

+compareTo (o: Integer): int

+toString () : String

+valueOf (s: String): Integer

+valueOf (s: String, radix: int): Integer
+parseInt(s: String): int

+parseInt(s: String, radix: int): int

-value: double

+MAX VALUE: double

+MIN VALUE: double

+Double (value: double)

+Double(s: String)

+byteValue () : byte

+shortvValue () : short

+intValue () : int

+longVlaue () : long

+floatValue () : float
+doubleValue () :double

+compareTo (o: Double): int

+toString () : String

+valueOf (s: String): Double

+valueOf (s: String, radix: int): Double
+parseDouble (s: String): double
+parseDouble (s: String, radix: int): double

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

i

All rights reserved.

The Integer Class
and the Double Class

a Constructors

A Class Constants MAX VALUE, MIN VALUE

a Conversion Methods

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a
primitive data type value or from a string
representing the numeric value. The constructors
for Integer and Double are:

oublic Integer(int value)

oublic Integer(String s) \
public Double(double value)

public Double(String s)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Numeric Wrapper Class Constants

Each numerical wrapper class has the constants MAX_VALUE and
MIN_VALUE. MAX_ VALUE represents the maximum value of the

corresponding primitive data type.

For Byte, Short, Integer, and Long, MIN_VALUE represents the
minimum byte, short, int, and long values.

For Float and Double, MIN_VALUE represents the minimum
positive float and double values.

The following statements display the maximum integer
(2,147,483,647), the minimum positive float (1.4E-45), and the
maximum double floating-point number
(1.79769313486231570e+308d).

System.out.printIn("The maximum integer is " + Integer. MAX_VALUE);
System.out.printin("The minimum positive float is " + Float.MIN_VALUE);

A\

System.out.printin("The maximum double-precision floating-point number is " + Double.MAX_VALUE};

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

a8

Conversion Methods

Each numeric wrapper class implements
the abstract methods doubleValue,
floatValue, intValue, longValue, and
shortValue, which are defined in the
Number class.

These methods “convert” objects 1nto
primitive type values.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

D\

The Static valueOf Methods

The numeric wrapper classes have a useful
class method, valueOf(String s). This method
creates a new object initialized to the value
represented by the specified string. For
example:

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueOf("12");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

The Methods for Parsing Strings into
Numbers

= You have used the parselnt method in the
Integer class to parse a numeric string into
an Int value and the parseDouble method In
the Double class to parse a numeric string
Into a double value.

= Each numeric wrapper class has two N
overloaded parsing methods to parse a
numeric string Into an appropriate numeri’
value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 2?

Automatic Conversion Between Primitive
Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

Integer[] intArray = {new Integer (2), Equivalent Integer[] intArray =2, 4, 3};
new Integer (4), new Integer (3)}; /
/
(@) New JDK 1.5 boxing (b)

Integer[] intArray = {1, 2, 3},
System.out.printin(intArray[0] + intArray[1] + intArray[2]);

— N\

Unboxing

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Boxing and Autoboxing

= Boxing is the process of converting a primitive datatype into an object wrapper
datatype, and unboxing is the process of converting a value from an object
wrapper type back to the native primitive value. We can say that both boxing

and unboxing operations are a subset of typecasting

public class Main {
Integer wrapper = new Integer(100); // Boxing

Int primitive = wrapper.intValue(); // Unboxing

}

Autoboxing is the automatic conversion that the Java compiler makes between
the primitive types and their corresponding object wrapper classes.

public class Main {
Integer wrapper = 100; // Boxing
Int primitive = wrapper; // Unboxing (autoboxing)

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Biglnteger and BigDecimal

If you need to compute with very large integers or
high precision floating-point values, you can use
the Biglnteger and BigDecimal classes in the
Java.math package. Both are immutable. Both
extend the Number class and implement the
Comparable interface.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

Biglnteger

and BigDecimal

Biginteger a = new Biglnteger("9223372036854775807");
Biglinteger b = new Biglnteger(*'2");

Biginteger ¢ = a.multiply(b); // 9223372036854775807 * 2
System.out.printin(c);

Big
Big
Big

Decimal a = new Big
Decimal b = new Big

LargeFactorial -

Decimal(1.0);
Decimal(3); \

Decimal ¢ = a.divide(

System.out.printin(c);

0, 20, BigDecimal. ROUND U

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

https://liveexample.pearsoncmg.com/html/LargeFactorial.html

The string Class

a Constructing a String:
String message = "Welcome to Java“;

String message = new String("Welcome to Java');

String s = new String();

0O Obtaining String length and Retrieving Individual Characters in
a string

0 String Concatenation (concat)

0 Substrings (substring(index), substring(start, end))

0 Comparisons (equals, compareTo)

a String Conversions \
0 Finding a Character or a Substring in a String

Q Conversions between Strings and Arrays

a Converting Characters and Numeric Values to Strings

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3P
All rights reserved.

Constructing Strings

String newString = new String(stringLiteral);
String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a
shorthand initializer for creating a string: \

String message = "Welcome to Java";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3P
All rights reserved.

Strings Are Immutable

A String object is Immutable; its contents cannot be changed.
Does the following code change the contents of the string?

String s = "Java"
s="HTML";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. :?
All rights reserved.

animation

Trace Code

String s = "Java",

s="HTML";

After executing string s = "Java";
S —— : String

String object for "Java"

Contents cannot be changed

After executing s = "HTML";

Paze

\

. String

String object for "Java"

. String

String object for "HTML"

This string object is
now unreferenced

2\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Code

String s = "Java",
S="HTML";

After executing string s = "Java"; After executing s = "HTML";
s ——> : String S \ mEva| - String This string object is
now unreferenced
String object for "Java" String object for "Java" \
Contents cannot be changed . String
String object for "HTML"

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Interned Strings

= Since strings are immutable and are frequently
used, to improve efficiency and save memory, the
JVM uses a unigue instance for string literals
with the same character sequence.

« Such an instance Is called interned. For example,
the following statements:

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Examples

'] w. sl -
String sl Welcome to Java"; [—> = Strin
sF—— =
String s2 = new String("Welcome to Java"); Interned string object for
"Welcome to Java"
String s3 = "Welcome to Java";
System.out.println("sl == s2 is " + (sl == s2)); s2[—> . String
System.out.println("sl == s3 is " + (sl == s3)); A string object for
"Welcome to Java"
display A new object Is created If you use the

new operator.

_ If you use the string initializer, no n\
sl==s31strue gbject is created if the interned obje
already created.

sl ==s2 1s false

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Y

animation

Trace Code

- S1 -
String sl = "Welcome to Java"; [(= q . String
String s2 = new String("Welcome to Java"); Interned string object for

"Welcome to Java"
String s3 = "Welcome to Java";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Trace Code

String sl = "Welcome to Java";
String s2 = new String("Welcome to Java");
String s3 = "Welcome to Java";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

o= q . String

Interned string object for
"Welcome to Java"

s2[+—f : String

A string object for
"Welcome to Java"

Trace Code

String sl = "Welcome to Java";
String s2 = new String("Welcome to Java");
String s3 = "Welcome to Java";

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

sl [

=

> . String

Interned string object for
"Welcome to Java"

s2[+—f : String

A string object for
"Welcome to Java"

Replacing and Splitting Strings

java.lang.String

+replace(oldChar: char, Returns a new string that replaces all matching character in this
newChar: char): String string with the new character.

+replaceFirst(oldString: String,| Returns a new string that replaces the first matching substring in
newString: String): String this string with the new substring.

+replaceAll(oldString: String, | Returns a new string that replace all matching substrings in this
newString: String): String string with the new substring.

+split(delimiter: String): Returns an array of strings consisting of the substrings split by the
String[] delimiter. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZR

All rights reserved.

Examples

"Welcome".replace('e’, 'A') returns a new string, WAIcomA.

"Welcome".replaceFirst("e", "AB") returns a new string,
WABIcome.

"Welcome".replace("'e", "AB") returns a new string,
WABIcomAB.

"Welcome".replace("el", "AB") returns a new string,
WABcome.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. LP
All rights reserved.

Splitting a String

String[] tokens = "Java#HTML#Perl" .split("#", O0);
for (int i = 0; 1 < tokens.length; i++)
System.out.print(tokens[i] + " ");

displays
Java HTML Perl

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Matching, Replacing and Splitting by Patterns

You can match, replace, or split a string by specifying a pattern.
This i1s an extremely useful and powerful feature, commonly
known as regular expression. Regular expression is complex to
beginning students. For this reason, two simple patterns are
used 1n this section. Please refer to Supplement I11.F, “Regular
Expressions,” for further studies.

"Java".matches("Java");

"Java".equals("Java"); \

"Java is fun".matches("Java.*");
"Java Is cool".matches("Java.*");

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZP
All rights reserved.

Matching, Replacing and Splitting by Patterns

The replaceAll, replaceFirst, and split methods can be used with
a regular expression. For example, the following statement
returns a new string that replaces $, +, or # in "a+b$#c" by the
string NNN.

String s = "a+b$#c" . replaceAll("[$+#]", "NNN");
System.out.printin(s);

Here the regular expression [$+#] specifies a pattern that
matches $, +, or #. So, the output is aNNNbNNNNNNCc.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Matching, Replacing and Splitting by Patterns

The following statement splits the string into an array of strings
delimited by some punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (inti = 0; i < tokens.length; i++)
System.out.printin(tokens[i]);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

Convert Character and Numbers
to Strings

The String class provides several static valueOf
methods for converting a character, an array of
characters, and numeric values to strings. These
methods have the same name valueOf with
different argument types char, char[], double, long,
Int, and float. For example, to convert a double \
value to a string, use String.valueOf(5.44). The
return value 1s string consists of characters ‘57,4
‘4> and ‘4°.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

StringBuilder and StringBuffer

» String IS Immutable whereas StringBuffer and StringBuilder are
mutable classes.

» The StringBuilder/StringBuffer class is an alternative to the String
class.

= Ingeneral,a stringBuilder/StringBuffer can be used wherever a
string Is used. StringBuilder/StringBuffer Is more flexible than
String.

= You can add, insert, or append new contents into a string buffer,
whereas the value of a String object is fixed once the string is created.

= What is difference between StringBuilder and StringBuffer?
" StringBuffer Isthread-safe and synchronized whereas St ringBuilder

IS not.

» StringBuffer issynchronized. This means that multiple threads cannot (\
the methods of StringBuffer simultaneously. StringBuilder is
asynchronized. This means that multiple threads can call the methods of
StringBuilder simultaneously. St ringBuilder is faster than
StringBuffer.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZP
All rights reserved.

StringBuilder Constructors

java.lang.StringBuilder

+StringBuilder() Constructs an empty string builder with capacity 16.
+StringBuilder(capacity: int) | Constructs a string builder with the specified capacity.
+StringBuilder(s: String) Constructs a string builder with the specified string.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

Modifying Strings in the Builder

java.lang.StringBuilder

+append(data: char[]): StringBuilder Appends a char array into this string builder.

+append(data: char[], offset: int, len: int): | Appends a subarray in data into this string builder.
StringBuilder

+append(v: aPrimitiveType): StringBuilder [Appends a primitive type value as a string to this

builder.
+append(s: String): StringBuilder Appends a string to this string builder.
+delete(startindex: int, endindex: int): Deletes characters from startindex to endindex.

StringBuilder
+deleteCharAt(index: int): StringBuilder Deletes a character at the specified index.

+insert(index: int, data: char[], offset: int, Inserts a subarray of the data in the array to the builder
len: int): StringBuilder at the specified index.

+insert(offset: int, data: char[]): Inserts data into this builder at the position offset.
StringBuilder

+insert(offset: int, b: aPrimitiveType): Inserts a value converted to a string into this builder.

StringBuilder

+insert(offset: int, s: String): StringBuilder | Inserts a string into this builder at the position offset.

+replace(startindex: int, endindex: int, s: | Replaces the characters in this builder from startindex

String): StringBuilder to endindex with the specified string.
+reverse(): StringBuilder Reverses the characters in the builder.
+setCharAt(index: int, ch: char): void Sets a new character at the specified index in this
builder.
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Examples

stringBuilder.append("Java");
stringBuilder.insert(11, "HTML and ");

stringBuilder.delete(8, 11) changes the builder to Welcome
Java.

stringBuilder.deleteCharAt(8) changes the builder to
Welcome o Java.

stringBuilder.reverse() changes the builder to aval ot
emocleW.

stringBuilder.replace(11, 15, "HTML") \
changes the builder to Welcome to HTML.

stringBuilder.setCharAt(0, 'w') sets the builder to welca
to Java.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

The toString, capacity, length,
setLength, and charAt Methods

java.lang.StringBuilder

+toString(): String Returns a string object from the string builder.
+capacity(): int Returns the capacity of this string builder.
+charAt(index: int): char Returns the character at the specified index.
+length(): int Returns the number of characters in this builder.
+setLength(newLength: int): void Sets a new length in this builder.
+substring(startindex: int): String Returns a substring starting at startindex.

+substring(startindex: int, endIndex: int): Returns a substring from startindex to endindex-1.
String

+trimToSize(): void Reduces the storage size used for the string builder.
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?

All rights reserved.

Problem: Checking Palindromes
Ignoring Non-alphanumeric Characters

This example gives a program that counts the
number of occurrence of each letter In a string.
Assume the letters are not case-sensitive.

PalindromelgnoreNonAlphanumeric - D

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

https://liveexample.pearsoncmg.com/html/PalindromeIgnoreNonAlphanumeric.html

Appendix H

Regular Expressions

A regular expression (abbreviated regex) Is a string
that describes a pattern for matching a set of
strings. Regular expression is a powerful tool for
string manipulations. You can use regular
expressions for matching, replacing, and splitting

strings.
O\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Appendix H

Matching Strings

"Java".matches("Java");
"Java".equals(*'Java");

"Java Is fun".matches("Java.*")
"Java iIs cool".matches("Java.*™")
"Java Is powerful".matches("Java.*")

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

All rights reserved.

- Regular Expression Matches Example
Appendlx H X a specified characterx Java matches Java
any single character Java matches J..a
(ab|cd) ab or cd ten matches t(en|im)
[abc] a, b, orc Java matches Ja[uvwx]a
[Aabc] any character except Java matches Ja[tars]a
eqular o
[a-z] a through z Java matches [A-M]Jav[a-d]
- [fa-z] any character except Java matches Jav[+b-d]
XPression
[a-e[m-p]] a through e or Java matches [A-G[I-M]]av[a-d]
m through p
S ntax [a-e&&[c-p]] intersection of a-e Java matches [A-P&&[I-M]]av[a-d]
with c-p
Nd a digit, same as [0-9] Java2 matches "Java[\\d]"
\ND a non-digit $Java matches "[‘\\D][“\\DJava"
W a word character Javal matches "[M\\wlava[‘\\w]"
W a non-word character £Java matches "[\\W][\\wlava"
s a whitespace character "Java 2" matches "Java‘\\s2"
S a non-whitespace char Javamatches "[\\S]ava"
p* Zero or more aaaabb matches "a*bb"
occurrences of pattern p ababab matches "(ab)*"
P+ one or more occurrences a matches "a+b*"
of pattern p able matches "(ab)+.*"
p? zero or one occurrence of Java matches "J7Java”
pattern p Java matches "J7ava"
pin} exactly n occurrences of Java matches "Ja{l}.""
pattern p Java does not match ".{2}"
pin,} at least n occurrences of aaaa matches "a{l,}"
pattern p a does not match "a{2,}"
pin,m} between n and m occur- aaaa matches "a{l,9}"
rences (inclusive) abb does not match "a{2,9}bb"
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

Appendix H

Replacing and Splitting Strings

java.lang.String

+matches(regex: String): boolean | Returns true if this string matches the pattern.

+replaceAll(regex: String, Returns a new string that replaces all
replacement: String): String matching substrings with the replacement.

+replaceFirst(regex: String, Returns a new string that replaces the first
replacement: String): String matching substring with the replacement.

+split(regex: String): String[] Returns an array of strings consisting of the

substrings split by the matches.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Appendix H

Examples

String s = "Java Java Java'.replace All("v\\w", "wi") ;

String s = "Java Java Java'.replaceFirst("v\\w", "wi") ;

String[] s = "JavalHTML2Perl".split("\\d"),

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

	Slide 1: Chapter 10 Thinking in Objects
	Slide 2: Motivations
	Slide 3: Objectives
	Slide 4: Class Abstraction and Encapsulation
	Slide 5: Designing the Loan Class
	Slide 6: Object-Oriented Thinking
	Slide 7: The BMI Class
	Slide 8: Class Relationships
	Slide 9: Object Composition
	Slide 10: Class Representation
	Slide 11: Aggregation or Composition
	Slide 12: Aggregation Between Same Class
	Slide 13: Aggregation Between Same Class
	Slide 14: Example: The Course Class
	Slide 15: Example: The StackOfIntegers Class
	Slide 16: Designing the StackOfIntegers Class
	Slide 17: Implementing StackOfIntegers Class
	Slide 18: Wrapper Classes
	Slide 19: The Integer and Double Classes
	Slide 20: The Integer Class and the Double Class
	Slide 21: Numeric Wrapper Class Constructors
	Slide 22: Numeric Wrapper Class Constants
	Slide 23: Conversion Methods
	Slide 24: The Static valueOf Methods
	Slide 25: The Methods for Parsing Strings into Numbers
	Slide 26: Automatic Conversion Between Primitive Types and Wrapper Class Types
	Slide 27: Boxing and Autoboxing
	Slide 28: BigInteger and BigDecimal
	Slide 29: BigInteger and BigDecimal
	Slide 30: The String Class
	Slide 31: Constructing Strings
	Slide 32: Strings Are Immutable
	Slide 33: Trace Code
	Slide 34: Trace Code
	Slide 35: Interned Strings
	Slide 36: Examples
	Slide 37: Trace Code
	Slide 38: Trace Code
	Slide 39: Trace Code
	Slide 40: Replacing and Splitting Strings
	Slide 41: Examples
	Slide 42: Splitting a String
	Slide 43: Matching, Replacing and Splitting by Patterns
	Slide 44: Matching, Replacing and Splitting by Patterns
	Slide 45: Matching, Replacing and Splitting by Patterns
	Slide 46: Convert Character and Numbers to Strings
	Slide 47: StringBuilder and StringBuffer
	Slide 48: StringBuilder Constructors
	Slide 49: Modifying Strings in the Builder
	Slide 50: Examples
	Slide 51: The toString, capacity, length, setLength, and charAt Methods
	Slide 52: Problem: Checking Palindromes Ignoring Non-alphanumeric Characters
	Slide 53: Regular Expressions
	Slide 54: Matching Strings
	Slide 55: Regular Expression Syntax
	Slide 56: Replacing and Splitting Strings
	Slide 57: Examples

