Chapter 11 Inheritance and
Polymorphism

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Motivations

Suppose you will define classes to model circles,
rectangles, and triangles. These classes have many
common features. What Is the best way to design

these classes so to avoid redundancy? The answer
IS to use inheritance.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Objectives

To define a subclass from a superclass through inheritance (811.2).

To invoke the superclass’s constructors and methods using the super keyword
(§11.3).

To override instance methods in the subclass (§811.4).

To distinguish differences between overriding and overloading (811.5).

To explore the toString() method in the Object class (811.6).

To discover polymorphism and dynamic binding (8811.7-11.8).

To describe casting and explain why explicit downcasting is necessary (811.9).
To explore the equals method in the Object class (811.10).

To store, retrieve, and manipulate objects in an ArrayList (811.11).

To implement a Stack class using ArrayL.ist (§11.12). \

To enable data and methods in a superclass accessible from subclasses usin
protected visibility modifier (811.13).

To prevent class extending and method overriding using the final modifier
(811.14).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Superclasses and Subclasses

GeometricObject
-color: String The color of the object (default: white).
-filled: boolean Indicates whether the object is filled with a color (default: false).
-dateCreated: java.util.Date The date when the object was created.
+GeometricObject() Creates a GeometricObject.
+GeometricObject(color: String, Creates a GeometricObject with the specified color and filled
filled: boolean) values.
+getColor(): String Returns the color.
+setColor(color: String): void Sets a new color.
+isFilled(): boolean Returns the filled property.
+setFilled(filled: boolean): void Sets a new filled property.
+getDateCreated(): java.util.Date Returns the dateCreated.
+toString(): String Returns a string representation of this object.
[
I
Circle Rectangle
-radius: double -width: double
+Circle() -height: double
+Circle(radius: double) +Rectangle()
+Circle(radius: double, color: String, +Rectangle(width: double, height: double) Geometrl CO bJ ect
filled: boolean) +Rectangle(width: double, height: double
+getRadius(): double color: String, filled: boolean) .
+setRadius(radius: double): void +getWidth(): double Circle
+getArea(): double +setWidth(width: double): void
+getPerimeter(): double +getHeight(): double Rectang le
+getDiameter(): double +setHeight(height: double): void
+printCircle(): void +getArea(): double .
d L +getPerimeter(): double TEStC I rCIERECtang Ie

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/SimpleGeometricObject.html
https://liveexample.pearsoncmg.com/html/CircleFromSimpleGeometricObject.html
https://liveexample.pearsoncmg.com/html/RectangleFromSimpleGeometricObject.html
https://liveexample.pearsoncmg.com/html/TestCircleRectangle.html

Are superclass’s Constructor
Inherited?

No. They are not inherited.
They are invoked explicitly or implicitly.
Explicitly using the super keyword.

A constructor Is used to construct an instance of a class.
Unlike properties and methods, a superclass's

constructors are not inherited in the subclass. They ca

only be invoked from the subclasses' constructors, usirn\
the keyword super. If the keyword super is not explicitl
used, the superclass's no-arg constructor Is

automatically invoked.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its
superclass’s constructor. If none of them 1s invoked

explicitly, the compiler puts super() as the first statement
In the constructor. For example,

public A() {
}

IS equivalent to

public A (double d) {
// some statements

}

IS equivalent to

>

public A() {
super () ;

}

>

public A (double d)
super (
// some statements

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

=

Using the Keyword super

The keyword super refers to the superclass
of the class Iin which super appears. This
keyword can be used In two ways:

0 To call a superclass constructor

2 To call a superclass method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

CAUTION

You must use the keyword super to call the
superclass constructor. Invoking a

superclass constructor’s name 1n a subclass
causes a syntax error. Java requires that the
statement that uses the keyword super
appear first in the constructor. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Constructor Chaining

Constructing an instance of a class invokes all the superclasses’ constructors

along the inheritance chain. This is known as constructor chaining.
public class Faculty extends Employee ({
public static void main(String[] args) {
new Faculty() ;

}

public Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;
}
}

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {
System.out.println(s) ;
}
}

class Person {
public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

} Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

animation _
Trace Execution

public class Faculty extends Employee {

bli tati id i Stri vl Vg
B Facalty e 1. Start from the
} main method

public Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
}

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {
System.out.println(s) ;
}
}

class Person {
public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation _
Trace Execution

public class Faculty extends Employee ({

ublic static void main(String[] args) ({ (
hew Faculty(); 2. Invoke Faculty

} - constructor

ublic Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
}

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {
System.out.println(s) ;
}
}

class Person {
public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation _
Trace Execution

public class Faculty extends Employee ({
ublic static void main(String[] args) {
new Faculty (),

}

ublic Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
} (3. Invoke Employee’s no-

arg constructor

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

e

}

public Employee (String s) {
System.out.println(s) ;

) \
}
class Person {
public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation i
Trace Execution

public class Faculty extends Employee ({
ublic static void main(String[] args) {
new Faculty () ;

}

ublic Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
}

4. Invoke Employee(String)

class Employee extends Person { constructor

public Employee () ({
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) ({
System.out.println(s) ;

) \
}
class Person {
public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation _
Trace Execution

public class Faculty extends Employee ({
ublic static void main(String[] args) {
new Faculty () ;

}

ublic Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
}

class Employee extends Person {

public Employee () ({
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) ({
System.out.println(s) ;

} } 5. Invoke Person() constructor

class Person {
public Person() { —_—
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation i
Trace Execution

public class Faculty extends Employee ({
ublic static void main(String[] args) {
new Faculty () ;

}

ublic Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
}

class Employee extends Person {

public Employee () ({
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) ({
System.out.println(s) ;

}
}

6. Execute printin

class Person {
public Person() ({
System.out.println (" (1) Person'§’no—arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation _
Trace Execution

public class Faculty extends Employee ({
ublic static void main(String[] args) {
new Faculty (),

}

ublic Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

}
}

class Employee extends Person {

public Employee () ({
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {
System.out.println(s) ; ——

}

} :
7. Execute printin

class Person {

public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Execution

public class Faculty extends Employee ({

ublic static void main(String[] args) {

new Faculty (),

}

ublic Faculty () {

}
}

System.out.println(" (4) Faculty's no-arg constructor is invoked") ;

class Employee extends Person {
public Employee () {

}

this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked"});

public Employee (String s) {

}
}

System.out.println(s) ;

8. Execute printin

class Person {

public Person() ({

}

System.out.println(" (1) Person's no-arg constructor is invoked") ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation i
Trace Execution

public class Faculty extends Employee ({
ublic static void main(String[] args) {
new Faculty () ;

}

public Faculty () {
System.out.println(" (4) Faculty's no-arg constructor is invoked") |

}
}

9. Execute printin

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor") ;
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {
System.out.println(s) ;

) \
}
class Person {
public Person() ({
System.out.println(" (1) Person's no-arg constructor is invoked") ;

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Example on the Impact of a Superclass
without no-arg Constructor

Find out the errors in the program:

public class Apple extends Fruit ({
}

class Fruit {
public Fruit(String name) {
System.out.println("Fruit's constructor is invoked");

}
}

Error: Implicit super constructor
Fruit() i1s undefined for default
constructor. Must define an explicit
constructor

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

A\

Defining a Subclass

A subclass inherits from a superclass. You can also:
O Add new properties

a Add new methods

0 Override the methods of the superclass

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

Calling Superclass Methods

You could rewrite the printCircle() method in the Circle class as
follows:

public void printCircle() {
System.out.printin(*The circle is created " +
super.getDateCreated() + " and the radius is " + radius);

¥

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Overriding Methods in the Superclass

A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a method
defined In the superclass. This is referred to as method overriding.

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */
public String toString() {

return super.toString() + "\nradius is " + radius;

. N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

NOTE

An instance method can be overridden only

If It IS accessible. Thus a private method
cannot be overridden, because It is not
accessible outside its own class. If a method
defined In a subclass Is private in Its
superclass, the two methods are completely\
unrelated.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

NOTE

Like an instance method, a static method
can be inherited. However, a static method
cannot be overridden. If a static method
defined in the superclass is redefined in a
subclass, the method defined In the

superclass iIs hidden. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

Overriding vs. Overloading

public class Test {
public static void main(Stringl[]
A a = new A();
a.p(1l0);
a.p(10.0);
}
}

class B {
public void p (double i) {
System.out.println(i * 2);
}
}

class A extends B {

public void p(double 1) ({
System.out.println(1i);

}

public class Test {

args) { public static void main(String[]
A a = new A();
a.p(10);
a.p(l0.0);

}
}

class B {
public void p (double i) {
System.out.println(i * 2);
}
}

class A extends B {

public void p(int 1) ({
System.out.println(i);
}

args)

{

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

The Object Class and Its Methods

Every class in Java Is descended from the
Java.lang.Object class. If no inheritance iIs
specified when a class Is defined, the
superclass of the class Is Object.

public class Circle { public class Circle extends Object {

Equivalent

} }
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

The toString() method In Object

The toString() method returns a string representation of the
object. The default implementation returns a string consisting
of a class name of which the object Is an instance, the at sign
(@), and a number representing this object.

Loan loan = new Loan();
System.out.printin(loan.toString());

The code displays something like Loan@15037e5 . This

message Is not very helpful or informative. Usually you should
override the toString method so that it returns a digestible string
representation of the object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Polymorphism

Polymorphism means that a variable of a supertype
can refer to a subtype object.

A class defines a type. A type defined by a

subclass is called a subtype, and a type defined by
Its superclass Is called a supertype. Therefore, you
can say that Circle is a subtype of
GeometricObject and GeometricObject is a \
supertype for Circle.

PolymorphismDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

https://liveexample.pearsoncmg.com/html/PolymorphismDemo.html

Polymorphism, Dynamic Binding and Generic Programming

public class PolymorphismDemo {

public static void main(String[] args) {

m(new GraduateStudent())

Method m takes a parameter

m(new Student()) ;

m(new Person()) ;

m(new Object()) ;
}

public static void m(Object x) {
System.out.println(x.toString()) ;
}
}

class GraduateStudent extends Student {

}

class Student extends Person {
public String toString() {
return "Student";
}
}

class Person extends Object {
public String toString() {
return "Person";
}
}

DynamicBindingDemo - as dynamic binding.

of the Object type. You can
Invoke it with any object.

An object of a subtype can be used wherever its
supertype value is required. This feature is
known as polymorphism.

When the method m(Object x) is executed, the
argument x’s toString method 1s invoked. x
may be an instance of GraduateStudent,
Student, Person, or Object. Classes
GraduateStudent, Student, Person, and Ob
have their own implementation of the toSt
method. Which implementation is used wi
determined dynamically by the Java Virtu
Machine at runtime. This capability is kne

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

https://liveexample.pearsoncmg.com/html/DynamicBindingDemo.html

Dynamic Binding

Dynamic binding works as follows: Suppose an object o is an
Instance of classes C,, C,, ..., C_,, and C_, where C, Is a subclass
of C,, C, is asubclass of C,, ..., and C_, is a subclass of C_. That
Is, C 1s the most general class, and C, is the most specific class.
In Java, C_ Is the Object class. If o invokes a method p, the JVM
searches the implementation for the methodp inC,, C,, ...,C_,
and C_, in this order, until it is found. Once an implementation is
found, the search stops and the first-found implementation is

Invoked.

I G I (N «czq—cl}

Since o i1s an instance of C4, 0 1S also an
Object instance of C; Cs, ..., Cni, and C,

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3P
All rights reserved.

Method Matching vs. Binding

Matching a method signature and binding a method
Implementation are two issues. The compiler finds a
matching method according to parameter type, number
of parameters, and order of the parameters at
compilation time. A method may be implemented in
several subclasses. The Java Virtual Machine
dynamically binds the implementation of the method at

runtime. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3P
All rights reserved.

Generic Programming

public class PolymorphismDemo ({
public static void main(String[] args) ({
m(new GraduateStudent()) ;
m(new Student());
m(new Person()) ;
m(new Object())
}

public static void m(Object x) {
System.out.println(x.toString()) ;
}
}

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() ({
return "Student";
}
}

class Person extends Object {
public String toString() {
return "Person";
}
}

Polymorphism allows methods to be used
generically for a wide range of object
arguments. This is known as generic
programming. If a method’s parameter
type is a superclass (e.g., Object), you may
pass an object to this method of any of the
parameter’s subclasses (e.g., Student or
String). When an object (e.g., a Student
object or a String object) is used in the
method, the particular implementation of
the method of the object that is invoked

(e.g., toString) Is determined dynami%

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Casting Objects

You have already used the casting operator to convert variables of
one primitive type to another. Casting can also be used to convert an
object of one class type to another within an inheritance hierarchy. In
the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.
This statement Is equivalent to:

Object 0 = new Student(); \
m(o); \

The statement Object o = new Student(), known as
implicit casting, is legal because an instance of
Student is automatically an instance of Object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Why Casting Is Necessary?

Suppose you want to assign the object reference o to a variable of the
Student type using the following statement:

Student b = 0;

A compile error would occur. Why does the statement Object o =
new Student() work and the statement Student b = 0 doesn’t? This is
because a Student object is always an instance of Object, but an
Object is not necessarily an instance of Student. Even though you can
see that o is really a Student object, the compiler is not so clever to
know it. To tell the compiler that o Is a Student object, use an expl%
casting. The syntax is similar to the one used for casting among
primitive data types. Enclose the target object type in parentheses
place it before the object to be cast, as follows:

Student b = (Student)o; // Explicit casting

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Casting from
Superclass to Subclass

Explicit casting must be used when casting an
object from a superclass to a subclass. This type
of casting may not always succeed.

Apple x = (Apple) fruit;

Orange x = (Orange) fruit; .~\\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

The instanceof Operator

Use the instanceof operator to test whether an object is an
Instance of a class:

Object myObject = new Circle() ;
// Some lines of code

/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) ({
System.out.println("The circle diameter is " +

((Circle)myObject) .getDiameter()) ; -\\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

TIP

To help understand casting, you may also
consider the analogy of fruit, apple, and
orange with the Fruit class as the superclass
for Apple and Orange. An apple is a fruit, so
you can always safely assign an instance of
Apple to a variable for Fruit. However, a
fruit 1s not necessarily an apple, so you ha\e\
to use explicit casting to assign an instance
of Fruit to a variable of Apple.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3*
All rights reserved.

Example: Demonstrating
Polymorphism and Casting

This example creates two geometric objects: a
circle, and a rectangle, invokes the
displayGeometricObject method to display the
objects. The displayGeometricObject displays
the area and diameter If the object Is a C|rcle

displays area If the object Is a rectangle.
Run |

CastingDemo

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pear
All rights reserved.

https://liveexample.pearsoncmg.com/html/CastingDemo.html

The equals Method

The equals () method compares the

contents of two objects. The default implementation of the
equals method in the Object class is as follows:

public boolean equals (Object obj) {
return this == obj;

}

For example the public boolean equals (Object o) {
P ’ . if (o instanceof Circle) {
equals method 1s

return radius == ((Circle)o) .radiusy
overridden in } \

the Circle else
class return false;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

NOTE

The == comparison operator is used for
comparing two primitive data type values or for
determining whether two objects have the same
references. The equals method is intended to
test whether two objects have the same
contents, provided that the method I1s modified
In the defining class of the objects. The == N
operator Is stronger than the equals method,
that the == operator checks whether the twoD
reference variables refer to the same object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4P
All rights reserved.

The ArrayL.ist Class

You can create an array to store objects. But the array’s size 1s fixed
once the array is created. Java provides the ArrayL.ist class that can
be used to store an unlimited number of objects.

Java.util.ArrayList<E>

+ArrayList ()

+add(o: E) : void

+add (index: int, o: E) : wvoid
+clear () : void

+contains (o: Object): boolean

+get (index: int) : E

+indexOf (o: Object) : int
+isEmpty () : boolean
+lastIndexOf (o: Object) : int

+remove (0o: Object): boolean

+size(): int
+remove (index: int) : boolean
+set (index: int, o: E) : E

Creates an empty list.

Appends a new element o at the end of this list.

Adds a new element o at the specified index in this list.

Removes all the elements from this list.

Returns true if this list contains the element o.
Returns the element from this list at the specified index.

Returns the index of the first matching element in this list.

Returns true if this list contains no elements.

Returns the index of the last matching element in this list.

Removes the element o from this list.

Returns the number of elements in this list.
Removes the element at the specified index.
Sets the element at the specified index.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

\

Generic Type

ArrayList is known as a generic class with a generic
type E. You can specify a concrete type to replace E
when creating an ArrayList. For example, the
following statement creates an ArrayList and assigns
Its reference to variable cities. This ArrayList object
can be used to store strings.

ArrayList<String> cities = new ArrayList<String>.§

ArrayList<String> cities = new ArrayList<>();

TestArrayList -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZP
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestArrayList.html

Differences and Similarities between
Arrays and ArrayList

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] ArrayList<String> list = new ArrayList<>();
Accessing an element a[index] list.get (index) ;

Updating an element al[index] = "London"; list.set (index, "London");

Returning size a.length list.size();

Adding a new element
Inserting a new element
Removing an element
Removing an element
Removing all elements

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

list.add("London") ;

list.add(index, "London") ;

list.remove (index) ;

list.remove (Object) ;

list.clear();

DistinctNumbers

All rights reserved.

https://liveexample.pearsoncmg.com/html/DistinctNumbers.html

Array Lists from/to Arrays

Creating an ArrayList from an array of objects:

String[] array = {"'red"’, 'green”’, ""blue'’};

ArrayList<String> list = new
ArrayList<>(Arrays.asList(array));

Creating an array of objects from an ArrayL.ist:

String[] arrayl = new String([list.size()];
list.toArray(arrayl);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

max and min in an Array List

String[] array = {"'red"’, 'green”’, ""blue"'};

System.out.pritnin(java.util.Collections.max(
new ArrayList<String>(Arrays.asList(array)));

String[] array = {"'red"", ""green"’, ""blue"'};

System.out.pritnin(java.util.Collections.min(\
new ArrayList<String>(Arrays.asList(array)));

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. Z?
All rights reserved.

Shuffling an Array List

Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new
ArrayList<>(Arrays.asList(array));
java.util.Collections.shuffle(list);
System.out.printin(list);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

/ & Stack Animation by Y. Dar %\

Stack Animation

https://liveexample.pearsoncmg.com/dsanimation/StackeBook.html

C' | www.cs.armstrong.edu/liang/animation/web/Stack.html

Stack Animation by Y. Daniel Liang

1
O
I

e
e

Enter a value and click the Push button to push the value mto the stack. Click the Pop button to remove the top

element from the stack.

Top

Blwlwl,

Enter a value: 5 | Push

.Pop.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

https://liveexample.pearsoncmg.com/dsanimation/StackeBook.html

The MyStack Classes

A stack to hold objects.

MyStack
MyStack

-list: ArrayL.ist A list to store elements.

+isEmpty(): boolean Returns true if this stack is empty.

+getSize(): int Returns the number of elements in this stack.

+peek(): Object Returns the top element in this stack.

+pop(): Object Returns and removes the top element in this stack. \

+push(o: Object): void | Adds a new element to the top of this stack.

+search(o: Object): int | Returns the position of the first element in the stack from
the top that matches the specified element.

i

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

https://liveexample.pearsoncmg.com/html/MyStack.html

The protected Modifier

0 The protected modifier can be applied on data
and methods in a class. A protected data or a
protected method in a public class can be accessed
by any class in the same package or its subclasses,
even If the subclasses are in a different package.

2 private, default, protected, public

Visibility increases \

)
private, none (if no modifier is used), protected, public

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Accessibility Summary

Modifier Accessed Accessed Accessed Accessed
on members from the from the from a from a different
in a class same class same package subclass package
public V4 Vv o/ /
protected V4 V/ V. -
default / o - - \
private Vv - - -
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k

All rights reserved.

Visibility Modifiers

package p1;

public class C1 {
public int x;
protected int vy;
int z;
private int u;

protected void m() {
}

public class C2 {
Cl o = new C1l¢();
can access 0.X;
can access 0.Y;
can access 0.zZ;
cannot access o.u;

can invoke o.m{() ;

PaN

package p2;

public class C3
extends Cl1 {
can access Xx;
can access y;
can access z;
cannot access uj;

can invoke m{() ;

public class C4
extends C1

can access x;

can access y;
cannot access z;
cannot access u;

can invoke m{();

public class C5 {
Cl o = new C1();
can access 0.X;
cannot access oO.
cannot access oO.
cannot access o.

cannot invoke o.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

A Subclass Cannot Weaken the Accessibility

A subclass may override a protected

method In Its superclass and change Its
visibility to public. However, a subclass
cannot weaken the accessibility of a

method defined In the superclass. For
example, If a method is defined as public

In the superclass, 1t must be defined as A\
public in the subclass. D

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

NOTE

The modifiers are used on classes and
class members (data and methods), except
that the final modifier can also be used on
local variables in a method. A final local
variable 1s a constant inside a method.

D\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

The £final Modifier

Q The final class cannot be extended:
final class Math {

Q The £inal variable iIs a constant:
final static double PI = 3.14159;

Q The £inal method cannot be
overridden by its subclasses.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

