Chapter 13 Abstract Classes and Interfaces

=\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Motivations

3 You have learned how to write simple programs
to create and display GUI components. Can you
write the code to respond to user actions, such as
clicking a button to perform an action?

3 In order to write such code, you have to know
about interfaces. An interface Is for defining
common behavior for classes (including unrelated
classes). Before discussing interfaces, we
Introduce a closely related subject: abstract
classes.

f’.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Objectives

To design and use abstract classes (813.2).

To generalize numeric wrapper classes, Biginteger, and BigDecimal
using the abstract Number class (813.3).

To process a calendar using the Calendar and GregorianCalendar
classes (813.4).

To specify common behavior for objects using interfaces (813.5).

To define interfaces and define classes that implement interfaces
(813.5).

To define a natural order using the Comparable interface (§13.6).
To make objects cloneable using the Cloneable interface (813.7

To explore the similarities and differences among concrete classe
abstract classes, and interfaces (813.8).

To design the Rational class for processing rational numbers (8%
To design classes that follow the class-design guidelines (813.10):

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Abstract Classes and Abstract Methods

The # sign indicates
protected modifier

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

#GeometricObject()

#CGeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double

Abstract methods ——»

are italicized

+getPerimeter(): double

-<«—— Abstract class name 1is italicized

GeometricObject

Circle
Rectangle

TestGeometricObject

Methods getArea and getPerimeter are

T T

overridden in Circle and Rectangle.
Superclass methods are generally omitted

Circle

Rectangle

in the UML diagram for subclasses.

-radius: double

-width: double

+Circle()
+Circle(radius: double)

-height: double

+Rectangle()

+Circle(radius: double, color: string,

filled: boolean)
+getRadius(): double
+setRadius(radius: double): void
+getDiameter() : double

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
color: string, filled: boolean)

+getWidth() : double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

-/

https://liveexample.pearsoncmg.com/html/GeometricObject.html
https://liveexample.pearsoncmg.com/html/Circle.html
https://liveexample.pearsoncmg.com/html/Rectangle.html
https://liveexample.pearsoncmg.com/html/TestGeometricObject.html

abstract method In abstract class

An abstract method cannot be contained In a
nonabstract class. If a subclass of an abstract
superclass does not implement all the abstract
methods, the subclass must be defined abstract. In
other words, In a nonabstract subclass extended from
an abstract class, all the abstract methods must be
Implemented, even If they are not used in the

subclass. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

object cannot be created from
abstract class

An abstract class cannot be instantiated using
the new operator, but you can still define its
constructors, which are invoked in the
constructors of its subclasses. For instance,
the constructors of GeometricObject are
Invoked In the Circle class and the Rectang
class.

abstract class without abstract
method

A class that contains abstract methods must
be abstract. However, it is possible to define
an abstract class that contains no abstract
methods. In this case, you cannot create
Instances of the class using the new operat

This class 1s used as a base class for definiQK
a hew subclass.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

superclass of abstract class may be
concrete

A subclass can be abstract even If its
superclass Is concrete. For example, the
Object class Is concrete, but its subclasses,
such as GeometricObject, may be abstract.

concrete method overridden to be
abstract

A subclass can override a method from its
superclass to define it abstract. This Is rare,
but useful when the implementation of the
method In the superclass becomes invalid In
the subclass. In this case, the subclass must be

defined abstract. 3

abstract class as type

You cannot create an instance from an
abstract class using the new operator, but an
abstract class can be used as a data type.
Therefore, the following statement, which
creates an array whose elements are of
GeometricObject type, Is correct.

GeometricObject[] geo = new GeometricObject[10];

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Case Study: the Abstract Number Class

java.lang. Number

+byteValue(): byte
+shortValue(): short
+intValue(): 1int
+TongVlaue(): Tong
+floatValue(): float
+doubleValue(): double

PaN

Double | Float | Long | Integer | Short | Byte Blglnteger BlgDecmlall

LargestNumbers - a

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/LargestNumbers.html

The Abstract Calendar Class and Its
GregorianCalendar subclass

java.util.Calendar

#Calendar()
+get(field: int): int
+set(field: int, value: int): void

+set(year: int, month: int,
dayOfMonth: int): void

+getActualMaximum(field: int): int
+add(field: int, amount: int): void
+getTime(): java.util.Date

+setTime(date: java.util.Date): void

Constructs a default calendar.
Returns the value of the given calendar field.
Sets the given calendar to the specified value.

Sets the calendar with the specified year. month, and date. The month
parameter is 0-based; that 1s, 0 is for January.

Returns the maximum value that the specified calendar field could have.
Adds or subtracts the specified amount of time to the given calendar field.

Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).

Sets this calendar’s time with the given Date object.

ﬁ:.

java.util. GregorianCalendar

+GregorianCalendar()
+GregorianCalendar(year: 1int,
month: int, dayOfMonth: int)

+GregorianCalendar(year: 1int,
month: 1int, dayOfMonth: 1int,
hour:int, minute: int, second: int)

Constructs a GregorianCalendar for the current time.

Constructs a GregorianCalendar for the specified year, month, and
date.

Constructs a GregorianCalendar for the specified year, month, date,
hour, minute, and second. The month parameter is O-based, that
s, 0 1s for January.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

The Abstract Calendar Class and Its

GregorianCalendar subclass

An instance of java.util.Date represents a specific
Instant in time with millisecond precision.
java.util.Calendar is an abstract base class for
extracting detailed information such as year, month,
date, hour, minute and second from a Date object.
Subclasses of Calendar can implement specific
calendar systems such as Gregorian calendar, L
Calendar and Jewish calendar. Currently,
Java.util.GregorianCalendar for the Gregorian
calendar is supported in the Java API.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

The GregorianCalendar Class

You can use new GregorianCalendar() to construct
a default GregorianCalendar with the current time
and use new GregorianCalendar(year, month, date)
to construct a GregorianCalendar with the specified
year, month, and date. The month parameter is O-
based, I.e., 0 Is for January.

N\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

The get Method in Calendar Class

The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object. The
fields are defined as constants, as shown in the following.

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with O for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).

HOUR_OF DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY_OF_WEEK The day number within the week, with 1 for Sunday.

DAY OF MONTH Same as DATE.

DAY _OF _YEAR The day number in the year, with 1 for the first day of the year.
WEEK_OF_MONTH The week number within the month, with 1 for the first week.
WEEK _OF YEAR The week number within the year, with 1 for the first week.
AM_PM Indicator for AM or PM (0 for AM and | for PM).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Getting Date/Time Information from
Calendar

TestCalendar - B

Liang, Introduction to Java Programming, Elevi thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestCalendar.html

Interfaces

What Is an interface?

Why is an interface useful?
How do you define an interface?
How do you use an interface?

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

What Is an interface?
Why Is an interface useful?

An interface is a classlike construct that contains
only constants and abstract methods. In many
ways, an interface Is similar to an abstract class,
but the intent of an interface is to specify common
behavior for objects. For example, you can specify
that the objects are comparable, edible, cloneabl
using appropriate interfaces.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Define an Interface

To distinguish an interface from a class, Java uses the
following syntax to define an interface:

public interface InterfaceName {
constant declarations;
abstract method signatures;

}

Example:
public interface Edible {

/** Describe how to eat */

public abstract String howToEat() ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

i

Interface Is a Special Class

An interface Is treated like a special class in Java.
Each interface is compiled into a separate bytecode
file, just like a regular class. Like an abstract class,
you cannot create an instance from an interface
using the new operator, but in most cases you can
use an interface more or less the same way you use
an abstract class. For example, you can use an
Interface as a data type for a variable, as the resu\
of casting, and so on.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 2?
All rights reserved.

Example

You can now use the Edible interface to specify whether an
object Is edible. This is accomplished by letting the class for
the object implement this interface using the implements
keyword. For example, the classes Chicken and Fruit
Implement the Edible interface (See TestEdible).

Edible TestEdible ‘Run |

Notation: «interface» .
The interface name and the . Animal
J L Edible
method names are italicized.
T/_’.'(’ dashed lines and hqh’ow +howToEat(): String +sound(): String
triangles are used to point to
the interface. N\ A AN

Fruit | Chickenl Tiger |

Orange | Apple |

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestEdible.html
https://liveexample.pearsoncmg.com/html/Edible.html

Omitting Modifiers In Interfaces

All data fields are public final static and all methods are public
abstract in an interface. For this reason, these modifiers can be
omitted, as shown below:

public interface T1 { public interface T1 {
public static final int K = 1; Equivalent int K = 1;
public abstract void p(); void p();

} }

A constant defined in an interface can be accessed using sy
InterfaceName.CONSTANT_NAME (e.g., T1.K).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. t
All rights reserved.

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> ({
public int compareTo (E o) ; \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3
All rights reserved.

The toString, equals, and hashCode
Methods

Each wrapper class overrides the toString,
equals, and hashCode methods defined in the
Object class. Since all the numeric wrapper
classes and the Character class implement
the Comparable interface, the compareTo
method Is Implemented In these classes.

' &/

ing, Eleventh Edition, (c) 2018 Pearson Education, Ltd
[ved

Integer and Biglinteger Classes

public class Integer extends Number
implements Comparable<Integer> ({

@Override
public int compareTo (Integer o) {

}

public class BigInteger extends Number
implements Comparable<BiglInteger> {

@Override
public int compareTo (BigInteger o) {

}

String and Date Classes

public class String extends Object
implements Comparable<String> {

@Override
public int compareTo (String o) {

}

public class Date extends Object
implements Comparable<Date> {

@Override
public int compareTo (Date o) {

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 2?
All rights reserved.

Example

1 System.out.printin(new Integer(3).compareTo(new Integer(5)));
2 System.out.printin(*"ABC".compareTo(''ABE""));

3 jJava.util.Date datel = new java.util.Date(2013, 1, 1);

4 java.util.Date date2 = new java.util.Date(2012, 1, 1);

5 System.out.printin(datel.compareTo(date2));

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Generic sort Method

et n be an Integer object, s be a String object, and
d be a Date object. All the following expressions are

true.

n instanceof Integer s instanceof String d instanceof java.util.Date
n instanceof Object s instanceof Object d instanceof Object
n instanceof Comparable s instanceof Comparable d instanceof Comparable

The java.util.Arrays.sort(array) method requires that
the elements In an array are instances of \
Comparable<E>.

SortComparableObjects

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/SortComparableObjects.html

Defining Classes to Implement Comparable

GeometricObject | «interface»
java.lang. Comparable<ComparableRectangle>
i +comparelo(o: ComparableRectangle): int

Rectangle | PN

AT;

ComparableRectangle |

ComparableRectangle SortRectangles

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/ComparableRectangle.html
https://liveexample.pearsoncmg.com/html/SortRectangles.html

The Cloneable Interfaces

Marker Interface: An empty interface.

A marker interface does not contain constants or methods.
It IS used to denote that a class possesses certain desirable
properties. A class that implements the Cloneable
Interface is marked cloneable, and its objects can be
cloned using the clone() method defined in the Object

class.

package java.lang;
public interface Cloneable {

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

Examples

Many classes (e.g., Date and Calendar) in the Java library implement
Cloneable. Thus, the instances of these classes can be cloned. For
example, the following code

Calendar calendar = new GregorianCalendar (2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone() ;

System.out.println("calendar == calendarCopy is " +
(calendar == calendarCopy)) ;

System.out.println("calendar.equals (calendarCopy) is " +
calendar.equals (calendarCopy)) ; \

displays
calendar == calendarCopy is false
calendar.equals(calendarCopy) is true

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Implementing Cloneable Interface

To define a custom class that implements the Cloneable
Interface, the class must override the clone() method in
the Object class. The following code defines a class
named House that implements Cloneable and
Comparable.

House \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

https://liveexample.pearsoncmg.com/html/House.html

 The class implements the method (lines 26—33)
defined in the class. The header for the method
defined in the class is:

protected native Object clone() CloneNotSupportedException;

e The keyword Indicates that this method is not written in
Java, but is implemented in the JVM for the native platform.

e The keyword restricts the method to be accessed in
the same package or in a subclass.

 For this reason, the class must override the method
change the visibility modifier to so the method can
used in any package

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Shallow vs. Deep Copy

House housel = new House(1, 1750.50);

House house2 = (House)housel.clone();

housel: House Memory

Shallow «-: -

area = 1750.50 == 1750.50

CO py whenBuilt
date object

house?2 = contents
housel.clone()

-» reference > whenBuilt: Date

house2: House Memory

id =1 > |
area = 1750.50 =—> 1750.50

whenBuilt = reference f—

(a)
Liang, Introducticn w vava riuyialtiiinly, CISVEILIUl CUIUUILL (L) £UL0 Feadidull Cuutauull, Lwd
All rights reserved.

« The method in the class copies each field from the original object to
the target object. If the field is of a primitive type, its value is copied. For example, the

value of (type) is copied from to . If the field is of an
object, the reference of the field is copied.
» For example, the field Is of the class, so its reference is copied
into , as shown in Figure 13.6a. Therefore,
Is true, although is false.

» This is referred to as a shallow copy rather than a deep copy, meaning if the field is of
an object type, the object’s reference is copied rather than its contents.

« To perform a deep copy for a object, replace the method in lines 26—
33 with the following code: (For the complete code, see
liveexample.pearsoncmg.com/text/House.txt.)

/[Perform a shallow copy

House houseClone = (House)super.clone();

// Deep copy on whenBuilt

houseClone.whenBuilt = (java.util. Date)(whenBuilt.clone());
return houseClone;

public Object clone() throws CloneNotSupportedException { \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Shallow vs. Deep Copy

House housel = new House(1, 1750.50);

House house2 = (House)housel.clone();

housel: House

id = 1

Deep area = 1750.50 =

o=

e

COpy whenBuilt

house?2 =
housel.clone()

house2: House

id = 1

area = 1750.50 —

whenBuilt

; ot

——

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Memory

1

1750.50

» reference

—>- whenBuilt: Date

Memory

1

date object
contents

1750.50

whenBuilt: Date

» reference

date object

—> contents

(b)

“d

Interfaces vs. Abstract Classes

In an interface, the data must be constants; an abstract class can
have all types of data.

Each method in an interface has only a signature without
Implementation; an abstract class can have concrete methods.

Variables Constructors Methods

Abstract class No restrictions. Constructors are invoked by subclasses through No restrictions.
constructor chaining. An abstract class cannot be
instantiated using the new operator.

Interface All variables must be No constructors. An interface cannot be instantiated All methods must be public
public static final. using the new operator. abstract instance methods

\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Interfaces vs. Abstract Classes, cont.

All classes share a single root, the Object class, but there is no single root for
Interfaces. Like a class, an interface also defines a type. A variable of an interface
type can reference any instance of the class that implements the interface. If a class
extends an interface, this interface plays the same role as a superclass. You can use
an interface as a data type and cast a variable of an interface type to its subclass,
and vice versa.

Interfacel_2 M-- Interface2_2 |4- ----------------)

Interfacel_1 |4-----=- ------ Interfacel |q- ------------------ Interface2_1 |4-----------------i
1

-

Object |4 Class1 |4 Class2 |

Suppose that c is an instance of Class2. c is also an instance of Object, Classl
Interfacel, Interfacel 1, Interfacel 2, Interface2 1, and Interface2 2.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Caution: conflict interfaces

In rare occasions, a class may implement two interfaces
with conflict information (e.g., two same constants with
different values or two methods with same signature but

different return type). This type of errors will be detected
by the compiler.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Whether to use an Interface or a class?

= Abstract classes and interfaces can both be used to model
common features.

= How do you decide whether to use an interface or a class?

In general, a strong is-a relationship that clearly describes a parent-child
relationship should be modeled using classes. For example, a staff
member is a person.

A weak is-a relationship, also known as an is-kind-of relationship,
Indicates that an object possesses a certain property. A weak is-a
relationship can be modeled using interfaces. For example, all strings are
comparable, so the String class implements the Comparable interface.

* You can also use interfaces to circumvent single inheritance \
restriction if multiple inheritance is desired. In the case of
multiple inheritance, you have to design one as a superclass,
others as interface.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

java.?ang.Cbmparab?e<Ratfonal>kﬂ”"ﬂ

The Rational Class

-
-
-

Rational

java. lang. Number kGM\\\\H\ 1y
Rationa1|

11

-numerator: long
-denominator: Tlong

+Rational ()

+Rational (numerator: long,
denominator: Tong)

+getNumerator(): long
+getDenominator(): long

+add(secondRational: Rational):

Rational

+subtract(secondRational:
Rational): Rational

+multiply(secondRational:
Rational): Rational

+divide(secondRational:
Rational): Rational

+toString(): String

-gcd(n: long, d: long): long

Add, Subtract, Multiply, Divide

The numerator of this rational number.
The denominator of this rational number.

Creates a rational number with numerator O and denominator 1.

Creates a rational number with a specified numerator and
denominator.

Returns the numerator of this rational number.
Returns the denominator of this rational number.
Returns the addition of this rational number with another.

Returns the subtraction of this rational number with another.
Returns the multiplication of this rational number with another.
Returns the division of this rational number with another.

Returns a string in the form “numerator/denominator.” Returns
the numerator if denominator 1s 1.

Returns the greatest common divisor of n and d.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Rational TestRationalClass

https://liveexample.pearsoncmg.com/html/Rational.html
https://liveexample.pearsoncmg.com/html/TestRationalClass.html

Designing a Class

« (Coherence) A class should describe a single
entity, and all the class operations should logically
fit together to support a coherent purpose.

= You can use a class for students, for example, but
you should not combine students and staff in the
same class, because students and staff have
different entities. \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Designing a Class, cont.

« (Separating responsibilities) A single entity with too many
responsibilities can be broken into several classes to
separate responsibilities.

« The classes String, StringBuilder, and StringBuffer all
deal with strings, for example, but have different
responsibilities.

« The String class deals with immutable strings, the
StringBuilder class is for creating mutable strings, an
StringBuffer class Is similar to StringBuilder except t
StringBuffer contains synchronized methods for upad
strings.

€

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Designing a Class, cont.

« Classes are designed for reuse. Users can
Incorporate classes in many different combinations,
orders, and environments.

= Therefore, you should design a class that imposes no
restrictions on what or when the user can do with It,
design the properties to ensure that the user can set
properties in any order, with any combination of
values, and design methods to function
Independently of their order of occurrence.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Designing a Class, cont.

= Provide a public no-arg constructor and override the

equals method and the toString method defined in
the Object class whenever possible.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. L?
All rights reserved.

Designing a Class, cont.

Follow standard Java programming style and
naming conventions.

Choose informative names for classes, data
fields, and methods.

Always place the data declaration before the
constructor, and place constructors before

methods. \

Always provide a constructor and initialize
variables to avoid programming errors.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Using Visibility Modifiers

Each class can present two contracts — one for the users of
the class and one for the extenders of the class.

Make the fields private and accessor methods public if
they are intended for the users of the class.

Make the fields or method protected if they are intended
for extenders of the class.

The contract for the extenders encompasses the contract
for the users. The extended class may increase the
visibility of an instance method from protected to public\
or change its implementation, but you should never
change the implementation in a way that violates that
contract.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4P
All rights reserved.

Using Visibility Modifiers, cont.

« A class should use the private modifier to hide its
data from direct access by clients.

= You can use get methods and set methods to
provide users with access to the private data, but
only to private data you want the user to see or to
modify.

« A class should also hide methods not intended
client use. The gcd method In the Rational clas

private, for example, because It is only for internal
use within the class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4P
All rights reserved.

Using the static Modifier

« A property that iIs shared by all the

Instances of the class should be declared
as a static property.

