
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 15 Event-Driven

Programming and Animations

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Motivations

Suppose you want to write a GUI

program that lets the user enter a

loan amount, annual interest rate,

and number of years and click the

Compute Payment button to obtain

the monthly payment and total

payment. How do you accomplish

the task? You have to use event-

driven programming to write the

code to respond to the button-

clicking event.
LoanCalculator Run

https://liveexample.pearsoncmg.com/html/LoanCalculator.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Objectives
▪ To get a taste of event-driven programming (§15.1).

▪ To describe events, event sources, and event classes (§15.2).

▪ To define handler classes, register handler objects with the source object, and write

the code to handle events (§15.3).

▪ To define handler classes using inner classes (§15.4).

▪ To define handler classes using anonymous inner classes (§15.5).

▪ To simplify event handling using lambda expressions (§15.6).

▪ To develop a GUI application for a loan calculator (§15.7).

▪ To write programs to deal with MouseEvents (§15.8).

▪ To write programs to deal with KeyEvents (§15.9).

▪ To create listeners for processing a value change in an observable object (§15.10).

▪ To use the Animation, PathTransition, FadeTransition, and Timeline classes to

develop animations (§15.11).

▪ To develop an animation for simulating a bouncing ball (§15.12).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Procedural vs. Event-Driven

Programming

▪ Procedural programming is executed in

procedural order.

▪ In event-driven programming, code is executed

upon activation of events.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Taste of Event-Driven Programming

The example displays a button in the frame. A
message is displayed on the console when a
button is clicked.

HandleEvent Run

https://liveexample.pearsoncmg.com/html/HandleEvent.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
66

Handling GUI Events

Source object (e.g., button)

Listener object contains a method for

processing the event.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
77

Trace Execution
public class HandleEvent extends Application {

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

1. Start from the

main method to

create a window and

display it

animation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
88

Trace Execution
public class HandleEvent extends Application {

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

animation

2. Click OK

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
99

Trace Execution
public class HandleEvent extends Application {

public void start(Stage primaryStage) {

…

OKHandlerClass handler1 = new OKHandlerClass();

btOK.setOnAction(handler1);

CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

…

primaryStage.show(); // Display the stage

}

}

class OKHandlerClass implements EventHandler<ActionEvent> {

@Override

public void handle(ActionEvent e) {

System.out.println("OK button clicked");

}

}

animation

3. The JVM invokes

the listener’s handle

method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Events

❑An event can be defined as a type of signal

to the program that something has

happened.

❑The event is generated by external user

actions such as mouse movements, mouse

clicks, or keystrokes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Event Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Event Information

An event object contains whatever properties are

pertinent to the event. You can identify the source

object of the event using the getSource() instance

method in the EventObject class. The subclasses of

EventObject deal with special types of events,

such as button actions, window events, mouse

movements, and keystrokes. Table 15.1 lists

external user actions, source objects, and event

types generated.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Selected User Actions and Handlers

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

The Delegation Model

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

The Delegation Model: Example

Button btOK = new Button("OK");

OKHandlerClass handler = new OKHandlerClass();

btOK.setOnAction(handler);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Example: First Version for

ControlCircle (no listeners)

Now let us consider to write a program that uses

two buttons to control the size of a circle.

ControlCircleWithoutEventHandling Run

https://liveexample.pearsoncmg.com/html/ControlCircleWithoutEventHandling.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Example: Second Version for

ControlCircle (with listener for Enlarge)

Now let us consider to write a program that uses

two buttons to control the size of a circle.

ControlCircle Run

https://liveexample.pearsoncmg.com/html/ControlCircle.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Inner Class Listeners

A listener class is designed specifically to

create a listener object for a GUI

component (e.g., a button). It will not be

shared by other applications. So, it is

appropriate to define the listener class

inside the frame class as an inner class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Inner Classes

Inner class: A class is a member of another class.

Advantages: In some applications, you can use an

inner class to make programs simple.

An inner class can reference the data and methods

defined in the outer class in which it nests, so you

do not need to pass the reference of the outer class

to the constructor of the inner class.

ShowInnerClass

https://liveexample.pearsoncmg.com/html/ShowInnerClass.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Inner Classes, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

Inner Classes (cont.)

Inner classes can make programs simple and

concise.

An inner class supports the work of its

containing outer class and is compiled into a

class named

OuterClassName$InnerClassName.class.

For example, the inner class InnerClass in

OuterClass is compiled into
OuterClass$InnerClass.class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

Inner Classes (cont.)

❑An inner class can be declared public,

protected, or private subject to the same

visibility rules applied to a member of the

class.

❑An inner class can be declared static. A

static inner class can be accessed using

the outer class name. A static inner class

cannot access nonstatic members of the
outer class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Anonymous Inner Classes

❑ An anonymous inner class must always extend a superclass or

implement an interface, but it cannot have an explicit extends or

implements clause.

❑ An anonymous inner class must implement all the abstract

methods in the superclass or in the interface.

❑ An anonymous inner class always uses the no-arg constructor

from its superclass to create an instance. If an anonymous inner

class implements an interface, the constructor is Object().

❑ An anonymous inner class is compiled into a class named

OuterClassName$n.class. For example, if the outer class Test

has two anonymous inner classes, these two classes are

compiled into Test$1.class and Test$2.class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Anonymous Inner Classes (cont.)

Inner class listeners can be shortened using

anonymous inner classes. An anonymous inner class is

an inner class without a name. It combines declaring

an inner class and creating an instance of the class in

one step. An anonymous inner class is declared as

follows:

new SuperClassName/InterfaceName() {

// Implement or override methods in superclass or interface

// Other methods if necessary

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

Anonymous Inner Classes (cont.)

AnonymousHandlerDemo Run

https://liveexample.pearsoncmg.com/html/AnonymousHandlerDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Simplifying Event Handing Using

Lambda Expressions

Lambda expression is a new feature in Java 8. Lambda

expressions can be viewed as an anonymous method with a

concise syntax. For example, the following code in (a) can

be greatly simplified using a lambda expression in (b) in

three lines.

btEnlarge.setOnAction(

 new EventHandler<ActionEvent>() {

 @Override

 public void handle(ActionEvent e) {

 // Code for processing event e

 }

 }

});

(a) Anonymous inner class event handler

btEnlarge.setOnAction(e -> {

 // Code for processing event e

});

(b) Lambda expression event handler

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Basic Syntax for a Lambda Expression

The basic syntax for a lambda expression is either

(type1 param1, type2 param2, ...) -> expression

or

(type1 param1, type2 param2, ...) -> { statements; }

The data type for a parameter may be explicitly

declared or implicitly inferred by the compiler. The

parentheses can be omitted if there is only one

parameter without an explicit data type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

Single Abstract Method Interface (SAM)

The statements in the lambda expression is all for

that method. If it contains multiple methods, the

compiler will not be able to compile the lambda

expression. So, for the compiler to understand

lambda expressions, the interface must contain

exactly one abstract method. Such an interface is

known as a functional interface, or a Single Abstract

Method (SAM) interface.

AnonymousHandlerDemo Run

https://liveexample.pearsoncmg.com/html/AnonymousHandlerDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Problem: Loan Calculator

LoanCalculator Run

https://liveexample.pearsoncmg.com/html/LoanCalculator.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

The MouseEvent Class

MouseEventDemo Run

https://liveexample.pearsoncmg.com/html/MouseEventDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

The KeyEvent Class

KeyEventDemo Run

https://liveexample.pearsoncmg.com/html/KeyEventDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

The KeyCode Constants

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

Example: Control Circle with Mouse

and Key

ControlCircleWithMouseAndKey Run

https://liveexample.pearsoncmg.com/html/ControlCircleWithMouseAndKey.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

Listeners for Observable Objects

You can add a listener to process a value change in an

observable object.

An instance of Observable is known as an observable object,

which contains the addListener(InvalidationListener

listener) method for adding a listener. Once the value is

changed in the property, a listener is notified. The listener class

should implement the InvalidationListener interface, which

uses the invalidated(Observable o) method to handle the

property value change. Every binding property is an instance of

Observable.

ObservablePropertyDemo Run

DisplayResizableClock Run

https://liveexample.pearsoncmg.com/html/ObservablePropertyDemo.html
https://liveexample.pearsoncmg.com/html/DisplayResizableClock.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

Animation

JavaFX provides the Animation class with the core

functionality for all animations.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

PathTransition

FlagRisingAnimation Run

PathTransitionDemo Run

https://liveexample.pearsoncmg.com/html/FlagRisingAnimation.html
https://liveexample.pearsoncmg.com/html/PathTransitionDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

FadeTransition

The FadeTransition class animates the change of the

opacity in a node over a given time.

FadeTransitionDemo Run

https://liveexample.pearsoncmg.com/html/FadeTransitionDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

Timeline

PathTransition and FadeTransition define specialized

animations. The Timeline class can be used to program any

animation using one or more KeyFrames. Each

KeyFrame is executed sequentially at a specified time

interval. Timeline inherits from Animation.

TimelineDemo Run

https://liveexample.pearsoncmg.com/html/TimelineDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

Clock Animation

ClockAnimation Run

https://liveexample.pearsoncmg.com/html/ClockAnimation.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
40

Case Study: Bouncing Ball

BounceBallControlBallPane Run

https://liveexample.pearsoncmg.com/html/BounceBallControl.html
https://liveexample.pearsoncmg.com/html/BallPane.html

