Chapter 15 Event-Driven
Programming and Animations

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Motivations

Suppose you want to write a GUI -1olx|
program that lets the user entera =~ Al inerest Rate =
. Number of Years: 4
loan amount, annual interest rate, —
and number of years and click the vy rayment s114.02
Compute Payment button to obtain = = Fament $5472.84
P)

the monthly payment and total

payment. How do you accomplish
the task? You have to use event- \
driven programming to write the

code to respond to the button-
clicking event.

LoanCalculator

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/LoanCalculator.html

Objectives

To get a taste of event-driven programming (815.1).
To describe events, event sources, and event classes (815.2).

To define handler classes, register handler objects with the source object, and write
the code to handle events (815.3).

To define handler classes using inner classes (§815.4).

To define handler classes using anonymous inner classes (815.5).

To simplify event handling using lambda expressions (815.6).

To develop a GUI application for a loan calculator (815.7).

To write programs to deal with MouseEvents (815.8).

To write programs to deal with KeyEvents (815.9).

To create listeners for processing a value change in an observable object (§ﬁ&)$

To use the Animation, PathTransition, FadeTransition, and Timeline cla
develop animations (815.11).

To develop an animation for simulating a bouncing ball (§15.12).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Procedural vs. Event-Driven
Programming

« Procedural programming Is executed In
procedural order.

= In event-driven programming, code Is executed
upon activation of events.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Taste of Event-Driven Programming

The example displays a button in the frame. A
message Is displayed on the console when a
button is clicked.

<~ Command Prompt - java HandleEvent - 0] x|

C:\book>java HandleEvent il
0K button clicked

Cancel button clicked

0K button clicked

h
. ISR
oK

Cancel

HandleEvent -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/HandleEvent.html

Handling GUI Events

Source object (e.g., button)

Listener object contains a method for
processing the event.

button > event I > handler I
Clicking a button An event is The event handler
fires an action event an object processes the event \
(Event source object) (Event object) (Event handler object

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Execution

public class HandleEvent extends ApplicaM
public void start(Stage primaryStage) {4 1. Start from the
main method to
create a window and

display it)

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnAction(handlerl);

CancelHandlerClass handler2 = new CancelHandlerClass();
btCancel.setOnAction(handler?); _E

0K Cancel

primaryStage.show(); // Display the stage
}
by

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent e) {
System.out.printin("OK button clicked");

¥
}

A

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Execution

public class HandleEvent extends Application { e _ ~
public void start(Stage primaryStage) { 2. Click OK

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnAction(handlerl); /
CancelHandlerClass handler2 = new CancelHandlerClass(),
btCancel.setOnAction(handler?);

primaryStage.show(); // Display the stage =10] x|

} 0K Cancel

}

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent e) {
System.out.printin("OK button clicked");

¥
}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Execution

public class HandleEvent extends Application { e
public void start(Stage primaryStage) {

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnAction(handlerl);

CancelHandlerClass handler2 = new CancelHandlerClas
btCancel.setOnAction(handler?);

primaryStage.show(); // Display the stage
}
by

@Override
public void handle(ActlonEvent e) {

3. The JVM invokes\

the listener’s handle
method

)

0K Cancel

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Events

Q An event can be defined as a type of signal
to the program that something has
happened.

Q The event is generated by external user
actions such as mouse movements, mouse
clicks, or keystrokes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

o

Event Classes

— ActionEvent |

— KeyEvent |

JavaFX event classes are in
the javafx.event package

— e e e o e o mm el

|
|
|
|
|
|
|
|
EventObject|<]f Event |<]—— InputEvent |<]— |
|
|
|
|
|
|
|
|

— Wi ndowEventl

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Event Information

An event object contains whatever properties are
pertinent to the event. You can identify the source
object of the event using the getSource() instance
method in the EventODbject class. The subclasses of
EventObject deal with special types of events,

such as button actions, window events, mouse
movements, and keystrokes. Table 15.1 lists \
external user actions, source objects, and event
types generated.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Selected User Actions and Handlers

User Action Source Object Event Type Fired Event Registration Method
Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)
Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck RadioButton ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Mouse pressed Node, Scene MouseEvent setOnMousePressed(EventHandler<MouseEvent>)
Mouse released setOnMouseRel eased (EventHandler<MouseEvent>)
Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)
Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)
Mouse exited setOnMouseEx1ited (EventHandler<MouseEvent>)
Mouse moved setOnMouseMoved (EventHand]er<MouseEvent>)
Mouse dragged setOnMouseDragged (EventHandler<MouseEvent>)
Key pressed Node, Scene KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)
Key released setOnKeyReleased(EventHand]er<KeyEvent>)
Key typed setOnKeyTyped(EventHandler<KeyEvent>)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

The Delegation Model

Trigger an event . «interface»
e = source: SourceClass I EventHandler<T extends Evenr>
ffiff)/ +setOnXEventType(listener) handle(event: T)

(2) Register by invoking
source.setOnXEventType(listener):

(1) A listener object is an

instance of a listener interface listener: ListenerClass
(a) A generic source object with a generic event T
«interface»
source: javafx.scene.control.Button I EventHandler<ActionEvent>
+setOnAction(listener) +handle(event: ActionEvent)

(2) Register by invoking
source.setOnAction(listener);

(1) An action event listenfar is an instance of |istener: CustomlListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

The Delegation Model: Example

Button btOK = new Button ("OK") ;

OKHandlerClass handler = new OKHandlerClass /() ;

2

btOK.setOnAction (handler) ;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Example: First \Version for
ControlCircle (no listeners)

Now let us consider to write a program that uses
two buttons to control the size of a circle.

.
4| ControlCircleWithoutEventHandling El_li:_hj
. i —

ControlCircleWithoutEventHandling -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/ControlCircleWithoutEventHandling.html

Example: Second Version for
ControlCircle (with listener for Enlarge)

Now let us consider to write a program that uses
two buttons to control the size of a circle.

ControlCircle -

Liang, Introduction to Java Programming, Elev thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/ControlCircle.html

Inner Class Listeners

A listener class Is designed specifically to

C
C
S
d

INnside the frame class as an inner class.

reate a listener object for a GUI
omponent (e.g., a button). It will not be
nared by other applications. So, it Is

opropriate to define the listener class

-/

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
ed.

Inner Classes

Inner class: A class 1s a member of another class.

Advantages: In some applications, you can use an
Inner class to make programs simple.

An inner class can reference the data and methods
defined in the outer class in which it nests, so you
do not need to pass the reference of the outer class
to the constructor of the inner class. \

ShowlnnerClass

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

https://liveexample.pearsoncmg.com/html/ShowInnerClass.html

Inner Classes, cont.

public class Test { // OuterClass.java: inner class demo
A public class OuterClass {
} private int data;
public class A { /*%* A method in the outer class */
A public void m() {
} // Do something
}
(a) // An inner class
class InnerClass {
public class Test { /** A method in the inner class */
public void mi() {
// Directly reference data and method
// Inner class // defined in its outer class
public class A { data++;
mQ);
} }
} }
}
(b) (c)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Inner Classes (cont.)

Inner classes can make programs simple and
concise.

An inner class supports the work of its
containing outer class and is compiled into a
class named
OuterClassName$InnerClassName.class.
For example, the inner class InnerClass In

OuterClass I1s compiled into
OuterClass$InnerClass.class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

D\

Inner Classes (cont.)

2 An inner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the
class.

2 An inner class can be declared static. A
static Inner class can be accessed using
the outer class name. A static inner class \

cannot access nonstatic members of the
outer class

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Anonymous Inner Classes

An anonymous inner class must always extend a superclass or
Implement an interface, but it cannot have an explicit extends or
Implements clause.

An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

An anonymous inner class is compiled into a class named
OuterClassName$n.class. For example, if the outer class Test
has two anonymous inner classes, these two classes are
compiled into Test$1.class and Test$2.class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k
All rights reserved.

Anonymous Inner Classes (cont.)

Inner class listeners can be shortened using
anonymous inner classes. An anonymous inner class is
an inner class without a name. It combines declaring
an inner class and creating an instance of the class in
one step. An anonymous inner class Is declared as

follows:

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface \
/[Other methods If necessary

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Anonymous Inner Classes (cont.)

public void start(Stage primaryStage) { public void start(Stage primaryStage) {
// Omitted // Omitted
btEnlarge.setOnAction(btEnlarge.setOnAction(
new EnlargeHandler()); new class—EnlargeHandtner
} implements EventHandler<ActionEvent>() {
‘B public void handle(ActionEvent e) {
class EnlargeHandler circlePane.enlarge();
implements EventHandler<ActionEvent> { }
public void handle(ActionEvent e) { 1)
circlePane.enlarge(); }
}
}
(a) Inner class EnTargelListener (b) Anonymous inner class

CH AnonymousHandlerDe =]
Open | | save | | Print

AnonymousHandlerDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/AnonymousHandlerDemo.html

Simplifying Event Handing Using
Lambda Expressions

Lambda expression is a new feature in Java 8. Lambda
expressions can be viewed as an anonymous method with a
concise syntax. For example, the following code in (a) can
be greatly simplified using a lambda expression in (b) In
three lines.

btEnlarge.setOnAction (
new EventHandler<ActionEvent> () {

@Override 1) ;
public void handle (ActionEvent e) {

btEnlarge.setOnAction (e -> {

}
}

1)

(@) Anonymous inner class event handler (b) Lambda expression event handler

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 2?
All rights reserved.

Basic Syntax for a Lambda Expression

The basic syntax for a lambda expression is either
(typel paraml, type2 paramz, ...) -> expression

or
(typel paraml, type2 paramz2, ...) -> { statements; }

The data type for a parameter may be explicitly
declared or implicitly inferred by the compiler. Th
parentheses can be omitted If there iIs only one
parameter without an explicit data type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZP
All rights reserved.

/

Single Abstract Method Interface (SAM)

The statements in the lambda expression is all for
that method. If it contains multiple methods, the
compiler will not be able to compile the lambda
expression. So, for the compiler to understand
lambda expressions, the interface must contain
exactly one abstract method. Such an interface Is
known as a functional interface, or a Single Abstr
Method (SAM) interface.

AnonymousHandlerDemo -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

https://liveexample.pearsoncmg.com/html/AnonymousHandlerDemo.html

Problem: Loan Calculator

LLoanCalculator -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/LoanCalculator.html

The MouseEvent Class

Jjavafx.scene.input.MouseEvent

+getButton(): MouseButton
+getClickCount(): 1int
+getX(): double

+getY(): double
+getSceneX(): double
+getSceneY(): double
+getScreenX(): double
+getScreenY(): double
+isAltDown() : boolean
+isControlDown(): boolean
+isMetaDown(): boolean
+isShiftDown(): boolean

Indicates which mouse button has been clicked.

Returns the number of mouse clicks associated with this event.
Returns the x-coordinate of the mouse point in the event source node.
Returns the y-coordinate of the mouse point in the event source node.
Returns the x-coordinate of the mouse point in the scene.

Returns the y-coordinate of the mouse point in the scene.

Returns the x-coordinate of the mouse point in the screen.

Returns the y-coordinate of the mouse point in the screen.

Returns true if the ATt key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.
Returns true if the Shift key is pressed on this event.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

MouseEventDemo

All rights reserved.

https://liveexample.pearsoncmg.com/html/MouseEventDemo.html

The Key:

javafx.scene.input.KeyEvent

vent Class

L]

+getCharacter(): String
+getCode(): KeyCode
+getText(): String
+i1sATtDown() : boolean
+1sControlDown(): boolean
+isMetaDown(): boolean
+1sShiftDown(): boolean

Returns the character associated with the key in this event.
Returns the key code associated with the key in this event.
Returns a string describing the key code.

Returns true if the ATt key is pressed on this event.

Returns true if the Control key is pressed on this event.
Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

KeyEventDemo - B

All rights reserved.

https://liveexample.pearsoncmg.com/html/KeyEventDemo.html

The KeyCode Constants

Constant Description Constant Description

HOME The Home key CONTROL The Control key

END The End key SHIFT The Shift key

PAGE_UP The Page Up key BACK_SPACE The Backspace key
PAGE_DOWN The Page Down key CAPS The Caps Lock key

UP The up-arrow key NUM_LOCK The Num Lock key

DOWN The down-arrow key ENTER The Enter key

LEFT The left-arrow key UNDEFINED The keyCode unknown
RIGHT The right-arrow key F1to F12 The function keys from F1 to F12
ESCAPE The Esc key 0to9 The number keys from 0 to 9
TAB The Tab key AtoZ The letter keys from A to Z

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Example: Control Circle with Mouse
and Key

ControlCircleWithMouseAndKey -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/ControlCircleWithMouseAndKey.html

Listeners for Observable Objects

You can add a listener to process a value change in an
observable object.

An instance of Observable is known as an observable object,
which contains the addListener(InvalidationListener
listener) method for adding a listener. Once the value Is
changed in the property, a listener is notified. The listener class
should implement the InvalidationListener interface, which
uses the invalidated(Observable 0) method to handle the
property value change. Every binding property is an insta
Observable.

of

ObservablePropertyDemo

DisplayResizableClock -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

https://liveexample.pearsoncmg.com/html/ObservablePropertyDemo.html
https://liveexample.pearsoncmg.com/html/DisplayResizableClock.html

Animation

JavaFX provides the Animation class with the core
functionality for all animations.

The getter and setter methods for property
values and a getter for property itself are provided

. in the class, but omitted in the UML diagram for brevity.
javafx.animation.Animation
/ . . - . . .
-autoReverse: BooleanProperty Defines whether the animation reverses direction on alternating cycles.
-cycleCount: IntegerProperty Defines the number of cycles in this animation.
-rate: DoubleProperty Defines the speed and direction for this animation.
-status: ReadOnlyObjectProperty Read-only property to indicate the status of the animation.
<Animation.Status>

+pause(): void Pauses the animation.
+play(): void Plays the animation from the current position.
+stop(): void Stops the animation and resets the animation.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

PathTransition

The getter and setter methods for property
values and a getter for property itself are provided

_ . . in the class, but omitted in the UML diagram for brevity.
javafx.animation.PathTransition
-] /l
-duration: ObjectProperty<Duration> The duration of this transition.
-hode: ObjectProperty<Node> The target node of this transition.
-orientation: ObjectProperty The orientation of the node along the path.
<PathTransition.OrientationType>
-path: ObjectType<Shape> The shape whose outline is used as a path to animate the node move.
+PathTransition() Creates an empty PathTransition.
+PathTransition(duration: Duration, Creates a PathTransition with the specified duration and path.
path: Shape)
+PathTransition(duration: Duration, Creates a PathTransition with the specified duration, path, and node.
path: Shape, node: Node)

\\

PathTransitionDemo

FlagRisingAnimation

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/FlagRisingAnimation.html
https://liveexample.pearsoncmg.com/html/PathTransitionDemo.html

FadeTransition

The FadeTransition class animates the change of the
opacity in a node over a given time.

javafx.animation.FadeTransition

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

&,

-duration: ObjectProperty<Duration>
-node: ObjectProperty<Node>
-fromValue: DoubleProperty
-toValue: DoubleProperty

-byValue: DoubleProperty

+FadeTransition()
+FadeTransition(duration: Duration)

+FadeTransition(duration: Duration,
node: Node)

The duration of this transition.

The target node of this transition.
The start opacity for this animation.
The stop opacity for this animation.

The incremental value on the opacity for this animation.

Creates an empty FadeTransition.
Creates a FadeTransition with the specified duration.
Creates a FadeTransition with the specified duration and node.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

FadeTransitionDemo -v

All rights reserved.

https://liveexample.pearsoncmg.com/html/FadeTransitionDemo.html

Timeline

PathTransition and FadeTransition define specialized
animations. The Timeline class can be used to program any
animation using one or more KeyFrames. Each
KeyFrame iIs executed sequentially at a specified time
Interval. Timeline inherits from Animation.

TimelineDemo - i l

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TimelineDemo.html

Clock Animation

_lolx

ClockAnimation - 9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/ClockAnimation.html

Case Study: Bouncing Ball

= _lolx _loix

javafx.scene.layout.Pane | javafx.application.Application |

T T

BallPane H BounceBallControl |

-X: double

-y: double

-dx: double

-dy: double

-radius: double
-circle: Circle
-animation: Timeline

+BallPane()

+play(Q: void
+pause(): void
+increaseSpeed(): void

+decreaseSpeed(): void
+rateProperty(): DoubleProperty BallPane BounceBallControl -

+moveBall(): void

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/BounceBallControl.html
https://liveexample.pearsoncmg.com/html/BallPane.html

