
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 17 Binary I/O

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Motivations

Data stored in a text file is represented in human-readable

form. Data stored in a binary file is represented in binary

form. You cannot read binary files. They are designed to

be read by programs. For example, Java source programs

are stored in text files and can be read by a text editor, but

Java classes are stored in binary files and are read by the

JVM. The advantage of binary files is that they are more

efficient to process than text files.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Objectives
❑ To discover how I/O is processed in Java (§17.2).

❑ To distinguish between text I/O and binary I/O (§17.3).

❑ To read and write bytes using FileInputStream and
FileOutputStream (§17.4.1).

❑ To read and write primitive values and strings using
DataInputStream/DataOutputStream (§17.4.3).

❑ To store and restore objects using ObjectOutputStream and
ObjectInputStream, and to understand how objects are serialized
and what kind of objects can be serialized (§17.6).

❑ To implement the Serializable interface to make objects
serializable (§17.6.1).

❑ To serialize arrays (§17.6.2).

❑ To read and write the same file using the RandomAccessFile class
(§17.7).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

How is I/O Handled in Java?
A File object encapsulates the properties of a file or a path, but does not

contain the methods for reading/writing data from/to a file. In order to

perform I/O, you need to create objects using appropriate Java I/O classes.

PrintWriter output = new PrintWriter("temp.txt");

output.println("Java 101");

output.close();

Scanner input = new Scanner(new File("temp.txt"));

System.out.println(input.nextLine());

Program

Input object

created from an

input class

Output object

created from an

output class

Input stream

Output stream

File

File
01011…1001

11001…1011

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Text File vs. Binary File
❑ Data stored in a text file are represented in human-readable

form. Data stored in a binary file are represented in binary form.
You cannot read binary files. Binary files are designed to be
read by programs. For example, the Java source programs are
stored in text files and can be read by a text editor, but the Java
classes are stored in binary files and are read by the JVM. The
advantage of binary files is that they are more efficient to
process than text files.

❑ Although it is not technically precise and correct, you can
imagine that a text file consists of a sequence of characters and a
binary file consists of a sequence of bits. For example, the
decimal integer 199 is stored as the sequence of three
characters: '1', '9', '9' in a text file and the same integer is stored
as a byte-type value C7 in a binary file, because decimal 199
equals to hex C7.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Binary I/O
Text I/O requires encoding and decoding. The JVM converts a

Unicode to a file specific encoding when writing a character and

coverts a file specific encoding to a Unicode when reading a

character. Binary I/O does not require conversions. When you write

a byte to a file, the original byte is copied into the file. When you

read a byte from a file, the exact byte in the file is returned.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Binary I/O Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

java.io.InputStream

+read(): int

+read(b: byte[]): int

+read(b: byte[], off: int,

len: int): int

+available(): int

+close(): void

+skip(n: long): long

+markSupported(): boolean

+mark(readlimit: int): void

+reset(): void

Reads the next byte of data from the input stream. The value byte is returned as

an int value in the range 0 to 255. If no byte is available because the end of

the stream has been reached, the value –1 is returned.

Reads up to b.length bytes into array b from the input stream and returns the

actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores into b[off], b[off+1], …,

b[off+len-1]. The actual number of bytes read is returned. Returns -1 at the

end of the stream.

Returns the number of bytes that can be read from the input stream.

Closes this input stream and releases any system resources associated with the

stream.

Skips over and discards n bytes of data from this input stream. The actual

number of bytes skipped is returned.

Tests if this input stream supports the mark and reset methods.

Marks the current position in this input stream.

Repositions this stream to the position at the time the mark method was last

called on this input stream.

The value returned is a byte as an int type.

InputStream

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

The value is a byte as an int type.

OutputStream

java.io.OutputStream

+write(int b): void

+write(b: byte[]): void

+write(b: byte[], off: int,

len: int): void

+close(): void

+flush(): void

Writes the specified byte to this output stream. The parameter b is an int value.

(byte)b is written to the output stream.

Writes all the bytes in array b to the output stream.

Writes b[off], b[off+1], …, b[off+len-1] into the output stream.

Closes this output stream and releases any system resources associated with the

stream.

Flushes this output stream and forces any buffered output bytes to be written out.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

FileInputStream/FileOutputStream

FileInputStream/FileOutputStream
associates a binary input/output stream with
an external file. All the methods in
FileInputStream/FileOuptputStream are
inherited from its superclasses.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

FileInputStream

To construct a FileInputStream, use the following

constructors:

public FileInputStream(String filename)

public FileInputStream(File file)

A java.io.FileNotFoundException would occur if you attempt to

create a FileInputStream with a nonexistent file.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

FileOutputStream
To construct a FileOutputStream, use the following constructors:

public FileOutputStream(String filename)

public FileOutputStream(File file)

public FileOutputStream(String filename, boolean append)

public FileOutputStream(File file, boolean append)

If the file does not exist, a new file would be created. If the file already
exists, the first two constructors would delete the current contents in
the file. To retain the current content and append new data into the file,
use the last two constructors by passing true to the append parameter.

TestFileStream Run

https://liveexample.pearsoncmg.com/html/TestFileStream.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

FilterInputStream/FilterOutputStream

Filter streams are streams that filter bytes for some purpose. The basic byte input
stream provides a read method that can only be used for reading bytes. If you want to
read integers, doubles, or strings, you need a filter class to wrap the byte input stream.
Using a filter class enables you to read integers, doubles, and strings instead of bytes
and characters. FilterInputStream and FilterOutputStream are the base classes for
filtering data. When you need to process primitive numeric types, use DatInputStream
and DataOutputStream to filter bytes.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

DataInputStream/DataOutputStream
DataInputStream reads bytes from the stream
and converts them into appropriate primitive
type values or strings.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

DataOutputStream converts primitive type values

or strings into bytes and output the bytes to the

stream.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

DataInputStream

DataInputStream extends FilterInputStream and implements the

DataInput interface.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

DataOutputStream
DataOutputStream extends FilterOutputStream and implements the

DataOutput interface.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

Characters and Strings in Binary I/O
A Unicode consists of two bytes. The writeChar(char c) method
writes the Unicode of character c to the output. The
writeChars(String s) method writes the Unicode for each character in
the string s to the output.

Why UTF-8? What is UTF-8?

UTF-8 is a coding scheme that allows systems to operate with both
ASCII and Unicode efficiently. Most operating systems use ASCII.
Java uses Unicode. The ASCII character set is a subset of the
Unicode character set. Since most applications need only the ASCII
character set, it is a waste to represent an 8-bit ASCII character as a
16-bit Unicode character. The UTF-8 is an alternative scheme that
stores a character using 1, 2, or 3 bytes. ASCII values (less than
0x7F) are coded in one byte. Unicode values less than 0x7FF are
coded in two bytes. Other Unicode values are coded in three bytes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Using DataInputStream/DataOutputStream

Data streams are used as wrappers on existing input and output
streams to filter data in the original stream. They are created using the
following constructors:

public DataInputStream(InputStream instream)

public DataOutputStream(OutputStream outstream)

The statements given below create data streams. The first statement
creates an input stream for file in.dat; the second statement creates an
output stream for file out.dat.

DataInputStream infile =

new DataInputStream(new FileInputStream("in.dat"));

DataOutputStream outfile =

new DataOutputStream(new FileOutputStream("out.dat"));

TestDataStream Run

https://liveexample.pearsoncmg.com/html/TestDataStream.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Concept of pipe line

DataInputStream FileInputStream External File

01000110011 … int, double, string …

DataOutputStream FileOutputStream External File

01000110011 … int, double, string …

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Checking End of File

TIP: If you keep reading data at the end of a stream, an EOFException
would occur. So how do you check the end of a file? You can use
input.available() to check it. input.available() == 0 indicates that it is
the end of a file.

Order and Format

CAUTION: You have to read the data in the same order and same
format in which they are stored. For example, since names are written
in UTF-8 using writeUTF, you must read names using readUTF.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

BufferedInputStream/

BufferedOutputStream
Using buffers to speed up I/O

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

BufferedInputStream/BufferedOutputStream does not contain new

methods. All the methods BufferedInputStream/BufferedOutputStream are
inherited from the InputStream/OutputStream classes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

Constructing

BufferedInputStream/BufferedOutputStream

// Create a BufferedInputStream

public BufferedInputStream(InputStream in)

public BufferedInputStream(InputStream in, int bufferSize)

// Create a BufferedOutputStream

public BufferedOutputStream(OutputStream out)

public BufferedOutputStream(OutputStreamr out, int bufferSize)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Case Studies: Copy File

This case study develops a program that copies files. The user needs
to provide a source file and a target file as command-line arguments
using the following command:

java Copy source target

The program copies a source file to a target file and displays the
number of bytes in the file. If the source does not exist, tell the user
the file is not found. If the target file already exists, tell the user the
file already exists.

Copy Run

https://liveexample.pearsoncmg.com/html/Copy.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Object I/O

DataInputStream/DataOutputStream enables you to perform I/O for
primitive type values and strings.
ObjectInputStream/ObjectOutputStream enables you to perform I/O
for objects in addition for primitive type values and strings.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

Optional

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

ObjectInputStream

ObjectInputStream extends InputStream and
implements ObjectInput and ObjectStreamConstants.

java.io.ObjectInput

+readObject(): Object

Reads an object.

java.io.InputStream

java.io.ObjectInputStream

+ObjectInputStream(in: InputStream)

java.io.DataInput

ObjectStreamConstants

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

ObjectOutputStream

ObjectOutputStream extends OutputStream and
implements ObjectOutput and ObjectStreamConstants.

java.io.ObjectOutput

+writeObject(o: Object): void

Writes an object.

java.io.OutputStream

java.io.ObjectOutputStream

+ObjectOutputStream(out: OutputStream)

java.io.DataOutput

ObjectStreamConstants

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Using Object Streams

You may wrap an ObjectInputStream/ObjectOutputStream on any

InputStream/OutputStream using the following constructors:

// Create an ObjectInputStream

public ObjectInputStream(InputStream in)

// Create an ObjectOutputStream

public ObjectOutputStream(OutputStream out)

TestObjectInputStream Run

TestObjectOutputStream Run

http://www.cs.armstrong.edu/liang/intro11e/html/TestObjectInputStream.html
https://liveexample.pearsoncmg.com/html/TestObjectOutputStream.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

The Serializable Interface

Not all objects can be written to an output stream. Objects that can be

written to an object stream is said to be serializable. A serializable

object is an instance of the java.io.Serializable interface. So the class

of a serializable object must implement Serializable.

The Serializable interface is a marker interface. It has no methods, so

you don't need to add additional code in your class that implements

Serializable.

Implementing this interface enables the Java serialization mechanism

to automate the process of storing the objects and arrays.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

The transient Keyword

If an object is an instance of Serializable, but it contains

non-serializable instance data fields, can the object be

serialized? The answer is no. To enable the object to be

serialized, you can use the transient keyword to mark these

data fields to tell the JVM to ignore these fields when

writing the object to an object stream.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

The transient Keyword, cont.

Consider the following class:

public class Foo implements java.io.Serializable {

private int v1;

private static double v2;

private transient A v3 = new A();

}

class A { } // A is not serializable

When an object of the Foo class is serialized, only variable v1 is
serialized. Variable v2 is not serialized because it is a static variable,
and variable v3 is not serialized because it is marked transient. If v3
were not marked transient, a java.io.NotSerializableException would
occur.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
31

Serializing Arrays

An array is serializable if all its elements are serializable.

So an entire array can be saved using writeObject into a file

and later restored using readObject. Here is an example that

stores an array of five int values and an array of three

strings, and reads them back to display on the console.

TestObjectStreamForArray Run

https://liveexample.pearsoncmg.com/html/TestObjectStreamForArray.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
32

Random Access Files

All of the streams you have used so far are known as
read-only or write-only streams. The external files of
these streams are sequential files that cannot be updated
without creating a new file. It is often necessary to
modify files or to insert new records into files. Java
provides the RandomAccessFile class to allow a file to be
read from and write to at random locations.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
33

RandomAccessFile

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
34

File Pointer
A random access file consists of a sequence of bytes. There is a

special marker called file pointer that is positioned at one of these

bytes. A read or write operation takes place at the location of the file

pointer. When a file is opened, the file pointer sets at the beginning of

the file. When you read or write data to the file, the file pointer moves

forward to the next data. For example, if you read an int value using

readInt(), the JVM reads four bytes from the file pointer and now the

file pointer is four bytes ahead of the previous location.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
35

RandomAccessFile Methods

Many methods in RandomAccessFile are the same as
those in DataInputStream and DataOutputStream.
For example, readInt(), readLong(),
writeDouble(), readLine(), writeInt(), and
writeLong() can be used in data input stream or data
output stream as well as in RandomAccessFile
streams.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
36

RandomAccessFile Methods, cont.

void seek(long pos) throws IOException;

Sets the offset from the beginning of the

RandomAccessFile stream to where the next read

or write occurs.

long getFilePointer() IOException;

Returns the current offset, in bytes, from the

beginning of the file to where the next read

or write occurs.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
37

RandomAccessFile Methods, cont.

long length()IOException

Returns the length of the file.

final void writeChar(int v) throws

IOException

Writes a character to the file as a two-byte Unicode,

with the high byte written first.

final void writeChars(String s)

throws IOException

Writes a string to the file as a sequence of

characters.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
38

RandomAccessFile Constructor

RandomAccessFile raf =

new RandomAccessFile("test.dat", "rw");

// allows read and write

RandomAccessFile raf =

new RandomAccessFile("test.dat", "r");

// read only

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
39

A Short Example on

RandomAccessFile

TestRandomAccessFile Run

https://liveexample.pearsoncmg.com/html/TestRandomAccessFile.html

