Chapter 18 Recursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Motivations

Suppose you want to find all the files under a
directory that contains a particular word. How do
you solve this problem? There are several ways to
solve this problem. An intuitive solution Is to use
recursion by searching the files in the
subdirectories recursively.

D\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Motivations

H-trees, depicted in Figure 18.1, are used in a very large-
scale integration (VLSI) design as a clock distribution
network for routing timing signals to all parts of a chip
with equal propagation delays. How do you write a
program to display H-trees? A good approach Is to use
recursion.

-o|x| -olx| -ofx| -lolx|
H H HH Bl Bl BT BT
FHIHH HH | H ELLIEAT EAC AT
HA [HA [H el BT Bl el
H B BN B R

enteranorder: | 0| | Enteranorder [|1 Enteranorder: | P | Enteranorder: | 3|

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

o 000000 o0Co U

U

Objectives

To describe what a recursive method is and the benefits of using recursion
(§18.1).

To develop recursive methods for recursive mathematical functions (§§18.2—
18.3).

To explain how recursive method calls are handled in a call stack (§§18.2-18.3).
To solve problems using recursion (§18.4).

To use an overloaded helper method to derive a recursive method (§18.5).

To implement a selection sort using recursion (§18.5.1).

To implement a binary search using recursion (§18.5.2).

To get the directory size using recursion (§18.6).

To solve the Tower of Hanoi problem using recursion (§18.7). \
To draw fractals using recursion (§18.8).

To discover the relationship and difference between recursion and iteration
(§18.9).

To know tail-recursive methods and why they are desirable (§18.10).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

ComputeFactorial - 9

Liang, Introduction to Java Programming, Elev thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

n!=n*(n-1)!
0'=1

https://liveexample.pearsoncmg.com/html/ComputeFactorial.html

animation

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

factorial(4)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

\

animation

Computing Factorial

factorial(0) = 1;

factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

\

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)

“\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 *3* (2 * factorial(1))

“\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 *3* (2 * factorial(1))
=4*3*(2*(1* factorial(0)))

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 *3* (2* (1~ factorial(0)))
=4*3*(2*(1*1)))
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R

All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 *3* (2 * factorial(1))
=4*3*(2*(1* factorial(0)))
=4*3*(2*(1*1))

=4%3%(2*1) N

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 *3* (2 * factorial(1))
=4*3*(2*(1* factorial(0)))
=4*3*(2*(1*1))

= 4*3*(2%1) ~\\

=4%3*2

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))
=4 * (3 *(2* factorial(1)))
=4*(3*(2*(1* factorial(0))))

=4*@3*(2*(1*1))))
=4*(3*(2*1)) \
=4%*(3*2)
= 4> (6)
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R

All rights reserved.

animation

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))
=4 * (3 *(2* factorial(1)))
=4*(3*(2*(1* factorial(0))))
=4*@3*(2*(1*1))))
=4*(@3*(2*1))
=4*(3%*2) \
= 4> (6)
=24

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

animation

Trace Recursive factorial

Executes factorial(4)

factorial(4)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Space Required
for factorial(4)

animation

Trace Recursive factorial

factorial(4)

l Step O: executes factorial(4) :
. / Executes factorial(3)

I
return 4 * factorial (3)—

Stack

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Recursive factorial

factorial(4) Executes factorial(2)]

Step 0: executes factorial(4)

return 4 * factorial(3)I
lStep 1: execu

return 3 *jactorial(Z)I

Stack

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

animation

Trace Recursive factorial

_factorial(4) Executes factorial(1)]

Step 0: executes factorial(4)

return 4 * 1factorial(3)I
lStep 1: executes factorial

return 3 *jactorial(Z)I

Step 2: exg’ates factorial(2)

Stack

Ireturn 2* factoriaﬂl)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

animation

Trace Recursive factorial

factorial(4)

Executes factorial(0)

. l Step 0: executes factorial(4)

‘return 4 * factorial(3)I

lStep 1: executes factorial(3)

=1 1
return 3 * factorial(2)
-y

Step 2: executes fa

Stack

turn 2 * jactorial(l)l

Space Required
for factorial(0)

Step 3: e/écutes factorial (1) o fctormi(t)

Space Required

I 1 :
return 1 * faCtO.I’Ial(O) for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

animation

Trace Recursive factorial

_factorial(4)

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep 1: executes factorial(3)

Ireturn 3* factorial(2)I

Step 2: executes facto

return 2 * factorial(l)I

Step 3: exec

“return 1 * factoriaI(O)I
Step/4: executes factorial(0)

return 1

All rights reserved.

actorial(1)

returns 1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

Stack

Space Required
for factorial(0)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(4)

Main method

animation

Trace Recursive factorial

_factorial(4)

returns factorial(0)

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep 1: executes factorial

Ireturn 3* factoriaI(Z)I

Step 2: exe ctorial(2)

Stack

I
return 2 * factori

Space Required
for factorial(0)

Space Required

tep 3: executes factorial(1) for factorial(1)

I 1 Space Reguired
ret%d * factorial (0) for actorial(2)
< | Space Required

Step 4: executes factorial (0 for factorial(3)
Step 5: I‘e'[um 1 p () Space Required
for factorial(4)

return 1

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

animation

Trace Recursive factorial

_factorial(4) returns factorial(1)

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I
lStep 1: executes fac

Ireturn 3* factoriaI(Z)I

. executes factorial(2)

%yfactofal(l)I s

Step 6: return 1 Step 3: executes factorial(1)

Space Required
for factorial(1)

| 1
return 1 * factorial(0) Space Required
for factorial(2)
Step 4: executes factorial(0 Space Required
Step 5: return 1 P ©0) pece R
S ired
return 1 P Rctornl)
Main method
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k

All rights reserved.

animation

Trace Recursive factorial

_factorial(4) returns factorial(2)]

Step 0: executes factorial(4)

Ireturn 4 * factorial(3)I

lStep l:e
Wal(z)'
(y lStep 2: executes factorial(2)

return 2 * factorial(l)I

Step 7: return 2

Step 6: return 1 Step 3: executes factorial(1)

I 1 -
return 1 * factorial(0) iy
Step 4: executes factorial(0) Space Requied

for factorial(3)

Step 5: return 1

Space Required
for factorial(4)

return 1

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

animation

Trace Recursive factorial

_factorial(4)

returns factorial(3)]

Step 0: executes factorial(4

I
return4 * f

Step 8: return 6 lStep 1: executes factorial(3)

Ireturn 3* factorial(2)I

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(l)I

Step 6: return 1 Step 3: executes factorial(1)

I 1
return 1 * factorial(0)
Step 4: executes factorial(0) Space Required

for factorial(3)

Step 5: return 1

Space Required
for factorial(4)

return 1

Main method

=

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

animation

Trace Recursive factorial

returns factorial(4)]

factorial(4

Step 0: executes factorial(4)
Step 9: return 24

Ireturn 4 * factorial(3)I

Step 8: return 6 lStep 1: executes factorial(3)

Ireturn 3* factorial(2)I

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(l)I

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factoriaI(O)I
Step 4: executes factorial(0)

Step 5: return 1

Space Required
for factorial(4)

return 1

Main method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

factorial(4) Stack Trace

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(2)

il Space Required

for factorial(1)

Space Required
for factorial(0)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(1)

Space Required
for factorial(1)

Space Required
for factorial(2)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(3)

Space Required
for factorial(2)

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(4)

Space Required
for factorial(3)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Space Required
for factorial(4)

Space Required
for factorial(3)

Space Required
for factorial(4)

Space Required
for factorial(4)

Space Required
for factorial(4)

Other Examples
f(0) = 0;
f(n) = n + f(n-1);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Fibonaccit Numbers

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89..
indices: 01 2 34 5 6 7 8 9 10 11

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 £.0)
+fib(1) =1+ fib(1)=1+1=2 \

ComputeFibonacci -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/ComputeFibonacci.html

Fibonnaci Numbers, cont.

fib(4)
17: return fib(4) ¢ 0: call fib(4)

"return fib(3) + fib2)

11: call fib(2)

%Mmﬁmn+ﬁMQL
8: call fib(1) / 14 return fib(0)

2: call fib(2) 13: return fib(1) 12: call fib(1) \l
9: return fib(1) return 1 return 1 15:retum fib0) return 0

5: call fib(0)

10: return fib(3)

C "2 1: call fib(3)
'return fib(2) + fib(1)

16: return fib(2)

7: return fib(2)

Ireturn fib(L) + fib(Q)"

4: return fib(1)

3: call fib(1)

return 1 6: return fib(0) eturn 0 \E

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

J

Characteristics of Recursion

All recursive methods have the following characteristics:

— One or more base cases (the simplest case) are used to stop

recursion.

— Every recursive call reduces the original problem, bringing it
Increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, you break it
Into subproblems. If a subproblem resembles the origina
problem, you can apply the same approach to solve the
subproblem recursively. This subproblem is almost the
same as the original problem in nature with a smaller siz

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3P
All rights reserved.

Problem Solving Using Recursion

Let us consider a simple problem of printing a message for
n times. You can break the problem into two subproblems:
one Is to print the message one time and the other Is to print
the message for n-1 times. The second problem is the same
as the original problem with a smaller size. The base case
for the problem is n==0. You can solve this problem using
recursion as follows:
nPrintin(“Welcome”, 5);
public static void nPrintIn(String message, int times) {
if (times >= 1) { \
System.out.printin(message);
nPrintin(message, times - 1);
} /] The base case Is times ==

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Think Recursively

Many of the problems presented in the early chapters can
be solved using recursion If you think recursively. For
example, the palindrome problem can be solved recursively

as follows:

public static boolean isPalindrome(String s) {
If (s.length() <= 1) // Base case
return true;
else if (s.charAt(0) !=s.charAt(s.length() - 1)) // Base case
return false; \

else
return isPalindrome(s.substring(1, s.length() - 1));

}

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

Recursive Helper Methods

The preceding recursive isPalindrome method is not
efficient, because It creates a new string for every recursive
call. To avoid creating new strings, use a helper method:

public static boolean isPalindrome(String s) {
return isPalindrome(s, 0, s.length() - 1);

h

public static boolean isPalindrome(String s, int low, int high) {
If (high <= low) // Base case

return true;
else if (s.charAt(low) !=s.charAt(high)) // Base case \
return false;
else
return isPalindrome(s, low + 1, high - 1);
} Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?

All rights reserved.

Recursive Selection Sort

1. FiInd the smallest number in the list and swaps It
with the first number.

2. Ignore the first number and sort the remaining
smaller list recursively.

RecursiveSelectionSort \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3?
All rights reserved.

https://liveexample.pearsoncmg.com/html/RecursiveSelectionSort.html

Recursive Binary Search

Case 1: If the key Is less than the middle element,
recursively search the key in the first half of the array.

Case 2: If the key Is equal to the middle element, the
search ends with a match.

Case 3: If the key Is greater than the middle element,
recursively search the key in the second half of the

array.
N\

RecursiveBinarySearch

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 39
All rights reserved.

https://liveexample.pearsoncmg.com/html/RecursiveBinarySearch.html

Recursive Implementation

/** Use binary search to find the key in the list */

public static int recursiveBinarySearch(int[] 1list, int key) {
int low = 0;
int high = list.length - 1;
return recursiveBinarySearch(list, key, low, high);

/** Use binary search to find the key in the list between
list[low] list[high] */
public static int recursiveBinarySearch(int[] list, int key,
int low, int high) {
if (low > high) // The list has been exhausted without a match
return -low - 1;

int mid = (low + high) / 2;
if (key < list[mid])

return recursiveBinarySearch(list, key, low, mid - 1);
else if (key == list[mid])

return mid;

else
return recursiveBinarySearch(list, key, mid + 1, high);

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 3*
All rights reserved.

Directory Size

The preceding examples can easily be solved without using
recursion. This section presents a problem that is
difficult to solve without using recursion. The problem is
to find the size of a directory. The size of a directory Is

the sum of the sizes of all files in the directory. A

directory may contain subdirectories. Suppose a

directory contains files, , ..., , and subdirectories, , ...,

as shown below.
3\
[fl [fz b ‘ d, I‘ d, I

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Directory Size

The size of the directory can be defined recursively as
follows:

size(d) = size(f,) + size(f,) +...+size(f)+ size(d,) + size(d,) +... + size(d,)

[fl {fz t Fij (“dz] F

DirectorySize -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/DirectorySize.html

Tower of Hanol

There are n disks labeled 1, 2, 3, .. ., n, and three
towers labeled A, B, and C.

No disk can be on top of a smaller disk at any
time.

All the disks are initially placed on tower A.

Only one disk can be moved at a time, and It mﬁt
be the top disk on the tower.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ZR
All rights reserved.

Tower of Han0| cont.

| @

1 : - I

L PN |

@ e |

! S |

i :

A B C ; A B c |

Original position i Step 4: Move disk 3 from A to B |

e e e]

e T
—————— ” - e — ""b(\

A B C A B C
Step 1: Move disk 1 from A to B Step 5: Move disk 1 from C to A
e e e e e e e S |
@ """ ["5 @ """""""""""""""" PPN
i Yool « i
S — — —— | |
== = ==
i A B C P A B C
P
Step 2: Move disk 2 from A to C ! i Step 6: Move disk 2 from C to B !

| Step 3: Move disk 1 from B to C

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Solution to Tower of Hanol

The Tower of Hanoi problem can be decomposed into three

subproblems

|
|
|
|
I
|
|
|
|
I
|
-l

n—1 disks

B
Original position

n —1 disks

||||||||||||||||||||||||||||||||||

._
1 I
1 1
I I
1 1
| |
1 — 1
1 . 1
1 - C |
1 — 1
I i == I
“ S |
1 — __r 1
1 = I
I w1
“ \ Zo =
o ———— 7Rl
[
B = >
[o B |
e Z7
1 = | S
e | 2
m_l A = D m
—) o
LS > /M |
1
tl S o
"FIIIIIIIIII z = "
1 Le L)
! ¢~
1 |
I o I
I D I
_ 7
1 W
| < "
I I
1 1
I I
1 1
I 1
_ i
I

r
m—“lllll IIIII J m
e _
w 1
= = !
- S

]
“_l. ~ O i
1 Z
= 1
N B w [
| o - I
N | 1 = .|
| o e o o oo e e e I |
1 —_—
1 * Do
1 | = 1
| ! =7 |
1 = ﬁ 1
I I — =1
| I 20|
i moE o
“ _ - 1
1
1 e o

“ __ =
i = o |
! I = 1
5 1
I I = - I
| _ <
! s
“ I
.. 1

1
I An — |
“ (ol !
i L i
1 ey 1
I 9] 1
1 I
1 I
1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Solution to Tower of Hanol

a Move the first n - 1 disks from A to C with the assistance of tower
B.

a Move disk n from A to B.
a Move n - 1 disks from C to B with the assistance of tower A.

TowerOfHanoi - 9

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TowerOfHanoi.html

Exercise 18.3 GCD

gcd(2, 3) =1

gcd(2, 10) =2

gcd(25, 35) =5

gcd(205, 301) =5

gcd(m, n)

Approach 1: Brute-force, start from min(n, m) down to 1,

to check 1f a number 1s common divisor for both m-a
n, If so, It Is the greatest common divisor.

Approach 2: Euclid’ s algorithm
Approach 3: Recursive method

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Approach 2: Euclid’ s algorithm

// Get absolute value of m and n;
tl = Math.abs(m); t2 = Math.abs(n) ;
// r is the remainder of tl divided by t2;

} .\\\
// When r is 0, t2 is the greatest common

// divisor between tl and t2
return t2;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Approach 3: Recursive Method

gcd(m, n) =nifm % n =0;
gcd(m, n) = gcd(n, m % n); otherwise;

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Fractals?

A fractal 1s a geometrical figure just like
triangles, circles, and rectangles, but fractals
can be divided into parts, each of which is a
reduced-size copy of the whole. There are
many Interesting examples of fractals. This
section Introduces a simple fractal, called

Sierpinski triangle, named after a famousws\
Polish mathematician.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 4?
All rights reserved.

Sierpinski Triangle

It begins with an equilateral triangle, which is considered to be
the Sierpinski fractal of order (or level) 0, as shown in Figure
(a).

Connect the midpoints of the sides of the triangle of order 0 to
create a Sierpinski triangle of order 1, as shown in Figure (b).

Leave the center triangle intact. Connect the midpoints of the

sides of the three other triangles to create a Sierpinski of order

2, as shown in Figure (c).

You can repeat the same process recursively to create a

Sierpinski triangle of order 3, 4, ..., and so on, as shown in

Figure (d). ~
8 serpnsnrmnge ot 13 [<o angiS =T [B iein=iningi S T N o icrinsriangiGUSTE

Enter an order: ‘ ﬂ Enter an order: | ﬂ Enter an order: | ﬂ Enter an order: | ﬂ

28>

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

SierpinskKi Trlangle Solution

Draw the Sierpinski triangle
displayTriangles(order, pl, p2, p3)

p2 p3
(a)
Recursively draw the small Sierpinski triangle

displayTriangles(
order - 1, pl, pl2, p31)

pl

Recursively draw the small P-4 _
Sierpinski triangle
displayTriangles(

order - 1, pl2, p2, p23)

Recursively draw the

small Sierpinski triangle
displayTriangles(
order - 1, p31, p23,

p3)

if
p2 023 p3
(b) S
SierpinskiTriangle

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/SierpinskiTriangle.html

Recursion vs. lteration

Recursion Is an alternative form of program
control. It Is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the
program calls a method, the system must assign
space for all of the method’s local variables and
parameters. This can consume considerable
memory and requires extra time to manage the \
additional space.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 5?
All rights reserved.

Advantages of Using Recursion

Recursion Is good for solving the problems that are
Inherently recursive.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Tall Recursion

A recursive method is said to be tail recursive If
there are no pending operations to be performed on
return from a recursive call.

Non-tail recursive ComputeFactorial

N\

Tail recursive ComputeFactorial TailRecursion

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/ComputeFactorial.html
https://liveexample.pearsoncmg.com/html/ComputeFactorialTailRecursion.html

