
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 20 Lists, Stacks, Queues,

and Priority Queues

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Objectives
❑ To explore the relationship between interfaces and classes in the Java

Collections Framework hierarchy (§20.2).

❑ To use the common methods defined in the Collection interface for operating
collections (§20.2).

❑ To use the Iterator interface to traverse the elements in a collection (§20.3).

❑ To use a for-each loop to traverse the elements in a collection (§20.3).

❑ To explore how and when to use ArrayList or LinkedList to store elements
(§20.4).

❑ To compare elements using the Comparable interface and the Comparator
interface (§20.5).

❑ To use the static utility methods in the Collections class for sorting, searching,
shuffling lists, and finding the largest and smallest element in collections
(§20.6).

❑ To develop a multiple bouncing balls application using ArrayList (§20.7).

❑ To distinguish between Vector and ArrayList and to use the Stack class for
creating stacks (§20.8).

❑ To explore the relationships among Collection, Queue, LinkedList, and
PriorityQueue and to create priority queues using the PriorityQueue class
(§20.9).

❑ To use stacks to write a program to evaluate expressions (§20.10).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

What is Data Structure?

A data structure is a collection of data

organized in some fashion. The structure

not only stores data, but also supports

operations for accessing and manipulating

the data.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Java Collection Framework

hierarchy

A collection is a container object that holds

a group of objects, often referred to as

elements. The Java Collections Framework

supports three types of collections, named

lists, sets, and maps.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

Java Collection Framework

hierarchy, cont.

Set and List are subinterfaces of Collection.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

The Collection Interface

The Collection interface is for manipulating

a collection of objects.

«interface»

java.util.Collection<E>

+add(e: E): boolean

+addAll(c: Collection<? extends E>):
boolean

+clear(): void

+contains(o: Object): boolean

+containsAll(c:
Collection<?>):boolean

+isEmpty(): boolean

+remove(o: Object): boolean

+removeAll(c: Collection<?>):
boolean

+retainAll(c: Collection<?>):
boolean

+size(): int

+toArray(): Object[]

+stream(): Stream default

+parallelStream(): Stream default

Adds a new element e to this collection.

Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.

Returns true if this collection contains all the elements in c.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in c from this collection.

Retains the elements that are both in c and in this collection.

Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

Returns a stream from this collection (covered in Ch 23).

Returns a parallel stream from this collection (covered in Ch

23).

«interface»

java.util.Iterator<E>

+hasNext(): boolean

+next(): E

+remove(): void

Returns true if this iterator has more elements to traverse.

Returns the next element from this iterator.

Removes the last element obtained using the next method.

«interface»

java.lang.Iterable<E>

+iterator(): Iterator<E>

+forEach(action: Consumer<? super

E>): default void

Returns an iterator for the elements in this collection.

Performs an action for each element in this iterator.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

The List Interface

▪ A list stores elements in a sequential

order, and allows the user to specify

where the element is stored.

▪ The user can access the elements by

index.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

The List Interface, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

The List Iterator

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

ArrayList and LinkedList
▪ The ArrayList class and the LinkedList class are concrete

implementations of the List interface. Which of the two
classes you use depends on your specific needs.

▪ If you need to support random access through an index
without inserting or removing elements from any place
other than the end, ArrayList offers the most efficient
collection.

▪ If, however, your application requires the insertion or
deletion of elements from any place in the list, you should
choose LinkedList.

▪ A list can grow or shrink dynamically. An array is fixed
once it is created. If your application does not require
insertion or deletion of elements, the most efficient data
structure is the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

java.util.ArrayList

«interface»
java.util.List<E>

Creates an empty list with the default initial capacity.

Creates an array list from an existing collection.

Creates an empty list with the specified initial capacity.

Trims the capacity of this ArrayList instance to be the

list's current size.

+ArrayList()

+ArrayList(c: Collection<? extends E>)

+ArrayList(initialCapacity: int)

+trimToSize(): void

«interface»
java.util.Collection<E>

java.util.ArrayList<E>

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

java.util.LinkedList

«interface»
java.util.List<E>

Creates a default empty linked list.

Creates a linked list from an existing collection.

Adds the object to the head of this list.

Adds the object to the tail of this list.

Returns the first element from this list.

Returns the last element from this list.

Returns and removes the first element from this list.

Returns and removes the last element from this list.

+LinkedList()

+LinkedList(c: Collection<? extends E>)

+addFirst(o: E): void

+addLast(o: E): void

+getFirst(): E

+getLast(): E

+removeFirst(): E

+removeLast(): E

«interface»
java.util.Collection<E>

java.util.LinkedList<E>

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Example: Using ArrayList and

LinkedList

▪ This example creates an array list filled with
numbers, and inserts new elements into the
specified location in the list.

▪ The example also creates a linked list from
the array list, inserts and removes the
elements from the list.

▪ Finally, the example traverses the list forward
and backward.

RunTestArrayAndLinkedList

https://liveexample.pearsoncmg.com/html/TestArrayAndLinkedList.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

The Comparator Interface

▪ Sometimes you want to compare the elements of

different types. The elements may not be instances of
Comparable or are not comparable.

▪ You can define a comparator to compare these

elements. To do so, define a class that implements the
java.util.Comparator interface.

▪ The Comparator interface has the compare method

for comparing two objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

The Comparator Interface

public int compare(Object element1, Object element2)

Returns a negative value if element1 is less than
element2, a positive value if element1 is greater than
element2, and zero if they are equal.

RunTest Comparator

GeometricObjectComparator

https://liveexample.pearsoncmg.com/html/TestComparator.html
https://liveexample.pearsoncmg.com/html/GeometricObjectComparator.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Other Comparator Examples

RunSortStringIgnoreCase

RunSortStringByLength

https://liveexample.pearsoncmg.com/html/SortStringIgnoreCase.html
https://liveexample.pearsoncmg.com/html/SortStringByLength.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
17

The Collections Class

The Collections class contains various static methods for

operating on collections and maps, for creating

synchronized collection classes, and for creating read-

only collection classes.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

The Collections Class UML Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Case Study: Multiple Bouncing Balls

RunMultipleBounceBall

MultipleBounceBall

javafx.application.Application

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

MultipleBallPane

-animation: Timeline

+MultipleBallPane()

+play(): void

+pause(): void

+increaseSpeed(): void

+decreaseSpeed(): void

+rateProperty(): DoubleProperty

+moveBall(): void

javafx.scene.layout.Pane

1 1 Ball

dx: double

dy: double

+Ball(x: double, y: double,

radius: double, color: Color)

javafx.scene.shape.Circle

1 m

https://liveexample.pearsoncmg.com/html/MultipleBounceBall.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

The Vector and Stack Classes

The Java Collections Framework was introduced
with Java 2. Several data structures were
supported prior to Java 2. Among them are the
Vector class and the Stack class. These classes
were redesigned to fit into the Java Collections
Framework, but their old-style methods are
retained for compatibility. This section
introduces the Vector class and the Stack class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

The Vector Class

In Java 2, Vector is the same as ArrayList, except
that Vector contains the synchronized methods
for accessing and modifying the vector. None of
the new collection data structures introduced so
far are synchronized. If synchronization is
required, you can use the synchronized versions
of the collection classes. These classes are
introduced later in the section, “The Collections
Class.”

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

The Vector Class, cont.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

The Stack Class

The Stack class represents a last-in-first-

out stack of objects. The elements are

accessed only from the top of the stack.

You can retrieve, insert, or remove an
element from the top of the stack.

java.util.Stack<E>

+Stack()

+empty(): boolean

+peek(): E

+pop(): E

+push(o: E) : E

+search(o: Object) : int

java.util.Vector<E>

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the specified element in this stack.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Queues and Priority Queues

A queue is a first-in/first-out data structure.

Elements are appended to the end of the queue and

are removed from the beginning of the queue. In a

priority queue, elements are assigned priorities.

When accessing elements, the element with the

highest priority is removed first.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

The Queue Interface

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

Using LinkedList for Queue

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

The PriorityQueue Class

RunPriorityQueueDemo

https://liveexample.pearsoncmg.com/html/PriorityQueueDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
28

Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

Run

Evaluate Expression

https://liveexample.pearsoncmg.com/html/EvaluateExpression.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
29

Algorithm
Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators,

and the parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the

top of operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the

top of operatorStack and push the extracted operator to operatorStack.

1.4. If the extracted item is a (symbol, push it to operatorStack.

1.5. If the extracted item is a) symbol, repeatedly process the operators from

the top of operatorStack until seeing the (symbol on the stack.

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until

operatorStack is empty.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
30

Example

