Chapter 20 Lists, Stacks, Queues,
and Priority Queues

Objectives

To explore the relationship between interfaces and classes in the Java
Collections Framework hierarchy (§20.2).

To use the common methods defined in the Collection interface for operating
collections (§20.2).

To use the Iterator interface to traverse the elements in a collection (§20.3).
To use a for-each loop to traverse the elements in a collection (8§20.3).

To explore how and when to use ArrayL.ist or LinkedL.ist to store elements
(820.4).

To compare elements using the Comparable interface and the Comparator
Interface (820.5).

To use the static utility methods in the Collections class for sorting, searching,
shuffling lists, and finding the largest and smallest element in collections
(820.6).

To develop a multiple bouncing balls application using ArrayL.ist (§20.7). \

To distinguish between Vector and ArrayL.ist and to use the Stack class for
creating stacks (820.8).

To explore the relationships among Collection, Queue, LinkedL.ist, and
(P§riori§yQueue and to create priority queues using the PriorityQueue class
20.9).

To use stacks to write a program to evaluate expressions (820.10).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

What i1s Data Structure?

A data structure Is a collection of data
organized in some fashion. The structure
not only stores data, but also supports
operations for accessing and manipulating

the data.
B

Java Collection Framework
hierarchy
A collection Is a container object that holds
a group of objects, often referred to as

elements. The Java Collections Framework
supports three types of collections, named

lists, sets, and maps. \

Java Collection Framework
hierarchy, cont.

Set and List are subinterfaces of Collection.

NavigableSet Iq- --------------------------------------- "=~ TreeSet |
]

<~

- SortedSet |
- _sSet N """"""""""""""""""""" AbstractSet H HashSet N—Li nkedHashSet

Collection |<|--r -------------------------- -- AbstractCollection

Vector M—Stack'
- List |<l. ... AbstracthstH—
' T .— Arraylist |

AbstractSequentiallist IQ—— LinkedList |
- Queue I(l——L ————————————————————————————— AbstractQueue |q PriorityQueue |

Interfaces Abstract Classes Concrete Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

«interface»
java.lang.lterable<E>

+iterator(): Iterator<E>

+forEach (action: Consumer<? super
E>): default void

JZAN

«interface»
java.util.Collection<E>

+add (e: E): boolean

+addAll (c: Collection<? extends E>):
boolean

+clear(): void
+contains (o: Object): boolean

+containsAll (c:
Collection<?>) :boolean

+isEmpty () : boolean

+remove (o: Object): boolean

+removeAll (c: Collection<?>):
boolean

+retainAll (c: Collection<?>):
boolean

+size(): int
+toArray () : Object[]

+stream() : Stream default
+parallelStream(): Stream default
«interface»

java.util.lterator<g>

+hasNext(): boolean
+next(): E
+remove(): void

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

The Collection Interface

Returns an iterator for the elements in this collection.
Performs an action for each element in this iterator.

The Collection interface is for manipulating
a collection of objects.

Adds a new element e to this collection.
Adds all the elements in the collection c to this collection.

Removes all the elements from this collection.

Returns true if this collection contains the element o.
Returns true if this collection contains all the elements in c.
Returns true if this collection contains no elements.
Removes the element o from this collection.

Removes all the elements in ¢ from this collection.

Retains the elements that are both in ¢ and in this collection.

Returns the number of elements in this collection.
Returns an array of Object for the elements in this collection.
Returns a stream from this collection (covered in Ch 23).

Returns a parallel stream from this collection (covered in Ch
23).

Returns true if this iterator has more elements to traverse.
Returns the next element from this iterator.
Removes the last element obtained using the next method.

All rights reserved.

The List Interface

= A list stores elements In a sequential
order, and allows the user to specify
where the element Is stored.

« The user can access the elements by
Index.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

The List Interface, cont.

«interface»
java.util.Collection<E>

~

«interface»
java.util.List<E>

+add(index: int, element: Object): boolean

+addAl1(index: int, c: Collection<? extends E>)
boolean

+get(index: int): E

+1ndexOf(element: Object): int

+lastIndexOf (element: Object): int
+listlterator(): ListIterator<E>
+listlterator(startIndex: int): ListIterator<E>
+remove(index: int): E

+set(index: int, element: Object): Object

+sublist(fromIndex: int, tolIndex: int): List<E>

Adds a new element at the specified index.

Adds all the elements in c to this list at the specified
index.

Returns the element in this list at the specified index.
Returns the index of the first matching element.

Returns the index of the last matching element.

Returns the list iterator for the elements in this list.
Returns the iterator for the elements from startIndex.
Removes the element at the specified index.

Sets the element at the specified index.

Returns a sublist from fromIndex to toIndex-1.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

The List Iterator

«interface»
java.util.Iterator<E>

PaN

«interface»
java.util. ListIterator<E>

+add(element: E): void
+hasPrevious(): boolean

+nextIndex(): int
+previous(): E
+previousIndex(): 1nt
+set(element: E): void

Adds the specified object to the list.

when traversing backward.
Returns the index of the next element.

Returns the index of the previous element.

next method with the specified element.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Returns true if this list iterator has more elements

Returns the previous element in this list iterator.

Replaces the last element returned by the previous or

p/
'

ArrayList and LinkedList

The ArrayLlist class and the LinkedList class are concrete
Implementations of the List interface. Which of the two
classes you use depends on your specific needs.

If you need to support random access through an index
without inserting or removing elements from any place
other than the end, ArrayL.ist offers the most efficient
collection.

If, however, your application requires the insertion or
deletion of elements from any place in the list, you should
choose LinkedL.ist. \

A list can grow or shrink dynamically. An array Is fixed
once It Is created. If your application does not require
Insertion or deletion of elements, the most efficient data
structure is the array.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

java.util.ArrayL.ist

«interface»
java.util.Collection<E>

AN

«interface»
java.util.List<E>

ZaN

java.util.ArrayList<E>
|
+ArrayList() Creates an empty list with the default initial capacity.
+ArrayList(c: Collection<? extends E>) | Creates an array list from an existing collection.
+ArrayList(initialCapacity: int) Creates an empty list with the specified initial capacity.
+trimToSize(): void Trims the capacity of this ArrayList instance to be the
list's current size.
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. j?

All rights reserved.

java.util.LinkedL.ist

«interface»
java.util.Collection<E>

7~

«Interface»
java.util.List<E>

AN

java.util.LinkedList<E>
+LinkedList() Creates a default empty linked list.
+LinkedList(c: Collection<? extends E>) | Creates a linked list from an existing collection.
+addFirst(o: E): void Adds the object to the head of this list.
+addLast(o: E): void Adds the object to the tail of this list. \
+getFirst(): E Returns the first element from this list.
+getLast(): E Returns the last element from this list.
+removeFirst(): E Returns and removes the first element from this list.
+removelLast(): E Returns and removes the last element from this list.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Example: Using ArrayList and
LinkedLIist

= This example creates an array list filled with
numbers, and inserts new elements into the
specified location In the list.

» The example also creates a linked list from
the array list, inserts and removes the
elements from the list.

= Finally, the example traverses the list forwa
and backward.

TestArrayAndLinkedList -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestArrayAndLinkedList.html

The Comparator Interface

« Sometimes you want to compare the elements of

different types. The elements may not be instances of
Comparalble or are not comparable.

= You can define a comparator to compare these
elements. To do so, define a class that implements the
java.util.Comparator Interface.

» The Comparator interface has the compare methqk
for comparing two objects.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

The Comparator Interface

public int compare(Object elementl, Object element?2)

Returns a negative value if elementl is less than
element2, a positive value if elementl is greater than
element2, and zero if they are equal.

GeometricObjectComparator

Test Comparator

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

G'

https://liveexample.pearsoncmg.com/html/TestComparator.html
https://liveexample.pearsoncmg.com/html/GeometricObjectComparator.html

Other Comparator Examples

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/SortStringIgnoreCase.html
https://liveexample.pearsoncmg.com/html/SortStringByLength.html

The Collections Class

The Collections class contains various static methods for
operating on collections and maps, for creating
synchronized collection classes, and for creating read-
only collection classes.

A\

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

The Collections Class UML Diagram

List

Collection

java.util.Collections

+sort(list: List): void
+sort(list: List, c: Comparator): void

+binarySearch(list: List, key: Object): int

+binarySearch(list: List, key: Object, c:
Comparator): int

+reverse(list: List): void

+reverseOrder(): Comparator

+shuffle(list: List): void

+shuffle(list: List, rmd: Random): void
+copy(des: List, src: List): void
+nCopies(n: int, o: Object): List
+f111(list: List, o: Object): void

+max(c: Collection): Object

+max(c: Collection, c: Comparator): Object
+min(c: Collection): Object

Comparator): Object
Collection):

+min(c: Collection, c:

+disjoint(cl: Collection, c2:
boolean

+frequency(c: Collection, o:

Object): 1int

Sorts the specified list.
Sorts the specified list with the comparator.
Searches the key in the sorted list using binary search.

Searches the key in the sorted list using binary search
with the comparator.

Reverses the specified list.

Returns a comparator with the reverse ordering.
Shuffles the specified list randomly.

Shuffles the specified list with a random object.
Copies from the source list to the destination list.
Returns a list consisting of n copies of the object.
Fills the list with the object.

Returns the max object in the collection.

Returns the max object using the comparator.
Returns the min object in the collection.

Returns the min object using the comparator.
Returns true if c1 and c2 have no elements in common.

Returns the number of occurrences of the specified

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

element in the collection.

Case Study: Multiple Bouncing Balls

javafx.scene.shape.Circle javafx.scene.layout.Pane javafx.application.Application

7 3 i

Ball m—1<> MultipleBallPane 1—1<> MultipleBounceBall

dx: double -animation: Timeline

dy: double
+MultipleBallPane ()

+Ball (x: double, y: double, +play () : void

radins: double, color: Color) tpause () : void

+increaseSpeed () : void
+decreaseSpeed () : void
+rateProperty(): DoubleProperty

MultipleBounceBall

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/MultipleBounceBall.html

The Vector and Stack Classes

The Java Collections Framework was introduced
with Java 2. Several data structures were
supported prior to Java 2. Among them are the
Vector class and the Stack class. These classes
were redesigned to fit into the Java Collections
Framework, but their old-style methods are
retained for compatibility. This section
Introduces the Vector class and the Stack class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

The Vector Class

In Java 2, Vector Is the same as ArrayL.ist, except
that Vector contains the synchronized methods

for accessing and modifying the vector. None of
the new collection data structures introduced so
far are synchronized. If synchronization is
required, you can use the synchronized versions
of the collection classes. These classes are \

introduced later 1n the section, “The Collection
Class.”

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

The Vector Class, cont.

java.util.AbstractlList<E>

AF‘

java.util.Vector <E>

+Vector()

+Vector(c: Collection<? extends E>)
+Vector(initialCapacity: int)
+Vector(initCapacity: int, capacitylncr: 1int)
+addETement(o: E): void

+capacity(): 1int

+copyInto(anArray: Object[]): void
+elementAt(index: 1nt): E

+elements(): Enumeration<E>
+ensureCapacity(): void

+firstElement(): E

+insertElementAt(o: E, index: int): void
+lastElement(): E

+removeAll1Elements(): void
+removeElement(o: Object): boolean
+removeElementAt(index: int): void
+setElementAt(o: E, index: int): void
+setSize(newSize: int): void
+trimToSize(): void

Creates a default empty vector with initial capacity 10.

Creates a vector from an existing collection.

Creates a vector with the specified initial capacity.

Creates a vector with the specified initial capacity and increment.

Appends the element to the end of this vector.
Returns the current capacity of this vector.
Copies the elements in this vector to the array.
Returns the object at the specified index.
Returns an enumeration of this vector.
Increases the capacity of this vector.

Returns the first element in this vector.

Inserts o into this vector at the specified index.
Returns the last element in this vector.
Removes all the elements in this vector.
Removes the first matching element in this vector.
Removes the element at the specified index.
Sets a new element at the specified index.

Sets a new size in this vector.

Trims the capacity of this vector to its size.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

java.util.Vector<gE>

LlA

java.util.Stack<E>

+Stack()

+empty(): boolean
+peek(): E

+pop(): E

+push(o: E) : E
+search(o: Object) : int

The Stack Class

The Stack class represents a last-in-first-
out stack of objects. The elements are
accessed only from the top of the stack.

You can retrieve, insert, or remove an
element from the top of the stack.

Creates an empty stack.

Returns true if this stack is empty.

Returns the top element in this stack. \
Returns and removes the top element in this stack.

Adds a new element to the top of this stack.
Returns the position of the specified element in this stack.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. k

All rights reserved.

Queues and Priority Queues

A gueue Is a first-in/first-out data structure.
Elements are appended to the end of the queue and
are removed from the beginning of the queue. In a
priority queue, elements are assigned priorities.
When accessing elements, the element with the
highest priority is removed first.

N

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. #
All rights reserved.

The Queue Interface

«interface»
java.util.Collection<E>

2~

«interface»
Jjava.util. Queue<E>

+offer(element: E): boolean
+poll(): E

+remove(): E
+peek(): E

+element(): E

Inserts an element into the queue.
Retrieves and removes the head of this queue. or nul1
if this queue 1s empty.
Retrieves and removes the head of this queue and
throws an exception if this queue 1s empty.

Retrieves, but does not remove, the head of this queue,
returning hu171 if this queue is empty.

Retrieves, but does not remove, the head of this queue,
throws an exception if this queue is empty.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Using LinkedList for Queue

«interface»
java.util.Collection<E>

R\ 24

y, N
«interface» «interface»
java.util.List<E> java.util.Queue<E>

7 z

«interface»

java.util.Deque<E> \

{> .

java.util.LinkedList<E>

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

The PriorityQueue Class

«interface»
java.util.Queue<E>

o

Jjava.util.PriorityQueue<E>

+PriorityQueue() Creates a default priority queue with initial capacity 11.
+PriorityQueue(initialCapacity: int) Creates a default priority queue with the specified initial
capacity.
+PriorityQueue(c: Collection<? extends Creates a priority queue with the specified collection.
E>)
+PriorityQueue(initialCapacity: 1int, Creates a priority queue with the specified initial
comparator: Comparator<? super E>) capacity and the comparator.

PriorityQueueDemo - B

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/PriorityQueueDemo.html

Case Study: Evaluating Expressions
Stacks can be used to evaluate expressions.

951 + 54 * (3 + 2) - Google Search - Mozilla Firefox

a[=]kd

File Edit View History Bookmarks Tools Help

is - 0 X 4 |8 |http:ffmw.google.comjsearch?hl:en&q:S14w‘f_'j'r - |v|G::g|IE

»

Web Images Maps News Shopping Gmail more v Signini

Google —

Web

M1+ (54*(3+2)) =321

More about calculator.
<]

s|_|<_

|D0ne
_lo/x|
F:\book)jaua EvaluateExpression “(1 + 3 = 3 - 2) % (12 / 6 x 5)" -]
80

—
c:\book>java EvaluateExpression "{1 + 3 %= 3 - 2) =% (12 / 6 = 5) +"
Wrong expression: (1 + 3 = 3 - 2) = (12 / 6 % 5) +
c:\book>java EvaluateExpression (1 + 2) = 4 - 3"
9
c:\book> A
4| | ' 4

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

/

Evaluate Expression

https://liveexample.pearsoncmg.com/html/EvaluateExpression.html

Algorithm

Phase 1: Scanning the expression

The program scans the expression from left to right to extract operands, operators,
and the parentheses.

1.1. If the extracted item is an operand, push it to operandStack.

1.2. If the extracted item is a + or - operator, process all the operators at the
top of operatorStack and push the extracted operator to operatorStack.

1.3. If the extracted item is a * or / operator, process the * or / operators at the
top of operatorStack and push the extracted operator to operatorStack.

1.4. If the extracted item is a (symbol, push it to operatorStack.

1.5. If the extracted item is a) symbol, repeatedly process the operators from
the top of operatorStack until seeing the (symbol on the stack. \

Phase 2: Clearing the stack

Repeatedly process the operators from the top of operatorStack until
operatorStack is empty.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Example

Expression Scan Action operandStack operatorStack
(I +2)¥4 — 3 (Phase 1.4 (
1
(1 +2)*4 — 3 | Phase 1.1 | (
)
(1 + 2)%4 — 3 + Phase 1.2 1 T

1 (
(1 +2)%4 — 3 2 Phase 1.1 2 (

1 |
(1 +2)%4 — 3) Phase 1.5 3
)
(1 +2)*4 — 3 Phase 1.3 3
1
(1 + 2)¥4 — 3 4 Phase 1.1 4
1 |3
(1 +2)4 — 3 — Phase 1.2 ‘ 12 \ —
!
(1 +2)%4 — 3 3 Phase 1.1 3 —
T 12
(1 +2)¥4 — 3 none Phase 2 9
1

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

