Chapter 21 Sets and Maps

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Objectives

To store unordered, nonduplicate elements using a set (821.2).

To explore how and when to use HashSet (§21.2.1),
LinkedHashSet (§21.2.2), or TreeSet (§21.2.3) to store elements.

To compare performance of sets and lists (821.3).

To use sets to develop a program that counts the keywords in a
Java source file (§21.4).

To tell the differences between Collection and Map and describe
when and how to use HashMap, LinkedHashMap, and TreeMap to
store values associated with keys (8§21.5).

To use maps to develop a program that counts the occurrence N
words In a text (8§21.6).

To obtain singleton sets, lists, and maps, and unmodifiable sets,
lists, and maps, using the static methods in the Collections clas
(821.7).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Motivations

The “No-Fly” list is a list, created and maintained by the U.S.
government’s Terrorist Screening Center, of people who are not
permitted to board a commercial aircraft for travel in or out of the
United States. Suppose we need to write a program that checks
whether a person is on the No-Fly list. You can use a list to store
names In the No-Fly list. However, a more efficient data structure
for this application is a set.

Suppose your program also needs to store detailed information

about terrorists in the No-Fly list. The detailed information such
gender, height, weight, and nationality can be retrieved using th
name as the key. A map is an efficient data structure for sucha

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

Review of Java Collection
Framework hierarchy

Set and List are subinterfaces of Collection.

NavigableSet Iq- --------------------------------------- "=~ TreeSet |
]

<~

- SortedSet |
- _sSet N """"""""""""""""""""" AbstractSet H HashSet N—Li nkedHashSet

Collection |<|--r -------------------------- -- AbstractCollection

Vector M—Stack'
- List |<l. ... AbstracthstH—
' T .— Arraylist |

AbstractSequentiallist IQ—— LinkedList |
- Queue I(l——L ————————————————————————————— AbstractQueue |q PriorityQueue |

Interfaces Abstract Classes Concrete Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

* +iterator(): Iterator<E>

Returns an iterator for the elements in this collection.

PAN

+add(o: E): boolean

+addA11(c: Collection<? extends E>): boolean
+clear(): void

+contains(o: Object): boolean
+containsAll(c: Collection<?>): boolean
+equals(o: Object): boolean
+hashCode(): 1int

+1sEmpty () : boolean

+remove(o: Object): boolean
+removeAll(c: Collection<?>): boolean
+retainAll(c: Collection<?>): boolean
+size(): 1nt

+toArray(): Object[]

The Collection interface is the root interface
for manipulating a collection of objects.

Adds a new element o to this collection.

Adds all the elements in the collection ¢ to this collection.
Removes all the elements from this collection.

Returns true if this collection contains the element o.
Returns true if this collection contains all the elements in C.
Returns true if this collection is equal to another collection o.
Returns the hash code for this collection.

Returns true if this collection contains no elements.

Removes the element o from this collection.

Removes all the elements in ¢ from this collection.

Retains the elements that are both in € and in this collection.
Returns the number of elements in this collection.

Returns an array of Object for the elements in this collection.

+hasNext() : boolean
+next(): E
+remove(): void

Returns true if this iterator has more elements to traverse.
Returns the next element from this iterator.

Removes the last element obtained using the next method.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. *
All rights reserved.

The Set Interface

The Set Interface extends the Collection interface.

It does not Iintroduce new methods or constants, but
It stipulates that an instance of Set contains no
duplicate elements. The concrete classes that
Implement Set must ensure that no duplicate
elements can be added to the set. That 1S no two
elements el and e2 can be In the set such that \
el.equals(e2) is true.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

«interface»

The Set Interface java.urf?.fz;?ecrfon<£>

«interface»
I y java.util.Set<E>

Z 7

T S S S e C L]

java.util.AbstractSet<E>] cinterfaces

er AP Jjava.util. SortedSet<E>

+first(): E
java.util. HashSet<E> +last(O: E
+HashsetO) +headSet(toElement: E): SortedSet<E>
s Sl (G 29 +tailSet(fromElement: E): SortedSet<E>
+HashSet(initialCapacity: int) 1451
+HashSet(initialCapacity: int, loadFactor: float) :
«interface»
Jjava.util. NavigableSet<E>
java.util. LinkedHashSet<E> +polIFirst(): E
+LinkedHashSet () +pollLlast(): E
+LinkedHashSet(c: Collection<? extends E>) +?9wer(e: E): E
+LinkedHashSet(initialCapacity: int) +higher(e: E):E
+LinkedHashSet(initialCapacity: int, loadFactor: float) +floor(e: E): E
+ceiling(e: E): E
| 1
1
java.util. TreeSet<E>
+TreeSet()
+TreeSet(c: Collection<? extends E>)
+TreeSet(comparator: Comparator<?
super E>)
+TreeSet(s: SortedSet<E>)
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. »

All rights reserved.

The AbstractSet Class

The AbstractSet class i1s a convenience class that
extends AbstractCollection and implements Set.
The AbstractSet class provides concrete
Implementations for the equals method and the
hashCode method. The hash code of a set Is the
sum of the hash code of all the elements in the set.
Since the size method and iterator method are™n
Implemented In the AbstractSet class, AbstractS

IS an abstract class.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

The HashSet Class

The HashSet class Is a concrete class that
Implements Set. It can be used to store
duplicate-free elements. For efficiency,
objects added to a hash set need to implement
the hashCode method In a manner that
properly disperses the hash code. 3
Liang, Introduction to Java Programmpi\lrlgr,i Ehlte;vrentgrsglitlion, (c) 2018 Pearson Education, Ltd. ?

Example: Using HashSet and
[terator

This example creates a hash set filled with
strings, and uses an Iterator to traverse the

elements in the list.
TestHashSet - 9
rson Education, Ltd. R

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Peal
ri rved.

https://liveexample.pearsoncmg.com/html/TestHashSet.html

TIP: for-each loop

You can simplify the code in Lines 21-26 using a
JDK 1.5 enhanced for loop without using an
Iterator, as follows:

for (Object element: set)
System.out.print(element.toString() + " "'); \

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. P
All rights reserved.

Example: Using LinkedHashSet

This example creates a hash set filled with
strings, and uses an Iterator to traverse the

elements In the list.
TestLinkedHashSet - 9

Liang, Introduction to Java Programming, Elev thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestLinkedHashSet.html

The SortedSet Interface and the
TreeSet Class

SortedSet Is a subinterface of Set, which
guarantees that the elements in the set are
sorted. TreeSet IS a concrete class that
Implements the SortedSet Interface. You can
use an Iterator to traverse the elements in the
sorted order. The elements can be sorted inD

two ways.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

The SortedSet Interface and the
TreeSet Class, cont.

One way Is to use the Comparable interface.

The other way Is to specify a comparator for the
elements In the set If the class for the elements
does not implement the Comparable interface, or
you don’t want to use the compareTo method in\
the class that implements the Comparable
Interface. This approach is referred to as order b
comparator.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

Example: Using TreeSet to Sort
Elements in a Set

This example creates a hash set filled with strings, and
then creates a tree set for the same strings. The strings
are sorted In the tree set using the compareTo method In
the Comparable interface. The example also creates a
tree set of geometric objects. The geometric objects are
sorted using the compare method in the Comparator

Interface.
TestTreeSet - D

Liang, Introduction to Java Programming, Elev thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestTreeSet.html

Example: The Using Comparator to
Sort Elements In a Set

Write a program that demonstrates how to

sort elements In a tree set using the

Comparator interface. The example creates a

tree set of geometric objects. The geometric

objects are sorted using the compare method

In the Comparator interface. \
Run_

TestTreeSetWithComparator

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 1?
All rights reserved.

https://liveexample.pearsoncmg.com/html/TestTreeSetWithComparator.html

Performance of Sets and LIsts

TestTreeSetWithComparator - B

Liang, Introduction to Java Programming, Elev thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/SetListPerformanceTest.html

Case Study: Counting Keywords

This section presents an application that counts
the number of the keywords In a Java source file.

CountKeywords - 9

Liang, Introduction to Java Programming, Elev thEdt n, (c) 2018 Pearson Education, Ltd.
All rights reserved.

https://liveexample.pearsoncmg.com/html/CountKeywords.html

The Map Interface

The Map interface maps keys to the elements. The
keys are like indexes. In List, the indexes are

Integer. In Map, the keys can be any objects.

Search key _ Corresponding Search key

— Corresponding
l [element value i / value
A map—>| (= Y— r ¥ \
(-] H—Entry 111-34-3434] [John Entry

i !
\ r

1] 1] 132-56-6290 Peter

(a) (b)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

Map Interface and Class
Hierarchy

An instance of Map represents a group of objects, each of
which is associated with a key. You can get the object
from a map using a key, and you have to use a key to put
the object into the map.

i—- SortedMap M--- NavigableMap M - ~~=~ TreeMap I

Map 1 - _— | AbstractMap M i HashMap L1inkedHashMap | \

Interfaces Abstract Classes Concrete Classes

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. R
All rights reserved.

The Map Interface UML Diagram

«interface»
Jjava.util. Map<K, V>

+clear(): void
+containsKey(key: Object): boolean

+containsValue(value: Object): boolean

+entrySet(): Set<Map.Entry<K, V>>

+get(key: Object): V

+1sEmpty(): boolean

+keySet(): Set<K>

+put(key: K, value: V): V

+putAll(m: Map<? extends K,? extends
V>): void

+remove(key: Object): V

+size(): 1int

+values(): Collection<V>

Removes all entries from this map.

Returns true if this map contains an entry for the
specified key.

Returns true if this map maps one or more keys to the
specified value.

Returns a set consisting of the entries in this map.

Returns the value for the specified key in this map.

Returns true if this map contains no entries.

Returns a set consisting of the keys in this map.

Puts an entry into this map.

Adds all the entries from m to this map.

Removes the entries for the specified key.
Returns the number of entries in this map.
Returns a collection consisting of the values in this map.

4

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?

All rights reserved.

Concrete Map Classes

«interface»
java.util.Map<K, V>

java.util.AbstractMap<K, V> | «interface»
PaN java.util.SortedMap<K, V>
+firstkey (O: K
java.utiLHashMap<K,V> +lastKey (O : K
+HashMap O +comparator (): Comparator<? super K>)

+headMap (toKey: K): SortedMap<K, V>

+HashMap(initialCapacity: int,loadFactor: float) _
+tailMap(fromKey: K): SortedMap<K, V>

+HashMap(m: Map<? extends K, ? extends V>)

i T

java.atil.LinkedHashMap<K,V> «interface»
+LinkedHashMapO) Java.util. NavigableMap<K, V>
+LinkedHashMap(m: Map<? extends K,? extends V>) +floorKey(key: K): K
+LinkedHashMap(initialCapacity: 1int, +ceilingKey(key: K): K

loadFactor: float, accessOrder: boolean)

+lowerKey(key: K): K

+higherKey(key: K): K
+pollFirstEntry(): Map.EntrySet<K, V>
+polllastEntry(): Map.EntrySet<K, V>

N
|)

java.util. TreeMap<K,V>

+TreeMap()
+TreeMap(m: Map<? extends K,? extends V)
+TreeMap(c: Comparator<? super K>)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Entry

+getKey () : K Returns the key from this entry.
+getValue(): V Returns the value from this entry.
+setValue(value: V): void Replaces the value in this entry with a new value.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

HashMap and TreeMap

The HashMap and TreeMap classes are two
concrete implementations of the Map
Interface. The HashMap class Is efficient for
locating a value, Inserting a mapping, and
deleting a mapping. The TreeMap class,
Implementing SortedMap, Is efficient for
traversing the keys In a sorted order. B
ns

LinkedHashMap

LinkedHashMap was introduced in JDK 1.4. It extends
HashMap with a linked list implementation that supports an

ordering of the entries in the map. The entries In a
HashMap are not ordered, but the entries in a

LinkedHashMap can be retrieved in the order in which they
were Inserted into the map (known as the insertion order),

or the order in which they were last accessed, from
recently accessed to most recently (access order). T
arg constructor constructs a LinkedHashMap with t

least
ne No-
ne

Insertion order. To construct a LinkedHashMap with the\
access order, use the LinkedHashMap(initialCapacity,

loadFactor, true).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.
All rights reserved.

Example: Using HashMap and
TreeMap

This example creates a hash map that maps
borrowers to mortgages. The program first
creates a hash map with the borrower’s

name as Its key and mortgage as Iits value.
The program then creates a tree map from
the hash map, and displays the mappings n\
ascending order of the keys.

TestMap -

https://liveexample.pearsoncmg.com/html/TestMap.html

Case Study: Counting the

Occurrences of Words In a Text

This program counts the occurrences of words In a text
and displays the words and their occurrences In
ascending order of the words. The program uses a hash
map to store a pair consisting of a word and its count.
For each word, check whether it is already a key In the
map. If not, add the key and value 1 to the map.
Otherwise, increase the value for the word (key):b
In the map. To sort the map, convert it to a tree ma

CountOccurrenceOfWords -

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. ?
All rights reserved.

https://liveexample.pearsoncmg.com/html/CountOccurrenceOfWords.html

The Singleton and Unmodiable
Collections

java.util.Collections

+singleton(o: Object): Set

+singletonlList(o: Object): List

+singletonMap(key: Object, value: Object): Map

+unmodifiableCollection(c: Collection): Collection

+unmodifiablelList(list: List): List

+unmodifiableMap(m: Map):

Map

+unmodifiableSet(s: Set):

Set

+unmodifiableSortedMap(s:

SortedMap) : SortedMap

+unmodifiableSortedSet(s:

SortedSet): SortedSet

Returns an immutable set containing the specified object.
Returns an immutable list containing the specified object.
Returns an immutable map with the key and value pair.
Returns a read-only view of the collection.

Returns a read-only view of the list.

Returns a read-only view of the map.

Returns a read-only view of the set.

Returns a read-only view of the sorted map.

Returns a read-only view of the sorted set.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

2\

