
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
1

Chapter 21 Sets and Maps



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
2

Objectives
❑ To store unordered, nonduplicate elements using a set (§21.2). 

❑ To explore how and when to use HashSet (§21.2.1), 

LinkedHashSet (§21.2.2), or TreeSet (§21.2.3) to store elements.

❑ To compare performance of sets and lists (§21.3).

❑ To use sets to develop a program that counts the keywords in a 

Java source file (§21.4).

❑ To tell the differences between Collection and Map and describe 

when and how to use HashMap, LinkedHashMap, and TreeMap to 

store values associated with keys (§21.5). 

❑ To use maps to develop a program that counts the occurrence of the 

words in a text (§21.6).

❑ To obtain singleton sets, lists, and maps, and unmodifiable sets, 

lists, and maps, using the static methods in the Collections class 

(§21.7). 



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
3

Motivations
The “No-Fly” list is a list, created and maintained by the U.S. 

government’s Terrorist Screening Center, of people who are not 

permitted to board a commercial aircraft for travel in or out of the 

United States. Suppose we need to write a program that checks 

whether a person is on the No-Fly list. You can use a list to store 

names in the No-Fly list. However, a more efficient data structure 

for this application is a set.

Suppose your program also needs to store detailed information 

about terrorists in the No-Fly list. The detailed information such as 

gender, height, weight, and nationality can be retrieved using the 

name as the key. A map is an efficient data structure for such a task.



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
4

Review of Java Collection 

Framework hierarchy

Set and List are subinterfaces of Collection.



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
5

The Collection interface is the root interface 

for manipulating a collection of objects.



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
6

The Set Interface

The Set interface extends the Collection interface. 

It does not introduce new methods or constants, but 

it stipulates that an instance of Set contains no 

duplicate elements. The concrete classes that 

implement Set must ensure that no duplicate 

elements can be added to the set. That is no two 

elements e1 and e2 can be in the set such that 

e1.equals(e2) is true.



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
7

The Set Interface 

Hierarchy



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
8

The AbstractSet Class

The AbstractSet class is a convenience class that 

extends AbstractCollection and implements Set. 

The AbstractSet class provides concrete 

implementations for the equals method and the 

hashCode method. The hash code of a set is the 

sum of the hash code of all the elements in the set. 

Since the size method and iterator method are not 

implemented in the AbstractSet class, AbstractSet 

is an abstract class.



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
9

The HashSet Class

The HashSet class is a concrete class that 

implements Set. It can be used to store 

duplicate-free elements. For efficiency, 

objects added to a hash set need to implement 

the hashCode method in a manner that 

properly disperses the hash code. 



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
10

Example: Using HashSet and 

Iterator

This example creates a hash set filled with 

strings, and uses an iterator to traverse the 

elements in the list. 

RunTestHashSet

https://liveexample.pearsoncmg.com/html/TestHashSet.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
11

TIP: for-each loop

You can simplify the code in Lines 21-26 using a 
JDK 1.5 enhanced for loop without using an 
iterator, as follows:

for (Object element: set)

System.out.print(element.toString() + " ");



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
12

Example: Using LinkedHashSet

This example creates a hash set filled with 

strings, and uses an iterator to traverse the 
elements in the list.

RunTestLinkedHashSet

https://liveexample.pearsoncmg.com/html/TestLinkedHashSet.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
13

The SortedSet Interface and the 

TreeSet Class

SortedSet is a subinterface of Set, which 

guarantees that the elements in the set are 

sorted. TreeSet is a concrete class that 

implements the SortedSet interface. You can 

use an iterator to traverse the elements in the 

sorted order. The elements can be sorted in 

two ways. 



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
14

The SortedSet Interface and the 

TreeSet Class, cont.

One way is to use the Comparable interface. 

The other way is to specify a comparator for the 
elements in the set if the class for the elements 
does not implement the Comparable interface, or 
you don’t want to use the compareTo method in 
the class that implements the Comparable 
interface. This approach is referred to as order by 
comparator.



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
15

Example: Using TreeSet to Sort 

Elements in a Set
This example creates a hash set filled with strings, and 
then creates a tree set for the same strings. The strings 
are sorted in the tree set using the compareTo method in 
the Comparable interface. The example also creates a 
tree set of geometric objects. The geometric objects are 
sorted using the compare method in the Comparator 
interface. 

RunTestTreeSet

https://liveexample.pearsoncmg.com/html/TestTreeSet.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
16

Example: The Using Comparator to 

Sort Elements in a Set

Write a program that demonstrates how to 

sort elements in a tree set using the 

Comparator interface. The example creates a 

tree set of geometric objects. The geometric 

objects are sorted using the compare method 

in the Comparator interface. 

RunTestTreeSetWithComparator

https://liveexample.pearsoncmg.com/html/TestTreeSetWithComparator.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
17

Performance of Sets and Lists

RunTestTreeSetWithComparator

https://liveexample.pearsoncmg.com/html/SetListPerformanceTest.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
18

Case Study: Counting Keywords

This section presents an application that counts 

the number of the keywords in a Java source file.

RunCountKeywords

https://liveexample.pearsoncmg.com/html/CountKeywords.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
19

The Map Interface

The Map interface maps keys to the elements. The 

keys are like indexes. In List, the indexes are 

integer. In Map, the keys can be any objects. 



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
20

Map Interface and Class 

Hierarchy

An instance of Map represents a group of objects, each of 
which is associated with a key. You can get the object 
from a map using a key, and you have to use a key to put 
the object into the map. 



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
21

The Map Interface UML Diagram



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
22

Concrete Map Classes



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
23

Entry



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
24

HashMap and TreeMap

The HashMap and TreeMap classes are two 

concrete implementations of the Map 

interface. The HashMap class is efficient for 

locating a value, inserting a mapping, and 

deleting a mapping. The TreeMap class, 

implementing SortedMap, is efficient for 

traversing the keys in a sorted order. 



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
25

LinkedHashMap

LinkedHashMap was introduced in JDK 1.4. It extends 
HashMap with a linked list implementation that supports an 
ordering of the entries in the map. The entries in a 
HashMap are not ordered, but the entries in a 
LinkedHashMap can be retrieved in the order in which they 
were inserted into the map (known as the insertion order), 
or the order in which they were last accessed, from least 
recently accessed to most recently (access order). The no-
arg constructor constructs a LinkedHashMap with the 
insertion order. To construct a LinkedHashMap with the 
access order, use the LinkedHashMap(initialCapacity, 
loadFactor, true).



Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
26

Example: Using HashMap and 

TreeMap

This example creates a hash map that maps 
borrowers to mortgages. The program first 
creates a hash map with the borrower’s 
name as its key and mortgage as its value. 
The program then creates a tree map from 
the hash map, and displays the mappings in 
ascending order of the keys.

RunTestMap

https://liveexample.pearsoncmg.com/html/TestMap.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
27

Case Study: Counting the 

Occurrences of Words in a Text
This program counts the occurrences of words in a text 

and displays the words and their occurrences in 

ascending order of the words. The program uses a hash 

map to store a pair consisting of a word and its count. 

For each word, check whether it is already a key in the 

map. If not, add the key and value 1 to the map. 

Otherwise, increase the value for the word (key) by 1 

in the map. To sort the map, convert it to a tree map. 

RunCountOccurrenceOfWords

https://liveexample.pearsoncmg.com/html/CountOccurrenceOfWords.html


Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd. 

All rights reserved. 
28

The Singleton and Unmodiable 

Collections


