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Problem solving agents and uninformed search methods

A simple reflex agent is one that selects an action based only on the
current percept. It ignores the rest of the percept history.
A problem-solving agent must

Agents that Plan Ahead: When the correct action to take is not
immediately obvious,

= anagent may need to plan ahead: to consider a sequence of
actions that form a path to a goal state.

=  Such an agent is called a problem-solving agent, and
= the computational process it undertakes is called search.

In this chapter, we consider only the simplest environments: episodic,
ilngle agent, fully observable, deterministic, static, discrete, and
nown.

Search Problems: We distinguish between

= informed algorithms, in which the agent can estimate how far it is
from the goal, and

= uninformed algorithms, where no such estimate is available

Uninformed Search Methods

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search




Search Problems




Example search problem: Holiday in Romania

" [magine an agent enjoying a touring vacation in Romania
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Problem-Solving Agent follow four-phase problem-solving process

: The agent adopts the goal of reaching Bucharest. Goals organize
behavior by limiting the objectives and hence the actions to be considered.

: The agent devises a description of the states and actions
necessary to reach the goal—an abstract model of the relevant part of the world.
For our agent, one good model is to consider the actions of traveling from one city
to an adjacent city, and therefore the only fact about the state of the world that will
change due to an action is the current city.

. -: Before taking any action in the real world, the agent simulates sequences of
actions in its model, searching until it finds a sequence of actions that reaches the
goal. Such a sequence is called a solution.

= The agent might have to simulate multiple sequences that do not reach the goal, but
eventually it will find a solution (such as going from Arad to Sibiu to Fagaras to Bucharest),

or it will find that no solution is possible.
. -: The agent can now execute the actions in the solution, one at a time.




Search problems and solutions

Classifier (reflex-based models):

z = | f |=> single actiony € {-1,+1}

Search problem (state-based models):

L = | f | = action sequence (a, ag, az, ay, . ..)

Key: need to consider future consequences of an action!
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Reflex-based models in machine learning (e.g., linear predictors
and neural networks) that output either a or (for binary
classification) or a real number (for regression).

While reflex-based models were appropriate for some applications
such as sentiment classification or spam filtering, the applications
we will look at today, such as solving puzzles, demand more.

To tackle these new problems, we will introduce search problems,
our first instance of a state-based model.

In a search problem, in a sense, we are still building a predictor
which takes an input , but will now return an entire action
sequence, not just a single action.

Of course you should object: can't | just apply a reflex model
iteratively to generate a sequence? While that is true, the search
problems that we're trying to solve importantly require reasoning
about the consequences of the entire action sequence, and cannot
be tackled by myopically predicting one action at a time.

Of course, saying "cannot" is a bit strong, since sometimes a
search problem can be solved by a reflex-based model. You could
have a massive lookup table that told you what the best action
was for any given situation.



Search problems and solutions

= Asearch problem can be defined formally as follows:

A set of possible states that the environment can be in. We call this the state space.

A set of one or more goal states. Sometimes there is one goal state (e.g., Bucharest), goal states sometimes, there is
a small set of alternative goal states, and sometimes the goal is defined by a property that applies to many states.

The actions available to the agent. Given a state s, ACTIONS(s) returns a finite set of Action actions that can be j -
executed in s. We say that each of these actions is applicable in s. An example:

Arad

140

ACTIONS(Arad) = {ToSibiu,ToTimisoara,ToZerind}. 18

A transition model, which describes what each action does. RESULT(s, a) returns the Transition model state that
results from doing action a in state s. For example,

RESULT(Arad, ToZerind) = Zerind

An action cost function, denoted by ACTION-COST(s,a,s’) when we are programming or c(s,a,s’) when we are doing
math, that gives the numeric cost of applying action a in state s to reach state s’. . A problem-solving agent should
use a cost function that reflects its own performance measure; for example, for route-finding agents, the cost of an
action might be the length in miles (as seen in Figure 3.1), or it might be the time it takes to complete the action.

A sequence of actions forms a path, and a solutionisa path from the initial state to a goal state. We assume

that action costs are additive; that is, the total cost of a path is the sum of the individual action costs.

An optimal solution has the lowest path cost among all solutions.
The state space can be represented as a graph in which the vertices are states and the directed edges between

them are actions.



Formal Definition

asetsS
An s; €S
a A
V's Actions(s) = the set of actions that can be executed in s, that are in s.

VsVa€&Actions(s) Resulf(s,a) — s,
sy is called a successor of s
{s: }U Successors(s; )*

(Performance Measure): Must be additive, e.g. sum of distances, number of
actions executed, ...

c(x,a,y) is the step cost, assumed =0
* (where action a goes from state x to state y)
Goal(s)
Can be implicit, e.g. checkmate(s)

s is a goal state if Goal(s) is true
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Abstraction: Formulating problems

=  Qur formulation of the problem of getting to Bucharest is a model—an abstract mathematical
description—and not the real thing.

= Compare the simple atomic state description Arad to an actual cross-country trip, where the state of
the world includes so many things:

= the traveling companions,

= the current radio program,

= the scenery out of the window,

= the proximity of law enforcement officers,
= the distance to the next rest stop,

= the condition of the road,

= the weather,

= the traffic, and so on.

= All these considerations are left out of our model because they are irrelevant to the problem of
finding a route to Bucharest.

= The process of removing detail from a representation is called abstraction.

= The abstraction is valid if we can elaborate any abstract solution into a solution in the more
detailed world. The choice of a good abstraction thus involves removing as much detail as
possible while retaining validity and ensuring that the abstract actions are easy to carry out.



Art: Formulating a Search Problem

= Decide:
Which properties matter & how to represent
Initial State, Goal State, Possible Intermediate States
Which actions are possible & how to represent
Operator Set: Actions and Transition Model
Which action is next

Path Cost Function

= Hard subtask: Selecting a state space
Real world is absurdly complex

State space must be for problem solving
(abstract) = set (equivalence class) of real-world states
(abstract) = equivalence class of combinations of real-world action

* e.g. Arad — Zerind represents a complex set of possible routes, detours, rest stops, etc
* The abstraction is valid if the path between two states is reflected in the real world

= Each abstract action should be “easier” than the real problem
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Example: Traveling in Romania
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State space:
= Cities
Successor function:
= Roads: Go to adjacent
city with
= cost =distance
Start state:
= Arad

Goal test:

m |s state == Bucharest?

Solution?



Pac-Man is
an actionl’! maze

chase video game;

the player

controls the
eponymous
character through
an enclosed maze.
The objective of the
game is to eat all of
the dots placed in
the maze

while avoiding four
colored ghosts —
Blinky (red), Pinky
(pink), Inky (cyan),
and Clyde (orange)

Example: Pac-Man Game

= A search problem consists of:

= A successor function N% 1.0 u
(with actions, costs)

= A state space

\

”E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state


https://en.wikipedia.org/wiki/Action_game
https://en.wikipedia.org/wiki/Pac-Man#cite_note-Maynard-8
https://en.wikipedia.org/wiki/List_of_maze_chase_games
https://en.wikipedia.org/wiki/List_of_maze_chase_games
https://en.wikipedia.org/wiki/Pac-Man_(character)
https://en.wikipedia.org/wiki/Pac-Man_(character)
https://en.wikipedia.org/wiki/Pac-Man_(character)

Another example: vacuum world

States: integer dirt and robot locations

(ignore dirt amounts etc.)
Actions: Left, Right, Suck, NoOp
Goal test: no dirt

Path cost: 1 per action (O for NoOp)

States: A state of the world says which
objects are in which cells.

In a simple two cell version,

« the agent can be in one cell at a
time

» each cell can have dirt or not,

« 2 positions for agent * 22
possibilities for dirt = 8 states.

With n cells, there are n*2" states.

R

L[ |=A Al |r
SR |8 | %R |k
S

Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three
actions for each state: L = Left, R = Right, S = Suck.



Example search problem: 8-puzzle

Formulate 2oz T 2| 4 11|l 2
* Pieces to end up
in order : 6 3418
as shown...
s Ill 3 [l 1 61[ 71l 8
FormU|ate Searcn propiem Start State Goal State

» States: configurations of the puzzle (9! configurations)
» Actions. Move one of the movable pieces (<4 possible)
* Performance measure. minimize total moves

Find solution
» Sequence of pieces moved: 3,1,6,3,1,...



Other search problems

Route-finding problem is defined in terms of specified locations and transitions along edges
between them.

Touring problems describe a set of locations that must be visited, rather than a single goal
destination.

A VLS| layout problem requires positioning millions of components and connections on a chip
to minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield.

Robot navigation is a generalization of the route-finding problem described earlier. Rather than
following distinct paths (such as the roads in Romania), a robot can roam around, in effect
making its own paths.

Automatic assembly sequencing of complex objects (such as electric motors) by a robot has
been standard industry practice since the 1970s. Algorithms first find a feasible assembly
sequence and then work to optimize the process. Minimizing the amount of manual human
labor on the assembly line can produce significant savings in time and cost.



Search Problems Are (Absract) Models




What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false



State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)




State Space Graphs and Search Trees



State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

" |n astate space graph, each state occurs only !
once!

" The goal test is a set of goal nodes (maybe only one) /'

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea




State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

In a search graph, each state occurs only once!

We can rarely build this full graph in memory

e : - _ Tiny search graph for a tiny
(it’s too big), but it’s a useful idea search problem



Search Trees

’ _ This is now / start
"N';,]..()/ “E”, 1.0
u ! _ Possible futures
— —

= Asearch tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-~

Search Tree
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State Space Graphs vs. Search Trees

It is important to understand the distinction between the state space
and the search tree.

The state space describes the (possibly infinite) set of states in the
world, and the actions that allow transitions from one state to

another.

The search tree describes paths between these states, reaching
towards the goal.

The search tree may have multiple paths to (and thus multiple nodes
for) any given state, but each node in the tree has a unique path back
to the root (as in all trees).




Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
S
/ \
/\ / \
/ \ é \
(s) (&) a
/ \

(X0

Important: Lots of repeated structure in the search tree!



Tree Search



Search Example: Romania

M Vaslui

Hirsova
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Eforie




Three partial search trees for finding a route from Arad to
Bucharest

= Expand out potential plans (tree
- ST nodes)
e < mrean Zemd o = Nodes that have been expanded
are lavender with bold letters;
And > CFagney COmis CGmeii>  CAmd D Clugel ™ CAmd T <Omdes = nodes that have

been generated but

= the set of states corresponding
to these two types of nodes are
said to have been reached.
Nodes that could be generated
next are shown in faint dashed
lines.

= Notice in the bottom tree there
is a cycle from Arad to Sibiu to
Arad; That can’t be an optimal
path, so search should not
continue from there.




Searching with a Search Tree

Arad

* We can expand the node, by

considering the available
* Acrionsfor that state,
Sibiu Cimisoara> C Zerind > * using the Resurfunction

CArad > CFagarasy Oradea> i VisD

= Search:

= Expand out potential plans (tree nodes)
= Maintain a fringe (frontier) of partial plans

under consideration

= Try to expand as few tree nodes as possible

* tosee where those actions lead to,
and generating a new node (called a
child node or successor node) for
each of the resulting states.

e Each child node has Arad as its
parent node.

Remember functions:
 ACTIONS(Arad) = {ToSibiu,ToTimisoara,ToZerind}
 RESULT(Arad, ToZerind) = Zerind



States vs. Nodes

= Vertices in state space graphs are problem states
= Represent an abstracted state of the world
= Have successors, can be goal / non-goal, have multiple predecessors
= Vertices in search trees (“Nodes”) are plans
= Contain a problem state and one parent, a path length, a depth, and a cost
= Represent a plan (sequence of actions) which results in the node’s state

* The same problem state may be achieved by multiple search tree nodes

Search Tree Nodes

Parent
............................................ Depth 5

Problem States

Action

Node Depth 6




General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |mportant ideas:
" Fringe (data structure: queue, stack or priority queue)
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?




Search Strategies

= A strategy is defined by picking the order of node expansion

= Strategies are evaluated along the following dimensions:
= completeness: does it always find a solution if one exists?
* time complexity: number of nodes generated/expanded
= space complexity: maximum number of nodes in memory
= optimality: does it always find a least-cost solution?

" Time and space complexity are measured in terms of
" b: maximum branching factor of the search tree
" d: depth of the least-cost solution
" m: maximum depth of the state space (may be =)
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Best-first search

function BEST-FIRST-SEARCH(problem, ) returns a solution node or failure = How do we decide which node

node <— NODE(STATE=problem.INITIAL) from the frontier to expand next?
frontier +a priority queue ordered by f, with node as an element = Avery general approach is called
reached +—a lookup table, with one entry with key problem.INITIAL and value node best-first search, in which we
while not IS-EMPTY(frontier) do choose a node, n, with minimum

node +—POP(frontier) value of some evaluation function,

if problem.1S-GOAL(node.STATE) then return node f(n).

for each child in EXPAND(problem, node) do " Oneach iteration we choose a

s < child.STATE node on the frontier with

minimum f (n) value, return it if its

if 5 is not in reached or child. PATH-COST < reached|s|.PATH-COST then state is a goal state, and otherwise

reached|s| < child apply EXPAND to generate child
add child to frontier nodes.
return failure = Each child node is added to the
frontier if it has not been reached
function EXPAND(problem, node) yields nodes before, or is re-added if it is now
s < node.STATE being reached with a path that has
for each action in problem. ACTIONS(s) do a lower path cost than any

on’ revious path.
s" « problem.RESULT(s, action) p p

cost +—node PATH-COST + problem.ACTION-COST(s, action, s')
yield NODE(STATE=s", PARENT=node, ACTION=action, PATH-COST=cost)



Search data structures

= Search algorithms require a data structure to keep track of the search tree. A node in the
tree is represented by a data structure with four components:

node.STATE: the state to which the node corresponds;
node.PARENT: the node in the tree that generated this node;
node.ACTION: the action that was applied to the parent’s state to generate this node;

node.PATH-COST: the total cost of the path from the initial state to this node. In mathematical formulas, we use
g(node) as a synonym for PATH-COST.

= We need a data structure to store the frontier. The appropriate choice is a queue of some
kind, because the operations on a frontier are:

ls-Evernv(frontier) returns true only if there are no nodes in the frontier.
Por(frontier) removes the top node from the frontier and returns it.
Tor(frontier) returns (but does not remove) the top node of the frontier.
Aw(node, frontier) inserts node into its proper place in the queue.



Search data structures

= Three kinds of queues are used in search algorithms:

= A priority queue first pops the node with the minimum cost according to some evaluation function, f. It is used
in best-first search.

= A FIFO gqueue or first-in-first-out queue first pops the node that was added to the queue first; we shall see it is
used in breadth-first search.

= A LIFO queue or last-in-first-out queue (also known as @ stack) pops first the most Stack recently added node;
we shall see it is used in depth-first search.

= The reached states can be stored as a lookup table (e.g. a hash table) where each key is
a state and each value is the node for that state.



Uninformed Search Strategies

Uninformed strategies use only the information available in the
problem definition

Breadth-first search
Depth-first search
Uniform-cost search
Depth-limited search
Iterative deepening search
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Example: Tree Search




Breadth-First Search

- ijons have
ap ' ategy
kiiiiiﬂiiiiiii

search,

= in which the root
node is expanded
first, then all the
successors of the root
node are expanded
next, then their
successors, and so
on.




Breadth-first search on a simple binary tree

Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next 1s indicated by the triangular marker.



Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue
-
®
Search
=g © ® ® @
Tiers | N N
a h r p q
RN | | N
\_ q f q |C
PN .



Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

" Processes all nodes above shallowest solution b 1 node
" Let depth of shallowest solution be s _ b nodes
. s tiers <
= Search takes time O(b®) / b2 nodes
= How much space does the fringe take? - / o \ bs nodes

= Has roughly the last tier, so O(b®)

= keeps every node in memory
b™ nodes

" |sitcomplete?
= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)



Exponential time and space

Exponential Space (and time) Is Not Good...

« Exponential complexity uninformed search problems be solved for any

but the smallest instances.

requirements are a bigger problem than time.)

DEPTH NODES TIME MEMORY
2 110 0.11 milliseconds 107 kilobytes
4 11110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabytes
8 103 2 minuftes 103 gigabytes
10 1019 3 hours 10 terabytes
12 1012 13 days 1 petabytes
14 1014 3.5 years 99 petabytles

Assumes b=10, 1M nodes/sec, 1000 bytes/node

/
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Breadth-first search algorithm

function BREADTH-FIRST-SEARCH( problem) returns a solution node or failure
node «<— NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier +— a FIFO queue, with node as an element
reached <— {problem.INITIAL}
while not IS-EMPTY (frontier) do
node <— POP(frontier)
for each child in EXPAND(problem. node) do
s 4—child . STATE
if problem.1S-GOAL(s) then return child
if 5 is not in reached then
add s to reached
add child to frontier
return failure



Depth-first search always
expands the deepest node in
the frontier first.

The algorithm starts at the root
(top) node of a tree and goes as
far as it can down a given branch
(path), then backtracks until it
finds an unexplored path, and
then explores it.

Depth-First Search




Depth-first search on a binary tree

> )
I D D O B D N o PED ™ O
Figure 3.11 A dozen steps (left to right, top to bottom ) in the progress of a depth-first search
on a binary tree from start state A to goal W, The frontier is in green. with a triangle marking

the node o be expanded next. Previously expanded nodes are lavender. and potential futuare
nodes hawve faint dashed lines. Expanded nodes with no descendants in the frontier (very faint

lines) can be discarded.




Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack




Depth-first search implementation

function BEST-FIRST-SEARCH(problem. ) returns a solution node or failure .

_ - | " ' =  Depth-first search could be
node «— NODE(STATE=problem.INITIAL) ol g I
frontier +—a priority queue ordered by f, with node as an element implemented as a call to

BEST-FIRST-SEARCH where

reached <—a lookup table, with one entry with key problem . INITIAL and value node
while not IS-EMPTY (frontier) do
node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
s 4<—child. STATE
if 5 is not in reached or child. PATH-COST < reached|s|.PATH-COST then
reached|s| <+ child
add child to frontier
return failure

the evaluation function f is
the negative of the depth.

function EXPAND(problem, node) vields nodes
54— node.STATE
for each action in problem.ACTIONS(s) do
s' «— problem.RESULT(s, action)
cost +—node . PATH-COST + problem.ACTION-COST(s. action, s")
yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)



Search Algorithm Properties




Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: 4 1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bisthe branching factor m tiers <

" mis the maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
" 1+b+b?+...bM"=0(bM)



Depth-First Search (DFS) Properties

= What nodes DFS expand?
= Some left prefix of the tree.

= Could process the whole tree! 1 node
» |f mis finite, takes time O(b™) b nodes
2
= How much space does the fringe take? b nodes
= Only has siblings on path to root, so O(bm) m tiers <
= |sit complete?
= No.
"= m could be infinite, so only if we prevent 5™ nodes

cycles (more later). fails in infinite-depth
spaces, spaces with loops

= |sit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost



Quiz: DFS vs BFS




Quiz: DFS vs BFS

When will BFS outperform DFS? Breadth-first
I Complete,

I Optimal

When will DFS outperform BFS? but uses O(b%) space

Use depth-first if
* Space is restricted

* There are many possible solutions with long paths and wrong
paths are usually terminated quickly

* Search can be fine-tuned quickly
Use breadth-first if

* Possible infinite paths
.S luti h hort path Time and space complexity are measured in terms of
Ome solutions have short patns b: maximum branching factor of the search tree

* Can quickly discard unlikely paths d: depth of the least-cost solution
m: maximum depth of the state space (may be «)

Depth-first
Not complete unless m is bounded
Not optimal
Uses O(b™) time; terrible if m >>d
V but only uses O(b*m) space

[Demo: dfs/bfs maze water (L2D6)]



Video of Demo Maze Water DFS/BFS (part 1)

BFS




Video of Demo Maze Water DFS/BFS (part 2)

DFS




Combining BFS and DFS?

- is efficient in
= BFS is better in time complexity
" How can we combine strength of both in a method?
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Depth-limited search

To keep depth-first search from Wanderlng down an |nf|n|te path, we can use

depth-limited sear : a
depth limit, [, and
The time complexity is O(b!) and the space complexity is O(bl).

Unfortunately, if we make a poor choice for [ the algorithm will fail to reach
the solution, making it incomplete again.

Sometimes a good depth limit can be chosen based on knowledge of the
problem. For example, on the map of Romania there are 20 cities. Therefore,
[ =19 is a valid limit. But if we studied the map carefully, we would discover
that any city can be reached from any other city in at most 9 actions.

This number, known as the diameter of the state-space graph, gives us a
better depth limit, which leads to a more efficient depth-limited search.



Iterative Deepening

= |dea: get DFS’s space advantage with BFS’s time /
shallow-solution advantages

" [terative deepening search solves the problem of
picking a good value for depth limit, [, by trying all
values: first 0, then 1, then 2, and so on—until
either a solution is found, or the depth-limited
search returns the failure value rather than the
cutoff value.

= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...

= Run a DFS with depth limit 3. .....

" |sn’t that wastefully redundant?

= Generally most work happens in the lowest level
searched, so not so bad!



Four iterations of iterative deepening search for goal M on a binary tree

=  Figure 3.13 Four
iterations of
iterative
deepening
search for goal
M on a binary
tree, with the
depth limit
varying from 0
to 3.

= Note the
interior nodes
form a single
path.

=  The triangle
marks the node
to expand next;
green nodes
with dark
outlines are on
the frontier; the
very faint nodes
provably can’t
be part of a
solution with
this depth limit.




Iterative deepening and depth-limited tree-like search

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution node or failure
for deprir = 0 to == do
result «— DEPTH-LIMITED-SEARCH( problem. depth)
if resulr = curoff then return resulr

function DEPTH-LIMITED-SEARCH( problem, £) returns a node or failure or cutoff
frontier «— a LIFO queue (stack) with NODE(problem . INITIAL) as an element
result «—— failure
while not IS-EMPTY (fronrier) do
node <— POP(frontier)
if problem . 1s-GOAL(node.STATE) then return node
if DEPTH(node) > ¥ then
result +— cutoff
else if not I[S-CYCLE(node) do
for each child in EXPAND(problem. node) do
add child to frontier
return resulr



Properties of iterative deepening search

Complete:
= Yes
Time:
= (d+1)b%+db! +(d-1)b? +...+b9 =O(bY)
= or more precisely O(b9(1 —1/b)2)
Space:
" O(bd)
Optimal:
" Yes, if stepcost=1
* Can be modified to explore uniform-cost tree

60



Properties of iterative deepening search (cont.)

" Numerical comparison for b =10 and d = 5, solution at far right
leaf:

" |DS does better because other nodes at depth d are not
expanded

= BFS can be modified to apply goal test when a node is generated
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Cost-Sensitive Search

22 @
(o (e,

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.



Uniform Cost Search (Dijkstra's algorithm)

 When actions have different
costs, an obvious choice is
to use best-first search
where the evaluation
function is the cost of the
path from the root to the
current node.
* This is called
 Dijkstra’s algorithm by
the theoretical computer
science community, and
» uniform-cost search by
the Al community.




Part of the Romania state space, selected to illustrate uniform-cost search.

The problem is to get from Sibiu to Bucharest.

The successors of Sibiu are Rimnicu Vilcea and Fagaras, with
costs 80 and 99, respectively.

The least cost node, Rimnicu Vilcea, is expanded next, adding
Pitesti with cost 80+97=177.

The least-cost node is now Fagaras, so it is expanded, adding
Bucharest with cost 99+211=310.

Bucharest is the goal, but the algorithm tests for goals only
when it expands a node, not when it generates a node, so it
has not yet detected that this is a path to the goal.

The algorithm continues on, choosing Pitesti for expansion
next and adding a second path to Bucharest with cost
80+97+101=278.

It has a lower cost, so it replaces the previous path in reached
and is added to the frontier.

Note that if we had checked for a goal upon generating a node
rather than when expanding the lowest-cost node, then we
would have returned a higher-cost path (the one through
Fagaras).

Sibiu

99 Fagaras

Rimnicu Vilcea

Pitesti

Bucharest



Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours




Uniform-cost search implementation

" The idea is that while breadth-first search spreads out in waves of
uniform depth—first depth 1, then depth 2, and so on

" uniform-cost search spreads out in waves of uniform path-cost.
The algorithm can be implemented as a call to BEST-FIRST-SEARCH
with PATH-COST as the evaluation function,

function UNIFORM-COST-SEARCH( problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)



Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least ¢, then the
“effective depth” is roughly C*/¢

C*/s “tiers” <
= Takes time O(b¢™%) (exponential in effective depth)

= How much space does the fringe take?
» Has roughly the last tier, so O(b€"%)

M)
O/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" [sitoptimal?

= Yes! (Proof next lecture via A*)



Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is comPIete and optimal!
because the first solution it finds will have a
cost that is at least as low as the cost of any
other node in the frontier.

= Uniformcost search considers all paths
systematically in order of increasing cost,
never getting caught going down a single
infinite path.

" The bad: Goal

= Explores options in every “direction”
= No information about goal location

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]



Video of Demo Empty UCS




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

(This is BFS.)




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

(This is UCS.)




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

This is DFS




Bidirectional search

functiom BIBF-SEarRCH{ praoblemipy . . problemeg . fr) returns a solution node . or_failere

mode «— MNMoOoDE(problerm e INITLAL) A Node for a searre sfare
mode g «— MNOoODE(praobleme INTTILAL) A0 Node for a poal srare
Jronrier g +— a priority guews ordered by e, with mnodep as an element
Jronficerg «+— a priority gueuwnse ordered by . with mode ey as an element
reaclfiedy «+—a lookup table, withh one key nodes STATE and value modes
reacfiedy «— a lookup table, with one key modee STATE and value nodeg
Sl fore «— filiere
while not TERBMIMATED Sofrriorn, fronfier g, froneierg) dao

if Fe{ToP{fromnrieres ) = el TOoP{firomnrierg)) them

scoferiomn «—— PROCEEDF . problemiy | fromnirierg . reachedy . reached . solwriorn)

else solwrion «+— PROCEEDRN S, profbfemig., fromiier g, reachied g, reached g, solie ior)

returm solieriorn

function PrROCEEIDdir, profblem . fromeier, reached . reached > soluriomn) returns a solution
S Expand node on froncier; check agains ifie orfrer fronrer in reacfied =.
A8 The variable “dir™ ixs rfre direcrion: eidher F_for forward or B for Bbacfoward.
node «+— PoP{firormrier)
for each child in ExXpPa N profderm, node) daoa
5 +— cfrild. STATE
if ¥ not in reached or PATH-CoOsST{child) < PATH-CoOsT{reached|s]) themn
reached | 5] «— ofrildd
add chiilfd to frorrier
if = is in reacfiiedad>s them
Sl terioorns «— JOIN-INODES(AMr. cfiild, reacfreda=]1)
if PAaTH-COST{Souiiorn:) = PAaTH-COosT{solterion) then
solteriorn +— solurior -
returm sorfiesforr

Figure 32 14 Bidirectional best-first search keeps two frontiers and two tables of reached
states. When a path in one frontier reaches a state that was also reached in the other half of
the search. the two paths are joined (by the function JOIN-MNODES) o form a solution. The
first solution we goet is not guarantesd to be the best: the function TEREMIMNATED determmines

when to stop looking for new solutions.

The algorithms we
have covered so far
start at an initial
state and can reach
any one of multiple
possible goal states.

An alternative
approach called
bidirectional search
simultaneously
searches forward
from the initial state
and backwards from
the goal state(s),
hoping that the two
searches will meet.



Comparing uninformed search algorithms

Breadth- Uniform- Depth-  Depth- [terative Bidirectional

Criterion ‘ . . . ‘ .
First Cost First Limited  Deepening  (if applicable)

Complete? S S Yes! Yes!#
Optimal cost? S S Yes? Yes4
Time _ | O(b?) 0(b4/?)
Space ¢ O(bd) o(h/?)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree: d is the depth of the shallowest solution, or is m when there is
no solution; ¢ is the depth limit. Superscript caveats are as follows: ! complete if b is
finite, and the state space either has a solution or is finite. 2 complete if all action costs are
> ¢ > 0; ? cost-optimal if action costs are all identical; # if both directions are breadth-first
or uniform-cost.



Repeated states

" Failure to detect repeated states can turn a linear problem into
an exponential one!

O“~—0O0+— W “— >
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The One Queue

= All these search algorithms are the
same except for fringe strategies L@_o\;gja\lﬂ \?j,\@,\ . ﬂ
= Conceptually, all fringes are priority L

qgueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object




Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...




Search Gone Wrong?
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