
COE 4213564
Introduction to Artificial Intelligence

Informed Search

 Many slides are adapted from CS 188 (http://ai.berkeley.edu), CIS 521, CS 221, CS182, CS4420.

Outline

▪ Informed Search

▪ Heuristics

▪ Greedy Search

▪ A* Search

▪ Graph Search

Recap: Search

Recap: Search

▪ Search problem:
▪ States (configurations of the world)

▪ Actions and costs

▪ Successor function (world dynamics)

▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states

▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree

▪ Chooses an ordering of the fringe (unexplored nodes)

▪ Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

• Pancake Sorting Problem:

We are given a stack of n

pancakes, each of different

size. Our goal is to sort this

stack from smallest to

largest (largest being on

the bottom of the stack).

• The only thing we are

allowed to do is to insert

the spatula in between two

pancakes (or between the

bottom pancake and the

plate), and flip over all the

pancakes that are on top of

the spatula.

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3

4

3

4

2

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation
that takes a variable queuing object

Uninformed Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first from

the root:

Fringe is a priority queue

(priority: cumulative cost)

S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

Uniform Cost Search

▪ Strategy: expand lowest path cost cost of the
path from the root to the current node

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

Start Goal

…

c  3

c  2

c  1

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Informed Search Strategies

▪ Uninformed search strategies look for solutions by systematically
generating new states and checking each of them against the goal

▪ This approach is very inefficient in most cases

▪ Most successor states are “obviously” a bad choice

▪ Such strategies do not know that because they have minimal
problem-specific knowledge

▪ Informed search strategies exploit problem-specific knowledge as
much as possible to drive the search

▪ They are almost always more efficient than uninformed searches and
often also optimal

UNINFORMED VS. INFORMED

Informed Search Strategies

▪ Use the knowledge of the problem domain to build an evaluation
function h

▪ For every node n in the search space, h(n) quantifies the desirability
of expanding n in order to reach the goal

▪ Then use the desirability value of the nodes in the fringe to decide
which node to expand next

▪ The evaluation function h is typically an imperfect measure of the
goodness of the node

▪ i.e., the right choice of nodes is not always the one suggested by h

▪ The evaluation function is usually called heuristic function.

Heuristic

▪ Merriam-Webster's Online Dictionary
▪ Heuristic (pron. \hyu-ʼris-tik\): adj. [from Greek heuriskein to discover.] involving or

serving as an aid to learning, discovery, or problemsolving by experimental and
especially trial-and-error methods

▪ The Free On-line Dictionary of Computing
▪ heuristic 1. A rule of thumb, simplification or educated guess that reduces or limits

the search for solutions in domains that are difficult and poorly understood. Unlike
algorithms, heuristics do not guarantee feasible solutions and are often used with
no theoretical guarantee. 2. approximation algorithm.

▪ From WordNet (r) 1.6
▪ heuristic adj 1: (computer science) relating to or using a heuristic rule 2: of or

relating to a general formulation that serves to guide investigation [ant: algorithmic]
n : a commonsense rule (or set of rules) intended to increase the probability of
solving some problem [syn: heuristic rule, heuristic program]

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

Example: Heuristic Function

h(x)
h(n) = estimated cost of the cheapest path from the state

at node n to a goal state.

• in route-finding

problems, we can

estimate the

distance from the

current state to a

goal by computing

the straight-line

distance on the

map between the

two points.

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Heuristics for 8-puzzle

Misplaced

Tiles

Heuristic

• Three tiles are misplaced (the 3, 8, and 1)

so heuristic function evaluates to 3

• Heuristic says that it thinks a solution may

be available in 3 or more moves

• Very rough estimate, but easy to calculate

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal

State

Current

State

h = 3

(not including

the blank)

3 2 8

4 5 6

7 1

3 tiles are not

where they

need to be

Heuristics for 8-puzzle

Manhattan

Distance

Heuristic

• The 3, 8, and 1 tiles misplaced by 2, 3, and

3 steps, so heuristic function evaluates to 8

• Heuristic says that it thinks a solution may

be available in 8 or more moves

• More accurate than the misplaced heuristic,

but slightly more expensive to compute

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal

State

Current

State

3 3

8

8

1

1

2 steps

3 steps

3 steps

h = 8

(not including

the blank)

Best-First Search

▪ Idea: use an evaluation function estimating the desirability of
each node

▪ Strategy: Always expand the most desirable unexpanded node

▪ Implementation: the fringe is a priority queue sorted in
decreasing order of desirability

▪ Special cases:

▪ Greedy search

▪ A* search

Best-first Search Strategies

▪ Best-first is a family of search strategies, each with a different
evaluation function

▪ Typically, strategies use estimates of the cost of reaching the goal
and try to minimize it

▪ Uniform Search also tries to minimize a cost measure. Is it then a
best-first search strategy?

▪ Not in spirit, because the evaluation function should incorporate a cost
estimate of going from the current state to the closest goal state

Greedy Search

Greedy best-first search

▪ Greedy best-first search is a form of best-first search that
expands first the node with the lowest h(n) value—the
node that appears to be closest to the goal—on the
grounds that this is likely to lead to a solution quickly.

▪ So the evaluation function f (n) = h(n).

▪ Implementation: Order the nodes in fringe in decreasing
order of desirability

Example: Heuristic Function

hSLD(n)

• Evaluation (heuristics)

function h(n) = estimate

cost of cheapest path from

node n to closest goal.

• We use the straight-line

distance heuristic here.

• E.g., hSLD (n) = straight-line

distance from n to

Bucharest

• Greedy search

expands the

node that

appears to be
closest to goal

Route-finding in Romania

Greedy Search

▪ Expand the node that seems closest…

▪ What can go wrong?
▪ For this particular problem, greedy best-first search using hSLD finds a solution

without ever expanding a node that is not on the solution path; hence, its search
cost is minimal.

▪ It is not optimal, however.
▪ The path via Sibiu and Fagaras to Bucharest is 32 kilometers longer than the path

through Rimnicu Vilcea and Pitesti.

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

Properties of Greedy Best-First Search

▪ A good heuristic can nonetheless produce dramatic time/space
improvements in practice.

A* Search

A* search

▪ The most common informed search algorithm is A* search (pronounced “A-star
search”),

▪ A best-first search strategy that uses the evaluation function

 f (n) = g(n)+h(n)
▪ where

▪ g(n) is the path cost from the initial state to node n, and

▪ h(n) is the estimated cost of the shortest path from node n to a goal state,

▪ so we have

 f (n) = estimated cost of the best path that continues from n to a goal.

Combining UCS and Greedy

A* — A Better Best-First Strategy by combining UCS and Greedy

A* Search (turtle & rabbit analogy)

UCS Greedy

A*

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

Is A* Optimal?

▪ What went wrong?

▪ Actual bad goal cost < estimated good goal cost

▪ We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

5

_
-

3+1

Actual costs

Estimated cost

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

A* Search

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

A* Search: Why an Admissible Heuristic

Admissible Heuristics

48

Optimality of A* Tree Search

Proof : Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h is admissible

Claim:

▪ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…

Properties of A*

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

Properties of A*

A* Applications

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Beyond A*

Creating Heuristics

Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

▪ Inadmissible heuristics are often useful too

15

366

Devising Heuristic Functions

Relaxed Problems: Example

Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) =

▪ This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Heuristic: Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

▪ How about using the actual cost as a heuristic?

▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node

▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

What Is a Semi-Lattice of Heuristics?

▪ A semi-lattice is a partially ordered set where any two elements have a
least upper bound (join). In the context of heuristics:

▪ Elements: Each node represents an admissible heuristic function.

▪ Order: The ordering is based on dominance: heuristic ℎ
1
dominates ℎ

2
if ℎ

1
𝑛

≥ ℎ
2
𝑛 for all states 𝑛.

▪ Join Operation: The join of two heuristics ℎ
1
and ℎ

2
is defined as:

hjoin​(n)=max(h1(n),h2(n))

▪ This new heuristic dominates both ℎ
1
and ℎ

2
.

Trivial Heuristics, Dominance

Trivial Heuristics

▪ Definition:
▪ A trivial heuristic is a simple, often naive heuristic function that provides minimal guidance in search

or decision-making. It typically returns a constant value (e.g., zero) or a very basic estimate.

▪ Examples:
▪ In A* search, a trivial heuristic might be ℎ 𝑛 = 0for all nodes, which effectively reduces A* to

Dijkstra’s algorithm.
▪ In decision-making, choosing randomly or always selecting the first option could be considered

trivial.

▪ Use Cases:
▪ Baseline comparison: Trivial heuristics are often used as a benchmark to evaluate the effectiveness

of more sophisticated heuristics.
▪ Guaranteed admissibility: In algorithms like A*, a trivial heuristic is admissible (never

overestimates), ensuring optimality but sacrificing efficiency.

▪ Limitations:
▪ Poor performance in large or complex search spaces.
▪ No prioritization, leading to exhaustive search.

Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what

does this give us?)

▪ Top of lattice is the exact heuristic

Effectiveness of Heuristic Functions

Note: If h1 dominates h2, then EFB(h2) ≤ EFB(h1)

b* value = x

Dominance and EFB: The 8-puzzle

Devising Heuristic Functions Automatically

▪ Relaxation of formally described problems:
▪ A problem with fewer restrictions on the actions is called a relaxed problem. The cost of an

optimal solution to a relaxed problem is an admissible heuristic for the original problem.

▪ Pattern databases:
▪ Admissible heuristics can also be derived from the solution cost of a subproblem of a given

problem. The idea behind pattern databases is to store these exact solution costs for every
possible Pattern database subproblem instance. Then we compute an admissible heuristic
hDB for each state encountered during a search simply by looking up the corresponding
subproblem configuration in the database.

▪ Learning :
▪ An alternative is to learn from experience. “Experience” here means solving lots of 8-

puzzles, for instance. Each optimal solution to an 8-puzzle problem provides an example
(goal, path) pair. From these examples, a learning algorithm can be used to construct a
function h that can (with luck) approximate the true path cost for other states that arise
during search.

Graph Search

Tree Search vs Graph Search

▪ Tree Search
▪ Does not check for repeated states.
▪ Explores all paths, even if they revisit the same state multiple times.
▪ Can be inefficient and may enter infinite loops in cyclic graphs.
▪ Suitable when the state space is acyclic or small.

▪ Graph Search
▪ Checks for redundant paths by maintaining a record of visited states (usually

in a "closed list").
▪ Avoids revisiting the same state, improving efficiency.
▪ Essential for problems with cycles or large state spaces.
▪ Guarantees completeness and optimality (when using admissible heuristics in

A*).

▪ Failure to detect repeated states can cause exponentially more work.
▪ We call a search algorithm a graph search if it checks for redundant paths and a tree-like search if it does not check.
▪ The BEST-FIRST-SEARCH algorithm in Figure 3.7 is a graph search algorithm; if we remove all references to reached

we get a treelike search that uses less memory but will examine redundant paths to the same state, and thus will
run slower.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

Completeness and Optimality

▪ Can Graph Search Wreck Completeness?
▪ No, graph search does not wreck completeness — if implemented correctly.

▪ Completeness means the algorithm will find a solution if one exists.

▪ In graph search, we avoid revisiting states by keeping a closed list of explored nodes.

▪ If the algorithm uses a complete search strategy (like BFS or A* with an admissible
heuristic), and the closed list is managed properly, completeness is preserved.

▪ Can Graph Search Wreck Optimality?
▪ Yes, graph search can wreck optimality — if not carefully managed.

▪ Optimality means the algorithm finds the least-cost solution.

▪ In A*, optimality is guaranteed only if:
▪ The heuristic is admissible (never overestimates).

▪ The heuristic is consistent (monotonic).

▪ The algorithm uses graph search with proper cost comparison.

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Tree Search Pseudo-Code

Graph Search Pseudo-Code

Optimality of A* Graph Search

Optimality of A* Graph Search

▪ Sketch: consider what A* does with a
consistent heuristic:

▪ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f  3

f  2

f  1

Consistent (or Monotonicity) Heuristics

c(n,a,n’): the cost of applying action a in state n to arrive at state n’.

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Effectiveness of Heuristic Functions

▪ Effectiveness is typically measured by

▪ how well a heuristic guides the search process toward the goal with
minimal computational effort.

▪ The image highlights several important aspects:
▪ 1. Admissibility

▪ A heuristic is admissible if it never overestimates the true cost to reach the goal.

▪ Admissibility ensures optimality in algorithms like A*.
▪ 2. Consistency (Monotonicity)

▪ A heuristic is consistent if for every node 𝑛and successor 𝑛′ :

ℎ 𝑛 ≤ 𝑐 𝑛 𝑛′ + ℎ 𝑛′

▪ Consistency implies admissibility and helps avoid re-expanding nodes.

Effectiveness of Heuristic Functions

▪ 3. Dominance

▪ A heuristic ℎ
1
dominates ℎ

2
if:

ℎ
1
𝑛 ≥ ℎ

2
𝑛 for all 𝑛

▪ Dominant heuristics are more informed and typically lead to fewer node expansions.

▪ 4. Search Efficiency
▪ More effective heuristics reduce the number of nodes expanded.
▪ The image likely shows a graph or table comparing heuristics by:

▪ Number of nodes expanded
▪ Time taken
▪ Memory usage

▪ 5. Trade-offs
▪ More informed heuristics may be computationally expensive to compute.
▪ There's a balance between heuristic quality and computational cost.

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

http://qiao.github.io/PathFinding.js/visual/

Example

http://qiao.github.io/PathFinding.js/visual/
http://qiao.github.io/PathFinding.js/visual/
http://qiao.github.io/PathFinding.js/visual/

	Slide 1: COE 4213564 Introduction to Artificial Intelligence
	Slide 2: Outline
	Slide 3: Recap: Search
	Slide 4: Recap: Search
	Slide 5: Example: Pancake Problem
	Slide 6: Example: Pancake Problem
	Slide 7: Example: Pancake Problem
	Slide 8: General Tree Search
	Slide 9: The One Queue
	Slide 10: Uninformed Search
	Slide 11: Uniform Cost Search
	Slide 12: Uniform Cost Search
	Slide 13: Video of Demo Contours UCS Empty
	Slide 14: Video of Demo Contours UCS Pacman Small Maze
	Slide 15: Informed Search
	Slide 16: Informed Search Strategies
	Slide 17: UNINFORMED VS. INFORMED
	Slide 18: Informed Search Strategies
	Slide 19: Heuristic
	Slide 20: Search Heuristics
	Slide 21: Example: Heuristic Function
	Slide 22: Example: Heuristic Function
	Slide 23: Heuristics for 8-puzzle
	Slide 24: Heuristics for 8-puzzle
	Slide 25: Best-First Search
	Slide 26: Best-first Search Strategies
	Slide 27: Greedy Search
	Slide 28: Greedy best-first search
	Slide 29: Example: Heuristic Function
	Slide 30: Route-finding in Romania
	Slide 31: Greedy Search
	Slide 32: Greedy Search
	Slide 33: Video of Demo Contours Greedy (Empty)
	Slide 34: Video of Demo Contours Greedy (Pacman Small Maze)
	Slide 35: Properties of Greedy Best-First Search
	Slide 36: A* Search
	Slide 37: A* search
	Slide 38: Combining UCS and Greedy
	Slide 39: A* Search (turtle & rabbit analogy)
	Slide 40: Combining UCS and Greedy
	Slide 41: When should A* terminate?
	Slide 42: Is A* Optimal?
	Slide 43: Admissible Heuristics
	Slide 44: Idea: Admissibility
	Slide 45: A* Search
	Slide 46: Admissible Heuristics
	Slide 47: A* Search: Why an Admissible Heuristic
	Slide 48: Admissible Heuristics
	Slide 49: Optimality of A* Tree Search
	Slide 50: Proof : Optimality of A* Tree Search
	Slide 51: Optimality of A* Tree Search: Blocking
	Slide 52: Optimality of A* Tree Search: Blocking
	Slide 53: Optimality of A* Tree Search: Blocking
	Slide 54: Properties of A*
	Slide 55: Properties of A*
	Slide 56: UCS vs A* Contours
	Slide 57: Video of Demo Contours (Empty) -- UCS
	Slide 58: Video of Demo Contours (Empty) -- Greedy
	Slide 59: Video of Demo Contours (Empty) – A*
	Slide 60: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 61: Comparison
	Slide 62: Properties of A*
	Slide 63: A* Applications
	Slide 64: A* Applications
	Slide 65: Video of Demo Pacman (Tiny Maze) – UCS / A*
	Slide 66: Video of Demo Empty Water Shallow/Deep – Guess Algorithm
	Slide 67: Beyond A*
	Slide 68: Creating Heuristics
	Slide 69: Creating Admissible Heuristics
	Slide 70: Devising Heuristic Functions
	Slide 71: Relaxed Problems: Example
	Slide 72: Example: 8 Puzzle
	Slide 73: 8 Puzzle I
	Slide 74: 8 Puzzle II
	Slide 75: 8 Puzzle III
	Slide 76: Semi-Lattice of Heuristics
	Slide 77: What Is a Semi-Lattice of Heuristics?
	Slide 78: Trivial Heuristics, Dominance
	Slide 79: Trivial Heuristics
	Slide 80: Trivial Heuristics, Dominance
	Slide 81
	Slide 82: Effectiveness of Heuristic Functions
	Slide 83: Dominance and EFB: The 8-puzzle
	Slide 84: Devising Heuristic Functions Automatically
	Slide 85: Graph Search
	Slide 86: Tree Search vs Graph Search
	Slide 87: Tree Search: Extra Work!
	Slide 88: Graph Search
	Slide 89: Graph Search
	Slide 90: Completeness and Optimality
	Slide 91: A* Graph Search Gone Wrong?
	Slide 92: Tree Search Pseudo-Code
	Slide 93: Graph Search Pseudo-Code
	Slide 94: Optimality of A* Graph Search
	Slide 95: Optimality of A* Graph Search
	Slide 96: Consistent (or Monotonicity) Heuristics
	Slide 97: Consistency of Heuristics
	Slide 98: Effectiveness of Heuristic Functions
	Slide 99: Effectiveness of Heuristic Functions
	Slide 100: Optimality
	Slide 101: A*: Summary
	Slide 102: A*: Summary
	Slide 103: Example

