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Introduction to Artificial Intelligence
Informed Search

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CIS 521, CS 221, CS182, CS4420.



Outline

" Informed Search
= Heuristics
" Greedy Search
" A* Search

" Graph Search




Recap: Search




Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans



Example: Pancake Problem

Cost: Number of pancakes flipped

Pancake Sorting Problem:
We are given a stack of n
pancakes, each of different
size. Our goal is to sort this
stack from smallest to
largest (largest being on
the bottom of the stack).
The only thing we are
allowed to do is to insert
the spatula in between two
pancakes (or between the
bottom pancake and the
plate), and flip over all the
pancakes that are on top of
the spatula.



Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.




Example: Pancake Problem

State space graph with costs as weights




General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

N\ Vs N
Action: flip top two A{  Path to reach goal:
Cost: 2 Flip four, flip three

/ l Total cost: 7
>




The One Queue

= All these search algorithms are the
same except for fringe strategies L‘%\;ﬂ G\l}:ﬁ \g{\i&‘ﬂl . ﬂ
= Conceptually, all fringes are priority L

queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object




Uninformed Search




Strategy: expand a
cheapest node first from
the root:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

-

Cost
contours




Uniform Cost Search

= Strategy: expand lowest path cost cost of the
path from the root to the current node

" The good: UCS is complete and optimall

" The bad: o
= Explores options in every “direction” od

= No information about goal location

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]



Video of Demo Contours UCS Empty




Video of Demo Contours UCS Pacman Small Maze




Informed Search




Informed Search Strategies

Uninformed search strategies look for solutions by systematically
generating new states and checking each of them against the goal

This approach is very inefficient in most cases
Most successor states are “obviously” a bad choice

Such strategies do not know that because they have minimal
problem-specific knowledge

Informed search strategies exploit problem-specific knowledge as
much as possible to drive the search

They are almost always more efficient than uninformed searches and
often also optimal



UNINFORMED VS. INFORMED

Uninformed

Can only generate
successors and
distinguish goals from
non-goals

Informed

Strategies that know
whether one non-goal is
more promising than
another



Informed Search Strategies

Use the knowledge of the problem domain to build an evaluation
function h

For every node n in the search space, h(n) quantifies the desirability
of expanding n in order to reach the goal

Then use the desirability value of the nodes in the fringe to decide
which node to expand next

The evaluation function h is typically an imperfect measure of the
goodness of the node

i.e., the right choice of nodes is not always the one suggested by h
The evaluation function is usually called heuristic function.



Heuristic

= Merriam-Webster's Online Dictionary

= Heuristic (pron. \hyu-"ris-tik\): adj. [from Greek heuriskein to discover.] involving or
serving as an aid to learning, discovery, or problemsolving by experimental and
especially trial-and-error methods

" The Free On-line Dictionary of Computing

= heuristic 1. A rule of thumb, simplification or educated guess that reduces or limits
the search for solutions in domains that are difficult and poorly understood. Unlike
algorithms, heuristics do not guarantee feasible solutions and are often used with
no theoretical guarantee. 2. approximation algorithm.

= From WordNet (r) 1.6

* heuristic adj 1: (computer science) relating to or using a heuristic rule 2: of or
relating to a general formulation that serves to guide investigation [ant: algorithmic]
n : a commonsense rule (or set of rules) intended to increase the probability of
solving some problem [syn: heuristic rule, heuristic program]



Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

=]

S —
. Heuristi—Tron

-
Heurlsti - Tron 4\




Example: Heuristic Function

Arad [

118 ] Vaslui

Timisoara

142

] Hirsova

86

Dobreta []

N Eforie
[ ] Giurgiu

h(n) = estimated cost of the cheapest path from the state
at node n to a goal state.

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

(Stra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

/

h(x)

in route-finding
problems, we can
estimate the
distance from the
current state to a
goal by computing
the straight-line
distance on the
map between the
two points.



Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place




Heuristics for 8-puzzle

Mlsplaced Current

Tiles State

Heuristic

(not including

the blank) o 1,23
oa
State 41516

7| 8

 Three tiles are misplaced (the 3, 8, and 1)
so heuristic function evaluates to 3

 Heuristic says that it thinks a solution may
be available in 3 or more moves

* Very rough estimate, but easy to calculate

711

3 tiles are not
where they
need to be



Heuristics for 8-puzzle

Manhattan
. Current 7 ot
Distance State Steps
Heuristic
(not including @ 8
the blank) 1,23
Goal : & 3 steps
State 4156 8
7|8 -
. . 1 |4
e The 3, 8, and 1 tiles misplaced by 2, 3, and Y 3 stens
3 steps, so heuristic function evaluates to 8 P
 Heuristic says that it thinks a solution may 1

be available in 8 or more moves
e More accurate than the misplaced heuristic, h
but slightly more expensive to compute

|
e



Best-First Search

ldea: use an evaluation function estimating the desirability of
each node

Strategy: Always expand the most desirable unexpanded node

Implementation: the fringe is a priority queue sorted in
decreasing order of desirability

Special cases:
" Greedy search
= A* search



Best-first Search Strategies

" Best-first is a family of search strategies, each with a different
evaluation function

= Typically, strategies use estimates of the cost of reaching the goal
and try to minimize it

" Uniform Search also tries to minimize a cost measure. Is it then a

best-first search strategy?

= Not in spirit, because the evaluation function should incorporate a cost
estimate of going from the current state to the closest goal state



Greedy Search




Greedy best-first search

" Greedy best-first search is a form of best-first search that
expands first the node with the lowest h(n) value—the
node that appears to be closest to the goal—on the
grounds that this is likely to lead to a solution quickly.

=Sot
= Imp

ne evaluation function f (n) = h(n).

ementation: Order the nodes in fringe in decreasing

order of desirability



Example: Heuristic Function

ﬁtraight—linedismnce \ ° EV8|UatIOn ( heurIStICS)

o Ducharest function h(n) = estimate
Bucharest 0 cost of cheapest path from
75 Craiova 160
Dobreta B node n to C|OS€S.’[ goal_.
Arad Eforie 161 * We use the straight-line
F* FOATE g . . .
P g distance heuristic here.
1 1 Vaslui Hirsova 151 « E.g., hg p (n) = straight-line
lasi 226 .
Timisoara Lugoj a4 distance from n to
142 Mehadia 241 Bucharest
11 Pitesti Neamt 234
Oradea 380
%8 ] Hirsova Pitesti 98
1 Mehadia Rimnicu Vileea 193 * Greedy search
735 86 Sibiu 253
Timisoara 329 eXpandS the
Dobreta [J Urziceni 80
= Craiova o Eforie Vaslui 199 nOde that
[ ] Giurgiu Zerind 3?4j appears tO be
closest to goal

hs p(N)



Route-finding in Romania

(a) The initial state B<_Arad >

(b) After expanding Arad

253 329 3T4

(c) After expanding Sibiu

366 176 380 103
(d) After expanding Fagaras < _Avad >
329 374
366 380 193

_Sibiu__> P Bucharesi>

253
Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line
distance heuristic figr . WNodes are labeled with their fi-values.

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
176
77
151
226
244

241
234
380
100
193
253
329

80
199
374



Greedy Search

=  Expand the node that seems closest...
Arad

329

380 193

366

253 0

= What can go wrong?

= For this particular problem, greedy best-first search using h , finds a solution
without ever expanding a node that is not on the solution path; hence, its search

cost is minimal.

= |tis not optimal, however.

= The path via Sibiu and Fagaras to Bucharest is 32 kilometers longer than the path
through Rimnicu Vilcea and Pitesti.




Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Empty)




Video of Demo Contours Greedy (Pacman Small Maze)




Properties of Greedy Best-First Search

Complete? Only in finite spaces with repeated-state checking
Otherwise, can get stuck in loops:
lasi — Neamt — lasi — Neamt —

Time complexity? O(b™) — may have to expand all nodes

Space complexity? O(b™) — may have to keep most nodes

INn memory

Optimal? No

= A good heuristic can nonetheless produce dramatic time/space
Improvements in practice.



A* Search




A* search

The most common informed search algorithm is A* search (pronounced “A-star
search”),

A best-first search strategy that uses the evaluation function

f (n) =g_(n_)+h(n)

where
= g(n)is the path cost from the initial state to node n, and
= h(n) is the estimated cost of the shortest path from node n to a goal state,

so we have

f (n) = estimated cost of the best path that continues from n to a goal.



Combining UCS and Greedy

Greedy Best-first search
® minimizes estimated cost A(n) from current node n to goal

® is informed but almost always suboptimal and incomplete

Uniform cost search
® minimizes actual cost g(n2) to current node n

® is, in most cases, optimal and complete but uninformed

A* search
® combines the two by minimizing f(n) = g(n) + h(n)

® s, under reasonable assumptions, optimal and complete, and
also informed

A* — A Better Best-First Strategy by combining UCS and Greedy



A* Search (turtle & rabbit analogy)



Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal



Is A* Optimal?

h = —  Estimated cost

3+1

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

™~

Actual costs



Admissible Heuristics

Heuri s!' ~Tron



ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs



A* Search

ldea: avoid expanding paths that are already expensive

Evaluation function: f(n) = g(n) + h(n)

cost so far to reach n

g(n)
h(n)

f(n)

estimated cost to goal from n

estimated total cost of path through n to goal

A* search should use an admissible heuristic:
for all n, h(n) < h*™(n) where h*(n) is the true cost from n

E.g., hsr.p(n) never overestimates the actual road distance



Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h™(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.




A* Search: Why an Admissible Heuristic

If h is admissible, f(n) never overestimates the actual cost of the best
solution through n

Overestimates are dangerous

e ™

.4 ®
/— 5 —\ / 40 real cost=1
® ® Ge
A
4 ,,;\\ ,’;\ 40, The optimal path is never found!

/ \ / \ , \ , \ (or maybe after a long time)



Value

Admissible Heuristics

Admissible Not Admissible

State (x) State (x)

= True (optimal) cost remaining

=== Heuristic-estimated cost remaining -



Optimality of A* Tree Search




Proof : Optimality of A* Tree Search

Assume:

= Aisan optimal goal node

" Bisasuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)
= Claim: n will be expanded before B

1. f(n) is less or equal to f(A) k

f(n) =g(n) + h(n)
f(n) < g(A)
g(A) = f(A)

-

Definition of f-cost

Admissibility of h
h =0 at a goal

J




Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)
X N

g(A) < g(B) B is suboptimal

f(A) < f(B) h =0 at a goal
N\ _J




Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

Some ancestor n of A is on the

fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A)is less than f(B)

All ancestors of A expan

3. nexpands before B p
dN f(n) < f(A) < f(B) J

A expands before B
A* search is optimal




Properties of A*



Properties of A*

Uniform-Cost A*

& 4

-/ _




UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS




Video of Demo Contours (Empty) -- Greedy




Video of Demo Contours (Empty) — A*




Video of Demo Contours (Pacman Small Maze) — A*




Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*



Properties of A*

Complete? Yes, unless there are infinitely many nodes n with

f(n) < f(G)

€ = \h(ng) — h™(no)|
Time complexity? O(b°?) where ng = start state
h* = actual cost to goal state

Subexponential only in uncommon case where € < O(log h*(ng))

Space complexity? O(b™), as in Greedy Best-First — may end up with all

nodes in memory

Optimal? Yes if h is admissible (and standard assumptions hold) — cannot

expand f;+1 until f; is finished



A* Applications

A Sy e i
T

MERL




A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Video of Demo Pacman (Tiny Maze) — UCS / A*

File Edit Navigate Search Project Run  Window |elp
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Video of Demo Empty Water Shallow/Deep — Guess Algorithm

- - — :
32 Pydev - [chipsa L |
file Edit Nawvigaste Search Project Run Window |delp
[~ B0 -Q > S 9~ - v v =8 v T |2 Pydev | A" Team
qf 1 search -- plan Liny astar =l
= - =
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e" 8 search <+ groedy good
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Run As »
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Organize Favorites,,
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Beyond A*

A* generally runs out of memory before it runs out of time

Other best-first strategies keep the good properties on A*
while trying to reduce memory consumption:

® Recursive Best-First search (RBFS)

* |terative Deepening A* (IDA*)

* Memory-bounded A* (MA¥*)

* Simple Memory-bounded A* (SMA*¥*)



Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!




Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too



Devising Heuristic Functions

A relaxed problem is a version of a search problem with less
restrictions on the applicability of the next-state operators

Example: n-puzzle
® original: “A tile can move from position p to position g if p is

adjacent to g and g is empty”’

relaxed-1: "A tile can move from p to g if p I1s adjacent to ¢g"

® relaxed-2: “A tile can move from p to g If g 1Is empty”

® relaxed-3: “A tile can move from p to ¢g”

T he exact solution cost of a relaxed problem is often a good
(admissible) heuristics for the original problem

Key point: the optimal solution cost of the relaxed problem is no
greater than the optimal solution cost of the original problem



Relaxed Problems: Example

Traveling salesperson problem

Original problem: Find the shortest tour visiting n cities exactly once
Complexity: NP-complete

Relaxed problem: Find a tree with the smallest cost that connects the
n cities (minimum spanning tree)
Complexity: O(n?)

Cost of tree is a lower bound on the shortest (open) tour




Example: 8 Puzzle

7 2 4 7)1
s 6 E
8 3 1 s8N 6

Start State Actions

3
2

1-§“

-7

e

———

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!

3
&

p)
|5
7 |®

Goal State




8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x10°
TILES 13 39 227

Statistics from Andrew Moore



8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Heuristic: Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73




8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What’s wrong with it? v;? ,t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself



Semi-Lattice of Heuristics



What Is a Semi-Lattice of Heuristics?

= A semi-lattice is a partially ordered set where any two elements have a
least upper bound (join). In the context of heuristics:

= Elements: Each node represents an admissible heuristic function.

= Order: The ordering is based on dominance: heuristic h, dominates h,if h, (n)

> h,(n)for all states n.

= Join Operation: The join of two heuristics h,and h,is defined as:
hioin(n)=max(hy(n),h,(n))

= This new heuristic dominates both hland hz-



Trivial Heuristics, Dominance

A heuristic function hy dominates a heuristic function hq for a
problem P if ha(n) > hi(n) for all nodes n in P's space

Ex.: the 8-puzzle

ho — total Manhattan distance dominates
hi = number of misplaced tiles

With A*, if hy is admissible and dominates hq, then it is always better
for search: A* will never expand more nodes with ho than with h

What if neither of hi. ho dominates the other?
If both A1, ho are admissible, use h(n) = max(hi(n), ha(n))



Trivial Heuristics

Definition:

= A trivial heuristic is a simple, often naive heuristic function that provides minimal guidance in search
or decision-making. It typically returns a constant value (e.g., zero) or a very basic estimate.

Examples:

» |n A* search, a trivial heuristic might be h(n) = Ofor all nodes, which effectively reduces A* to
Dijkstra’s algorithm.

= |n decision-making, choosing randomly or always selecting the first option could be considered
trivial.

Use Cases:

= Baseline comparison: Trivial heuristics are often used as a benchmark to evaluate the effectiveness
of more sophisticated heuristics.

= Guaranteed admissibility: In algorithms like A*, a trivial heuristic is admissible (never
overestimates), ensuring optimality but sacrificing efficiency.

Limitations:
= Poor performance in large or complex search spaces.
= No prioritization, leading to exhaustive search.



Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = max(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)






Effectiveness of Heuristic Functions

Let

® / be a heuristic function h for A*
e /N the total number of nodes expanded by one A* search with A
® d the depth of the found solution

The effective branching Factor (EBF) of h is the value b* that solves

the equation
/_ b* value = x

x4 L4l L 22 41— N =0

(the branching factor of a uniform tree with /N nodes and depth d)

A heuristics h for A* is effective in practice if its average EBF is close
to 1

Note: If h, dominates h,, then EFB( h, ) < EFB( h, )



Dominance and EFB: The 8-puzzle

Search Cost (nodes generated)

BES

128

368
1033
2672
6TR3
17270
41558
91493
175921
200082
395355
463234

A*(hy)

24

48

116
279
678
1683
4102
9005
22955
53039
110372
202565

ﬁ'{hg}

Effective Branching Factor

BFS

A'(hy)

A*(h2)

Figure 3.26 Comparison of the search costs and effective branching factors for 8-puzzle
problems using breadth-first search, A" with ity (misplaced tiles), and A" with fr> (Manhattan

distance). Data are averaged over 100 puzzles for each solution length  from 6 to 28.




Devising Heuristic Functions Automatically

= Relaxation of formally described problems:

= A problem with fewer restrictions on the actions is called a relaxed problem. The cost of an
optimal solution to a relaxed problem is an admissible heuristic for the original problem.

= Pattern databases:

= Admissible heuristics can also be derived from the solution cost of a subproblem of a given
problem. The idea behind pattern databases is to store these exact solution costs for every
possible Pattern database subproblem instance. Then we compute an admissible heuristic

hyg for each state encountered during a search simply by looking up the corresponding
subproblem configuration in the database.

= Learning:

= An alternative is to learn from experience. “Experience” here means solving lots of 8-
puzzles, for instance. Each optimal solution to an 8-puzzle problem provides an example
(goal, path) pair. From these examples, a learning algorithm can be used to construct a

function h that can (with luck) approximate the true path cost for other states that arise
during search.



Graph Search




Tree Search vs Graph Search

" Tree Search
= Does not check for repeated states.
" Explores all paths, even if they revisit the same state multiple times.
» Can be inefficient and may enter infinite loops in cyclic graphs.
= Suitable when the state space is acyclic or small.

= Graph Search

" Checks for redundant paths by maintaining a record of visited states (usually
in a "closed list").

" Avoids revisiting the same state, improving efficiency.
= Essential for problems with cycles or large state spaces.

* Guarantees completeness and optimality (when using admissible heuristics in
A*).



Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.
We call a search algorithm a graph search if it checks for redundant paths and a tree-like search if it does not check.

The BEST-FIRST-SEARCH algorithm in Figure 3.7 is a graph search algorithm; if we remove all references to reached
we get a treelike search that uses less memory but will examine redundant paths to the same state, and thus will

run slower.
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Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been expanded before
= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?



Completeness and Optimality

" Can Graph Search Wreck Completeness?

= No, graph search does not wreck completeness — if implemented correctly.
= Completeness means the algorithm will find a solution if one exists.
= |n graph search, we avoid revisiting states by keeping a closed list of explored nodes.

= |f the algorithm uses a complete search strategy (like BFS or A* with an admissible
heuristic), and the closed list is managed properly, completeness is preserved.

" Can Graph Search Wreck Optimality?

= Yes, graph search can wreck optimality — if not carefully managed.
= Optimality means the algorithm finds the least-cost solution.
" |n A*, optimality is guaranteed only if:

= The heuristic is admissible (never overestimates).

= The heuristic is consistent (monotonic).
= The algorithm uses graph search with proper cost comparison.



A* Graph Search Gone Wrong?

State space graph

Search tree
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Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe <= INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do

if fringe is empty then return failure

node <~ REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end




Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed +— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe <— INSERT( child-node, fringe)
end
end




Optimality of A* Graph Search




Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

* Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

" Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal



Consistent (or Monotonicity) Heuristics

A heuristic is consistent if
hin) < c(n,a,n’) + h(n")
If f is consistent, we have
f(n')y = gn') + h(n)
g(n) +c(n,a,n’) + h(n')

g(n) + h(n)
f(n)

l.e., f(n) is nondecreasing along any path

IVl

Note:
® (Consistent = admissible

® NMNMost admissible heuristics are also consistent

c(n,a,n’): the cost of applying action a in state n to arrive at state n’.



Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal



Effectiveness of Heuristic Functions

" Effectiveness is typically measured by

=" how well a heuristic guides the search process toward the goal with
minimal computational effort.

" The image highlights several important aspects:
= 1. Admissibility
= A heuristic is admissible if it never overestimates the true cost to reach the goal.

= Admissibility ensures optimality in algorithms like A*.
= 2. Consistency (Monotonicity)

= A heuristic is consistent if for every node nand successor n:
h(n) < C(TL' n') + h(n)
= Consistency implies admissibility and helps avoid re-expanding nodes.



Effectiveness of Heuristic Functions

= 3, Dominance
= A heuristic hldominates hzif:

h,(n) = h,(n) foralln
= Dominant heuristics are more informed and typically lead to fewer node expansions.

= 4. Search Efficiency
= More effective heuristics reduce the number of nodes expanded.

= The image likely shows a graph or table comparing heuristics by:
= Number of nodes expanded
= Time taken
= Memory usage

= 5. Trade-offs
= More informed heuristics may be computationally expensive to compute.
= There's a balance between heuristic quality and computational cost.



Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems




A*: Summary




A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems




Example

http://qiao.github.io/PathFinding.js/visual/



http://qiao.github.io/PathFinding.js/visual/
http://qiao.github.io/PathFinding.js/visual/
http://qiao.github.io/PathFinding.js/visual/
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