COMPUTER ORGANIZATION AND DESIGN ARM

The Hardware/Software Interface Edition

Chapter 2

Instructions: Language
of the Computer

Instruction Set

The repertoire of instructions of a
computer

Different computers have different
Instruction sets

But with many aspects in common

Early computers had very simple
Instruction sets

Simplified implementation

Many modern computers also have simple
Instruction sets

Chapter 2 — Instructions: Language of the Computer — 2

The ARMvVS8 Instruction Set

A subset, called LEGVS, used as the example
throughout the book

Commercialized by ARM Holdings
()
Large share of embedded core market

Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAsS
See ARM Reference Data tear-out card

Chapter 2 — Instructions: Language of the Computer — 3

http://www.mips.com/

Arithmetic Operations

Add and subtract, three operands
Two sources and one destination

ADD a, b, ¢ // a gets b + c
All arithmetic operations have this form
Design Principle 1: Simplicity favours
regularity

Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Example

C code:
= (g+h) - i+ 3;
Compiled LEGV8 code:

ADD t0, g, h // temp t0 =
ADD tl1l, 1,] // temp tl =
ADD f, tO, t1 // f = t0 - t1

-1 QO
. 5

Chapter 2 — Instructions: Language of the Computer — 5

Register Operands

Arithmetic instructions use register
operands

LEGV8 has a 32 x 64-bit register file

Use for frequently accessed data

64-bit data is called a “doubleword”
31 x 64-bit general purpose registers X0 to X30

32-bit data called a “word”
31 x 32-bit general purpose sub-registers WO to W30

Design Principle 2: Smaller Is faster
c.f. main memory: millions of locations

Chapter 2 — Instructions: Language of the Computer — 6

LEGVS8 Registers

X0 — X7: procedure arguments/results
X8: indirect result location register
X9 — X15: temporaries

X16 — X17 (IPO — IP1): may be used by linker as a
scratch register, other times as temporary register

X18: platform register for platform independent code;
otherwise a temporary register

X19 — X27: saved

X28 (SP): stack pointer

X29 (FP): frame pointer

X30 (LR): link register (return address)
XZR (register 31): the constant value O

Chapter 2 — Instructions: Language of the Computer — 7

Register Operand Example

C code:
f=0@+h) -0+ 73);
f, ...,jin X19, X20, ..., X23

Compiled LEGVS8 code:

ADD X9, X20, X21
ADD X10, X22, X23
SUB X19, X9, X10

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data

To apply arithmetic operations
Load values from memory into registers
Store result from register to memory

Memory Is byte addressed
Each address identifies an 8-bit byte

LEGV8 does not require words to be aligned In
memory, except for instructions and the stack

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example

C code:
A[12] = h + A[8];

hin X21, base address of A In X22
Compiled LEGVS8 code:

Index 8 requires offset of 64
LDUR X9, [X22,#64] // U for *“unscaled”
ADD X9,%21,X9
STUR X9, [X22,#96]

Chapter 2 — Instructions: Language of the Computer — 10

Registers vs. Memory

Registers are faster to access than
memory

Operating on memory data requires loads
and stores

More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 11

Immediate Operands

Constant data specified in an instruction
ADDI X222, X22, #4

Design Principle 3. Make the common
case fast

Small constants are common
Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 12

Unsigned Binary Integers

Given an n-bit number
X=X 2" +X_ ,2"% 4.t X, 2" +X,2°

Range: 0to +2" -1

Example

0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ...+ 1%x23 + 0%x22 +1x21 +1x20
=0+...+8+0+2+1=11

Using 32 bits
O to +4,294,967,295

Chapter 2 — Instructions: Language of the Computer — 13

2s-Complement Signed Integers

Given an n-bit number

. n-1 n—2 1 o)
X=—X 12 "+X, ,2 "+ -+X2 +X,2

Range: -2"-1to+2"-1-1

Example

1111 1111 1131 1217 21121 12172 1111 1100,
—1x231 + 1x230 + + 1x22 +0x21 +0x20
—2,147,483,648 + 2,147,483,644 = —4,,

Using 32 bits
—2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 14

2s-Complement Signed Integers

Bit 31 is sign bit
1 for negative numbers
O for non-negative numbers

—(—2"-1) can’t be represented

Non-negative numbers have the same unsigned
and 2s-complement representation
Some specific numbers
0: 0000 0000 ... 0000
-1 11111111 ... 1111
Most-negative: 1000 0000 ... 0000
Most-positive: 0111 1111 ... 1111

Chapter 2 — Instructions: Language of the Computer — 15

Signed Negation

Complement and add 1
Complement means1 — 0,0 — 1

X+x=1111...111 =-1

X+1=-X

Example: negate +2
+2 = 0000 0000 ... 0010

-2 =111 1111 ... 1101
= 1111 1111 ... 1110

two

+1

two

two

Chapter 2 — Instructions: Language of the Computer — 16

Sign Extension

Representing a number using more bits
Preserve the numeric value
Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2:1111 1110 => 111 1110

In LEGVS8 Instruction set
LDURSB: sign-extend loaded byte
LDURB: zero-extend loaded byte

Chapter 2 — Instructions: Language of the Computer — 17

Representing Instructions

Instructions are encoded in binary
Called machine code

LEGVS8 Instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Chapter 2 — Instructions: Language of the Computer — 18

Hexadecimal

Base 16

Compact representation of bit strings
4 bits per hex digit

O (0000 |4 |0100 |8 |1000 |c 1100
1 (0001 (5 (0101 |9 |1001 |d ([1101
2 |0010 |6 |0110 |a |1010 |e |1110
3 |0011 |7 (0111 (b |1011 (f |1111

Example: eca8 6420
1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 19

LEGV8 R-format Instructions

opcode Rm shamt Rn Rd
11 bits 5 bits 6 bits 5 bits 5 bits

Instruction fields
opcode: operation code
Rm: the second register source operand
shamt: shift amount (00000 for now)
Rn: the first register source operand
Rd: the register destination

Chapter 2 — Instructions: Language of the Computer — 20

R-format Example

opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

ADD X9,X20,X21

1112 21 0 20 9

ten ten ten ten ten

10001011000, | 10101, 000000,,,, 10100,,, 01001,

1000 1011 0001 0101 OO0OO 0010 1000 1001,,,, =

8B150289,,

Chapter 2 — Instructions: Language of the Computer — 21

LEGVS8 D-format Instructions

opcode address op2 Rn Rt
11 bits 9 bits 2 bits 5 bits 5 bits

Load/store instructions

Rn: base register

address: constant offset from contents of base register (+/- 32
doublewords)

Rt: destination (load) or source (store) register number

Design Principle 3: Good design demands good

compromises

Different formats complicate decoding, but allow 32-bit
Instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 22

L EGVS8 |I-format Instructions

opcode Immediate Rn Rd
10 bits 12 bits 5 bits 5 bits

Immediate instructions
Rn: source register
Rd: destination register

Immediate field i1s zero-extended

Chapter 2 — Instructions: Language of the Computer — 23

Stored Program Computers

nstructions represented Iin
ninary, just like data

____Memory nstructions and data stored
iA?n‘i;QE%%Té’?é?mi IN memory
| Editor program Programs can operate on

octieieeses| PrOQrams

processor | |1 (machns code) | e.g., compilers, linkers, ...
. ryaae || Binary compatibility allows
e compiled programs to work
| S| on different computers
Source code in C Standardized ISAs

for editor program

S S

Chapter 2 — Instructions: Language of the Computer — 24

Logical Operations

Instructions for bitwise manipulation
Operation C Java LEGVS
Shift left << << LSL
Shift right >> >>> LSR
Bit-by-bit AND & & AND, ANDI
Bit-by-bit OR | | OR, ORI
Bit-by-bit NOT ~ ~ EOR, EORI

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 25

Shift Operations

opcode Rm shamt Rn Rd

11 bits 5 bits 6 bits 5 bits 5 bits

shamt: how many positions to shift

Shift left logical
Shift left and fill with O bits
LSL by i bits multiplies by 2!
Shift right logical

Shift right and fill with O bits
LSR by i bits divides by 2' (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 26

AND Operations

Useful to mask bits in a word
Select some bits, clear others to O

AND X9,X10,x11

X10 | 00000000 00000000 OOOO0000 00000000 60000000 00000000 00001101 11000000

X11 | 00000000 00000000 00000000 OOOOOO00 00000000 00000000 00111100 00000000

X9 | 00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000

Chapter 2 — Instructions: Language of the Computer — 27

OR Operations

Useful to include bits in a word
Set some bits to 1, leave others unchanged

OR X9,X10,Xx11

X10 | 00000000 00000000 OOOO0000 00000000 60000000 00000000 00001101 11000000

X11 | 00000000 00000000 00000000 OOOOOO00 00000000 00000000 00111100 00000000

X9 | 00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000

Chapter 2 — Instructions: Language of the Computer — 28

EOR Operations

Differencing operation
Set some bits to 1, leave others unchanged

EOR X9,X10,X12 // NOT operation

X10 | 00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000

X122 | 11111111 111121271 211121121 11271271 112771271 11171721 111721731 11111111

X9 111111117 111111171 11111111 1111717171717 1171711111 11111711 11110010 OO111111

Chapter 2 — Instructions: Language of the Computer — 29

Conditional Operations

Branch to a labeled instruction if a condition Is
true

Otherwise, continue sequentially

CBZ register, L1
If (register == 0) branch to instruction labeled L1;

CBNZ register, L1
If (register != 0) branch to instruction labeled L1,

B L1
branch unconditionally to instruction labeled L1;

Chapter 2 — Instructions: Language of the Computer — 30

Compiling If Statements

C code: - -

if (i==j) f = g+h;

else ¥ = g-h; — o
f, g, ... In X22, X23, ...

Compiled LEGV8 code: s

SUB X9,X22,X23
CBNZ X9,Else
ADD X19,%20,x21

B Exit
Else:. SUB X9,X22,x23
EX-i t: . Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 31

Compiling Loop Statements

C code:
while (save[1] == k) 1 += 1;

1IN X22, K In x24, address of save Iin x25

Compiled LEGVS8 code:

Loop: LSL X10,X22,#3
ADD X10,X10,X25
LDUR X9, [X10,#0]
SUB X11,X9,X24
CBNzZ X11,Exit
ADDI X22,X22,#1
B Loop

Chapter 2 — Instructions: Language of the Computer — 32

Basic Blocks

A basic block Is a sequence of instructions
with

No embedded branches (except at end)

No branch targets (except at beginning)

_ Y A compller identifies basic
blocks for optimization

An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 33

More Conditional Operations

Condition codes, set from arithmetic instruction with S-
suffix (ADDS, ADDIS, ANDS, ANDIS, SUBS, SUBIS)
negative (N): result had 1 in MSB
zero (Z): resultwas 0
overlow (V): result overflowed
carry (C): result had carryout from MSB

Use subtract to set flags, then conditionally branch:
B.EQ
B.NE
B.LT (less than, signed), B.LO (less than, unsigned)
B.LE (less than or equal, signed), B.LS (less than or equal, unsigned)
B.GT (greater than, signed), B.HI (greater than, unsigned)
B.GE (greater than or equal, signed),
B.HS (greater than or equal, unsigned)

Chapter 2 — Instructions: Language of the Computer — 34

Conditional Example

If (a>Db)a+=1;
ain X22, b in X23

SUBS X9,X22,X23 // use subtract to make comparison
B.LTE Exit // conditional branch
ADDI X22,X22,#1

EXit:

Chapter 2 — Instructions: Language of the Computer — 35

Signed vs. Unsigned

Signhed comparison
Unsigned comparison

Example
X22 =11111111 11111111 1111 1121 1111 1111
X23 = 0000 0000 0000 0000 0000 0000 0000 0001

X22 < X23 # signed
~1<+1

X22 > X23 # unsigned
+4,294,967,295 > +1

Chapter 2 — Instructions: Language of the Computer — 36

Procedure Calling

Steps required
Place parameters in registers X0 to X7
Transfer control to procedure
Acquire storage for procedure

Perform procedure’s operations

Place result in register for caller

Return to place of call (address in X30)

Chapter 2 — Instructions: Language of the Computer — 37

Procedure Call Instructions

Procedure call: jump and link

BL ProcedureLabel
Address of following instruction put in X30
Jumps to target address

Procedure return: jump register
BR LR
Copies LR to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 38

Leaf Procedure Example

C code:
long long 1nt leaf_example (long long 1nt
g, long long int h, long long 1nt 1, long
long 1nt j)
{ Tong long int T;

f=0+h -0G+3);

return f;

h
Arguments g, ..., in X0, ..., X3
fin X19 (hence, need to save $s0 on stack)

Chapter 2 — Instructions: Language of the Computer — 39

Leaf Procedure Example

LEGV8 code:

lTeaf_example:

SUBI SP,SP,#24 Save X10, X9, X19 on stack
STUR X10, [SP,#16]

STUR X9, [SP, #8]

STUR X19, [SP,#0]

ADD X9,X0,X1 X9 =g+ h

ADD X10,X2,X3 X10 =i +]

SUB X19,X9,X10 f = X9 —X10

ADD X0,X19,XZR copy f to return register

LDUR X10, [SP,#16] Resore X10, X9, X19 from stack

LDUR X9, [SP,#8]
LDUR X19, [SP,#0]

ADDI SP,SP,#24
BR LR Return to caller

Chapter 2 — Instructions: Language of the Computer — 40

Local Data on the Stack

High address

SP — SP—
Contents of register X10

Contents of register X9

SP — | Contents of register X19

Low address

Chapter 2 — Instructions: Language of the Computer — 41

Register Usage

X9 to X17: temporary registers
Not preserved by the callee

X19 to X28: saved registers
If used, the callee saves and restores them

Chapter 2 — Instructions: Language of the Computer — 42

Non-Leaf Procedures

Procedures that call other procedures
For nested call, caller needs to save on the
stack:

Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 43

Non-Leaf Procedure Example

C code:

int fact (1nt n)

{
1f (n < 1) return f;

else return n * fact(n - 1);

¥

Argument n in X0
Result in X1

Chapter 2 — Instructions: Language of the Computer — 44

Leaf Procedure Example

LEGV8 code:

fact:
SUBI SP,SP,#16 Save return address and n on stack

STUR LR, [SP,#8]
STUR X0, [SP,#0]

SUBIS XZR,X0,#1 compare n and 1
B.GE L1 ifn>=1,goto Ll
ADDI X1,XZR,#1 Else, set return value to 1
ADDI SP,SP,#16 Pop stack, don't bother restoring values
BR LR Return
L1: SUBI X0,X0,#1 n=n-1
BL fact call fact(n-1)
LDUR XO, [SP,#0] Restore caller’s n
LDUR LR, [SP,#8] Restore caller’s return address
ADDI SP,SP,#16 Pop stack
MUL X1,X0,X1 return n * fact(n-1)
BR LR return

Chapter 2 — Instructions: Language of the Computer — 45

Memory Layout

Text: program code
Static data: global

Varlables SP —= 0000 007f ffff fffcy,, Stack
e.g., static variables in C, '
constant arrays and strings :

Dynamic data

Static data

0000 0000 1000 0000y,

Dynamlc data heap PC— 0000 0000 0040 0000y, - = »
E.g., malloc in C, new In 0
Java

Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 46

Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 47

Byte/Halfword Operations

LEGVS8 byte/halfword load/store
Load byte:
LDURB Rt, [Rn, offset]
Sign extend to 32 bits in rt
Store byte:
STURB Rt, [Rn, offset]
Store just rightmost byte
Load halfword:
LDURH Rt, [Rn, offset]
Sign extend to 32 bits in rt
Store halfword:
STURH Rt, [Rn, offset]
Store just rightmost halfword

Chapter 2 — Instructions: Language of the Computer — 48

String Copy Example

C code:
Null-terminated string

void strcpy (char x[], char y[])
{ s1ze_t 1;
1 = 0;
while ((x[1]=y[1])!="\0")
1 += 1;

Chapter 2 — Instructions: Language of the Computer — 49

String Copy Example

LEGVS8 code:
strcpy:
SUBI SP,SP,8 // push X19
STUR X19, [SP,#0]
ADD X19,XZR,XZR // 1=0
L1: ADD X10,X19,X1 // X10 = addr of y[i]
LDURB X11,[X10,#0] // X11 = y[i]
ADD X12,X19,X0 // X12 = addr of x[i]
STURB X11, [X12,#0] // x[i] = y[i]
CBz X11,L2 // 1f y[1] == 0 then exit
ADDI X19,X19,#1 /J/ 1 =1+ 1
B L1 // next iteration of loop
L2: LDUR X19, [sP,#0] // restore saved $s0
ADDI SP,SP,8 // pop 1 item from stack
BR LR // and return

Chapter 2 — Instructions: Language of the Computer — 50

32-bit Constants

Most constants are small
12-bit immediate is sufficient

For the occasional 32-bit constant

MOVZ: move wide with zeros
MOVK: move with with keep

Use with flexible second operand (shift)

MOVZ X9,255,LSL 16
0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000|1111 1111 | 0000 0000 0000 0000

MOVK X9,255,LSL O
0000 0000 0000 0000 | 0000 0000 0000 0000 | 0000 0000 1111 17111 | OOO0 000011111 1111

Chapter 2 — Instructions: Language of the Computer — 51

Branch Addressing

B-type
B 1000 // go to location 10000,
5 10000,
6 bits 26 bits
CB-type
CBNz X19, Exit // go to Exit if X19 !=0
181 Exit 19
8 bits 19 bits 5 bits

Both addresses are PC-relative
Address = PC + offset (from instruction)

Chapter 2 — Instructions: Language of the Computer — 52

LEGvV8 Addressing Summary

1. Immediate addressing

op | rs | rt Immediate

2. Register addressing

op |Rm o Rn | Rd Registers

| - Register

3. Base addressing

op | Address | op | Rn | Rt Memory
|

Register C—I?— [[Byle | Halfiword| ~ Word Doubleword
|

4. PC-relative addressing

op Address Rt Memory
|

PC ¢>—~ Doubleword
|

/z\ M(Chapter 2 — Instructions: Language of the Computer — 53

MORGAN KAUFMANN

LEGvV8 Encoding Summary

Field size 6 to 11 bits| 5to 10 bits | 5 or 4 bits | 2 bits 5 bits 5 bits All LEGv8 instructions are 32 bits long
R-format R opcode Rm shamt Rn Rd Arithmetic instruction format
I-format [opcode immediate Rn Rd Immediate format

D-format D opcode address op2 Rn Rt Data transfer format
B-format B opcode address Unconditional Branch format
CB-format CB| opcode address Rt Conditional Branch format
IW-format IW| opcode immediate Rd Wide Immediate format

MORGAN KAUFMANN

/Z\ M< Chapter 2 — Instructions: Language of the Computer — 54

Synchronization

Two processors sharing an area of memory
P1 writes, then P2 reads

Data race if P1 and P2 don’t synchronize
Result depends of order of accesses

Hardware support required
Atomic read/write memory operation

NoO other access to the location allowed between the
read and write

Could be a single instruction
E.g., atomic swap of register «— memory
Or an atomic pair of instructions

Chapter 2 — Instructions: Language of the Computer — 55

Synchronization in LEGvS8

Load exclusive register: LDXR
Store exclusive register: STXR

To use:
Execute LDXR then STXR with same address

If there is an intervening change to the address, store
fails (communicated with additional output register)

Only use register instruction in between

Chapter 2 — Instructions: Language of the Computer — 56

Synchronization in LEGvS8

Example 1: atomic swap (to test/set lock variable)
again: LDXR X10, [X20,#0]
STXR X23,X9,[X20] // X9 = status

CBNZ X9, again

ADD X23,XZR,X10 // X23 = loaded value

Example 2: lock
X11,XZR,#1
X10, [X20,#0]
X10, again
x11, X9, [Xx20]
X9,again

ADDI
again: LDXR
CBNZ
STXR
BNEZ

Unlock:
STUR

XZR,

[X20,#0]

//
//
//
//
//

//

copy locked value
read lock
check if it is 0 yet

attempt to store
branch if fails
free lock

Chapter 2 — Instructions: Language of the Computer — 57

Translation and Startup

C program

Assembly language program

Object: Machine language module Obiject: Library routine (machine language)

> Static linking

Executable: Machine language program

/

Memory

Many compilers produce
object modules directly

Chapter 2 — Instructions: Language of the Computer — 58

Producing an Object Module

Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete
program from the pieces
Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for associating with source code

Chapter 2 — Instructions: Language of the Computer — 59

Linking Object Modules

Produces an executable image
Merges segments
Resolve labels (determine their addresses)
Patch location-dependent and external refs

Could leave location dependencies for
fixing by a relocating loader
But with virtual memory, no need to do this

Program can be loaded into absolute location
In virtual memory space

Chapter 2 — Instructions: Language of the Computer — 60

Loading a Program

Load from image file on disk into memory
Read header to determine segment sizes
Create virtual address space

Copy text and initialized data into memory
Or set page table entries so they can be faulted in

Set up arguments on stack
Initialize registers (including SP, FP)
Jump to startup routine

Copies arguments to X0, ... and calls main
When main returns, do exit syscall

Chapter 2 — Instructions: Language of the Computer — 61

Dynamic Linking

Only link/load library procedure when it is

callec
Requires procedure code to be relocatable

Avoids image bloat caused by static linking of
all (transitively) referenced libraries

Automatically picks up new library versions

Chapter 2 — Instructions: Language of the Computer — 62

Lazy Linkage

Text Text
| Ciour “LDUR
R | @] R | @]
Indirection table Data Data
|
Stub: Loads routine 1D, Text
[| LbA D
Jump to linker/loader .
§ |
Text
Linker/loader code '~ Dynamic linker/loader
Remap DLL routine
°. [@]
Dynamically L Data/Text Text
ma ed COde DLL routine e DLL routine
PP s (@} s @}
(a) First call to DLL routine (b) Subsequent calls to DLL routine

Chapter 2 — Instructions: Language of the Computer — 63

Starting Java Applications

Simple portable
instruction set for

Java program

. the JVM
' Compilgr\'
\,_j__{
Class files (Java bytecodes) Java library routines (machine language)
A_‘_A{

—— e T
~Just In Time (Java Virtual Machine>

“~__compiler_ ~ _—
Compiles — /S T~

bytecodes of Compiled Java methods (machine language)

“hot” methods
into native
code for host
machine

Interprets
bytecodes

Chapter 2 — Instructions: Language of the Computer — 64

C Sort Example

lllustrates use of assembly instructions
for a C bubble sort function

Swap procedure (leaf)
void swap(long long 1nt v[],
long long 1nt k)

{
long long 1nt temp;

temp = v[k];

vik] = v[k+1],

vik+1l] = temp;
}

v in X0, kin X1, temp in X9

Chapter 2 — Instructions: Language of the Computer — 65

The Procedure Swap

swap:

LSL X10,X1,#3
ADD X10,X0,X10
LDUR X9, [X10,#0]
LDUR X11, [X10,#8]
STUR X11, [X10,#0]
STUR X9, [X10,#8]
BR LR

// X10 = k * 8
// X10 = address of v[k]
// X9 = v[k]

// X11 = v[k+1]
// vlk] = X11 (v[k+1])
// vIk+1l] = X9 (v[k])

// return to calling routine

Chapter 2 — Instructions: Language of the Computer — 66

The Sort Procedure in C

Non-leaf (calls swap)
void sort (long long int v[], size_t n)

{
size_t 1, 7J;
for (1 =0; 1 <n; 1 +=1) {
for (3 =1 - 1;
j >= 0 && v[j] > v[] + 1];
] =1 {
swap(v,]J);
}
}

}
vin X0, nin X1, i in X19, j in X20

Chapter 2 — Instructions: Language of the Computer — 67

The Outer Loop

Skeleton of outer loop:
for(i=0;i<n;i+=1){

MOV X19,XZR // 1 =0

forltst:
CMP X19, X1 // compare X19 to X1 (1 to n)
B.GE exitl // go to exitl if X19 > X1 (i=n)

(body of outer for-Tloop)

ADDI X19,Xx19,#1 // i +=1
B forltst // branch to test of outer loop
exitl:

Chapter 2 — Instructions: Language of the Computer — 68

The Inner Loop

Skeleton of inner loop:
for(j=i—-1;j>=0&&V[j]>V[j+1];j-=1){

SUBI X20, x19, #1 //j=1-1
for2tst: CMP X20,XZR // compare X20 to 0 (j to 0)
B.LT exit2 // go to exit2 if X20 < 0 (J < 0)
LSL X10, X20, #3 // reg X10 = j * 8
ADD X11, X0, X10 // reg X11 = v + (j * 8)

LDUR X12, [X11,#0] // reg X12 = v[j]
LDUR X13, [X11,#8] // reg X13 = v[j + 1]

CMP X12, X13 // compare X12 to X13

B.LE exit2 // go to exit2 if X12 < X13

MOV X0, X21 // first swap parameter is v

MOV X1, X20 // second swap parameter 1is j

BL swap // call swap

SUBI X20, Xx20, #1 /)] =1

B for2tst // branch to test of inner Tloop
exit2:

Chapter 2 — Instructions: Language of the Computer — 69

Preserving Registers

Preserve saved registers:

SUBI SP,SP,#40
STUR LR, [SP,#32]
STUR X22, [SP,#24]
STUR X21, [SP,#16]
STUR X20, [SP,#8]
STUR X19, [SP,#0]
MOV X21, XO

MOV X22, X1

Restore saved

exitl: LDUR X19, [SP,#0]
LDUR X20, [SP,#8]
LDUR X21,[SP,#16]
LDUR X22,[SP,#24]
LDUR X30, [SP,#32]
SUBI SP,SP,#40

// make room on stack for 5 regs
// save LR on stack

// save X22 on stack

// save X21 on stack

// save X20 on stack

// save X19 on stack

// copy parameter X0 into X21
// copy parameter X1 into X22

registers:

// restore X19 from stack
// restore X20 from stack
// restore X21 from stack
// restore X22 from stack
// restore LR from stack
// restore stack pointer

Chapter 2 — Instructions: Language of the Computer — 70

Effect of Compiler Optimization

Compiled with gcc for Pentium 4 under Linux

3 O Relative Performance 140000 O Instruction count
2.5 120000

2 100000

80000
15
60000

1 40000
0.5 20000

0 T T T 0 T T T

none o1 02 03 none o1 02 03

180000 O Clock Cycles 2 OCPI
160000
140000 1.5
120000
100000 1

80000

60000 —

40000 - 0.5

20000 —

0 T T T 0 T T T
none o1 02 03 none o1 02 03

/Z\ M(Chapter 2 — Instructions: Language of the Computer — 71

'MORGAN KAUFMANN

Effect of Language and Algorithm

3 O Bubblesort Relative Performance
2.5
2
1.5
1
0.5
0 . . . —r—
C/none Cc/01 C/02 C/03 Java/int Java/JIT
25 O Quicksort Relative Performance
2
1.5
1
0.5
0 . . . ——
C/none Cc/01 C/02 C/03 Java/int Java/JIT
3000 O Quicksort vs. Bubblesort Speedup
2500
2000
1500
1000
500
0
C/none Cc/01 C/02 C/03 Java/int Java/JIT

/g\ M(Chapter 2 — Instructions: Language of the Computer — 72

MORGAN KAUFMANN

. essons Learnt

Instruction count and CPI are not good
performance indicators in isolation

Compliler optimizations are sensitive to the
algorithm

Java/JIT compiled code is significantly
faster than JVM Interpreted
Comparable to optimized C in some cases

Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 73

Arrays vs. Pointers

Array indexing involves

Multiplying index by element size

Adding to array base address
Pointers correspond directly to memory
addresses

Can avoid indexing complexity

Chapter 2 — Instructions: Language of the Computer — 74

Example: Clearing an Array

clearl(int array[], int size) {

clear2(int *array, int size) {

int i; int *p;
for (i =0; 1 < size; i += 1) for (p = &array[0]; p < &array[size];
array[i] = 0; p=p+ 1)
} *n = 0;
}
MOV X9,XZR // 1 =0 MOV X9, X0 // p = address of

Toopl: LSL X10,X9,#3 // X10 =1 * 8
ADD X11,X0,X10 // X11 = address
// of arrayl[i]
STUR XZR, [X11,#0]
// array[i] = 0
ADDI X9,X9,#1 // i =1 + 1

CMP X9,X1 // compare 1 to
// size
B.LT loopl // if (i < size)

// go to loopl

// array[0]
LSL X10,x1,#3 // X10 = size * 8
ADD X11,X0,X10 // X11 = address
// of array[size]
Toop2: STUR XZR,0[X9,#0]
// Memory[p] = 0
ADDI X9,X9,#8 // p=p + 8

CMP X9,X11 // compare p to <
// &array[size]
B.LT Toop2 // if (p <

// &array[size])
// go to loop2

Chapter 2 — Instructions: Language of the Computer — 75

Comparison of Array vs. Ptr

Multiply “strength reduced” to shift

Array version requires shift to be inside
loop

Part of index calculation for incremented |
c.f. Incrementing pointer
Compliler can achieve same effect as
manual use of pointers
Induction variable elimination
Better to make program clearer and safer

Chapter 2 — Instructions: Language of the Computer — 76

ARM & MIPS Similarities

ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 x 32-bit 31 x 32-hit
Input/output Memory Memory

mapped mapped

Chapter 2 — Instructions: Language of the Computer — 77

Instruction Encoding

31 2120 1615 109 54 (8]

eow N < | Gewel | R | Re |

31 2625 2120 1615 1110 6 5 [0]

Registerrogister wies (NNGENNN ~ rev: | mezr | mar | GemsEl]| owe
31 2827 2019 1615 1211 4 3 [0]

ARMWT Rs24

Py
4
s
2
E

31 2120 1211109 5 4 (o]
P T

31 26 25 2120 1615 (o]

Data transfer MIPS _ Rs1° | Rs2°5 | Const'® |
31 2827 2019 1615 1211 (0]
B =T Gone |

31 24 23 5 4 (o]

oo = T

31 26 25 2120 1615 (8]

oraven wies e — |
31 2827 24 23 (0]

aenv — |

31 26 25 (8]

pRgysE— — |

31 26 25 (0]

somprcan s S |
31 2827 24 23 (0]

e Sonar |

| [CO©pcede [JRegister |:|Constant|

M< Chapter 2 — Instructions: Language of the Computer — 78

MORGAN KAUFMANN

The Intel x86 ISA

Evolution with backward compatibility
8080 (1974): 8-bit microprocessor

Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080

Complex instruction set (CISC)

8087 (1980): floating-point coprocessor
Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU

Segmented memory mapping and protection

80386 (1985): 32-bit extension (now |A-32)

Additional addressing modes and operations
Paged memory mapping as well as segments

Chapter 2 — Instructions: Language of the Computer — 79

The Intel x86 ISA

Further evolution...

1486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...

Pentium (1993): superscalar, 64-bit datapath

Later versions added MMX (Multi-Media eXtension)
Instructions

The infamous FDIV bug
Pentium Pro (1995), Pentium Il (1997)
New microarchitecture (see Colwell, The Pentium Chronicles)

Pentium Il (1999)

Added SSE (Streaming SIMD Extensions) and associated
registers

Pentium 4 (2001)
New microarchitecture
Added SSE2 instructions

Chapter 2 — Instructions: Language of the Computer — 80

The Intel x86 ISA

And further...

EM64T — Extended Memory 64 Technology (2004)
AMDG64 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (2006)

Added SSE4 instructions, virtual machine support

Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions

If Intel didn’t extend with compatibility, its
competitors would!

Technical elegance # market success

Chapter 2 — Instructions: Language of the Computer — 81

Basic x86 Registers

Name Use

31 (0]
EAX GPR O
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR 7
(@25 Code segment pointer
SS Stack segment pointer (top of stack)
DS Data segment pointer O
ES Data segment pointer 1
FS Data segment pointer 2
GS Data segment pointer 3
EIP Instruction pointer (PC)
EFLAGS Condition codes

M(Chapter 2 — Instructions: Language of the Computer — 82

MORGAN KAUFMANN

Basic x86 Addressing Modes

Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

Memory addressing modes
Address in register
Address = R, .. + displacement
Address = R, + 2@ x R, (scale =0, 1, 2, or 3)
Address = R, + 25¢¥ x R, + displacement

Chapter 2 — Instructions: Language of the Computer — 83

Xx86 Instruction Encoding

a. JE EIP + displacement

4 4 8
JE andl— Displacement
tion
b. CALL
8 32
CALL Offset

c.MOV EBX, [EDI + 45]
6 11 8

MOV |d|w rm

Displacement

Postbyte
d. PUSH ESI
5 3
PUSH |Reg

e. ADD EAX, #6765
4 3 1

32

ADD |Reg|w

Immediate

f. TEST EDX, #42
7 1 8

32

Variable length
encoding

Postfix bytes specify
addressing mode

Prefix bytes modify
operation

Operand length,
repetition, locking, ...

TEST w Postbyte

Immediate

Chapter 2 — Instructions: Language of the Computer — 84

Implementing |A-32

Complex instruction set makes
iImplementation difficult

Hardware translates instructions to simpler
microoperations

Simple instructions: 1-1
Complex instructions: 1-many

Microengine similar to RISC

Market share makes this economically viable
Comparable performance to RISC

Compilers avoid complex instructions

Chapter 2 — Instructions: Language of the Computer — 85

Fallacies

Powerful instruction = higher performance

Fewer instructions required

But complex instructions are hard to implement
May slow down all instructions, including simple ones

Compilers are good at making fast code from simple
Instructions

Use assembly code for high performance

But modern compilers are better at dealing with
modern processors

More lines of code = more errors and less
productivity

Chapter 2 — Instructions: Language of the Computer — 86

Fallacies

Backward compatibility = instruction set
doesn’t change

But they do accrete more instructions

1000
900
@ 800 f//_
2 700
=
g 600
= 500 :)
5 Xx86 Instruction set
5 400 o
E 300 P
Z 200
100 —;7*’/
0

43*@tﬂf@‘#@@qmtb‘*‘%‘”tﬁ’q“@'a?‘qﬁ@@@
RN R e SR R R R LR S SN S S S SN SN

Year

Chapter 2 — Instructions: Language of the Computer — 87

Pitfalls

Sequential words are not at sequential
addresses

Increment by 4, not by 1!
Keeping a pointer to an automatic variable
after procedure returns
e.d., passing pointer back via an argument
Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 88

Concluding Remarks

Design principles
Simplicity favors regularity
Smaller is faster
Make the common case fast
Good design demands good compromises

Layers of software/hardware
Compiler, assembler, hardware

LEGVS: typical of RISC ISAs
c.f. x86

Chapter 2 — Instructions: Language of the Computer — 89

Concluding Remarks

Additional ARMvS8 features:

Flexible second operand
Additional addressing modes
Conditional instructions (e.g. CSET, CINC)

AL ML AL ML AL ML AL ML

Integer 49 145 74 105 - - 123 | 250
Floating Point & Int Mul/Div 0 18 63 156 — — 63 | 174
SIMD/Vector 16 166 229 | 371 — — 245 | 537
System/Special 11 55 52 40 - - 63 95
- - - - - 23 14 23 14
Total 76 384 418 | 672 | 23 14 | 517 | 1070

Chapter 2 — Instructions: Language of the Computer — 90

