
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.

+
Chapter 4
Cache Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 4.1

Key Characteristics of Computer Memory Systems

Location

 Internal (e.g. processor registers, cache,

main memory)

 External (e.g. optical disks, magnetic disks,
tapes)

Capacity

 Number of words

 Number of bytes

Unit of Transfer

 Word

 Block
Access Method

 Sequential

 Direct

 Random

 Associative

Performance

 Access time

 Cycle time

 Transfer rate
Physical Type

 Semiconductor

 Magnetic

 Optical

 Magneto-optical

Physical Characteristics

 Volatile/nonvolatile
 Erasable/nonerasable

Organization

 Memory modules

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Characteristics of Memory

Systems

◼ Location

◼ Refers to whether memory is internal and external to the computer

◼ Internal memory is often equated with main memory

◼ Processor requires its own local memory, in the form of registers

◼ Cache is another form of internal memory

◼ External memory consists of peripheral storage devices that are
accessible to the processor via I/O controllers

◼ Capacity

◼ Memory is typically expressed in terms of bytes

◼ Unit of transfer

◼ For internal memory the unit of transfer is equal to the number of
electrical lines into and out of the memory module

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Method of Accessing Units of Data

Sequential
access

Memory is organized into
units of data called

records

Access must be made in
a specific linear

sequence

Access time is variable

Direct
access

Involves a shared read-
write mechanism

Individual blocks or
records have a unique

address based on
physical location

Access time is variable

Random
access

Each addressable
location in memory has a
unique, physically wired-
in addressing mechanism

The time to access a
given location is

independent of the
sequence of prior

accesses and is constant

Any location can be
selected at random and
directly addressed and

accessed

Main memory and some
cache systems are

random access

Associative

A word is retrieved
based on a portion of its
contents rather than its

address

Each location has its own
addressing mechanism

and retrieval time is
constant independent of
location or prior access

patterns

Cache memories may
employ associative

access

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Memory
◼ The most common forms are:

◼ Semiconductor memory

◼ Magnetic surface memory

◼ Optical

◼ Magneto-optical

◼ Several physical characteristics of data storage are important:

◼ Volatile memory

◼ Information decays naturally or is lost when electrical power is switched off

◼ Nonvolatile memory

◼ Once recorded, information remains without deterioration until deliberately changed

◼ No electrical power is needed to retain information

◼ Magnetic-surface memories

◼ Are nonvolatile

◼ Semiconductor memory

◼ May be either volatile or nonvolatile

◼ Nonerasable memory

◼ Cannot be altered, except by destroying the storage unit

◼ Semiconductor memory of this type is known as read-only memory (ROM)

◼ For random-access memory the organization is a key design issue

◼ Organization refers to the physical arrangement of bits to form words

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Capacity and Performance:

The two most important characteristics of
memory

Three performance parameters are used:

Access time (latency)

•For random-access memory it is the
time it takes to perform a read or
write operation

•For non-random-access memory it
is the time it takes to position the
read-write mechanism at the
desired location

Memory cycle time

•Access time plus any additional
time required before second
access can commence

•Additional time may be required
for transients to die out on signal
lines or to regenerate data if they
are read destructively

•Concerned with the system bus,
not the processor

Transfer rate

•The rate at which data can be
transferred into or out of a memory
unit

•For random-access memory it is
equal to 1/(cycle time)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Chapter 8 <8> Digital Design and Computer Architecture: ARM® Edition © 2015

Processor Memory
Address

MemWrite

WriteData

ReadData

WE

CLKCLK

Computer performance depends on:
– Processor performance

– Memory system performance

Memory Interface

Introduction

Chapter 8 <9> Digital Design and Computer Architecture: ARM® Edition © 2015

In prior chapters, assumed memory access takes 1 clock
cycle – but hasn’t been true since the 1980’s

Processor-Memory Gap

Chapter 8 <10> Digital Design and Computer Architecture: ARM® Edition © 2015

• Make memory system appear as fast as
processor

• Use hierarchy of memories

• Ideal memory:
– Fast

– Cheap (inexpensive)

– Large (capacity)

But can only choose two!

Memory System Challenge

+
Memory Hierarchy

◼ Design constraints on a computer’s memory can be summed

up by three questions:

◼ How much, how fast, how expensive

◼ There is a trade-off among capacity, access time, and cost

◼ Faster access time, greater cost per bit

◼ Greater capacity, smaller cost per bit

◼ Greater capacity, slower access time

◼ The way out of the memory dilemma is not to rely on a single

memory component or technology, but to employ a memory

hierarchy

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.1 The Memory Hierarchy

Inboard
memory

Outboard
storage

Off-linestorage

M
ain

memory

M
agnetic

 disk

CD-R
OM

CD-R
W

DVD-R
W

DVD-R
AM

Blu-R
ay

M
agnetic

 ta
pe

Cache

Reg-

ist
ers

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A typical hierarchy is illustrated in

Figure 4.1. As one goes down the

hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access

of the memory by the processor

Thus, smaller, more expensive,

faster memories are supplemented

by larger, cheaper, slower

memories.

Chapter 8 <13> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Hierarchy

Technology Price / GB
Access

Time (ns)

Bandwidth

(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
p
e
e
d

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000

Chapter 8 <14> Digital Design and Computer Architecture: ARM® Edition © 2015

Memory Hierarchy

Technology Price / GB
Access

Time (ns)

Bandwidth

(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
p
e
e
d

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000

Chapter 8 <15> Digital Design and Computer Architecture: ARM® Edition © 2015

Exploit locality to make memory accesses fast

◼ Temporal Locality:

◼Locality in time

◼ If data used recently, likely to use it again soon

◼How to exploit: keep recently accessed data in

higher levels of memory hierarchy
◼ Spatial Locality:

◼Locality in space

◼ If data used recently, likely to use nearby data

soon

◼How to exploit: when access data, bring nearby

data into higher levels of memory hierarchy too

Principle of Locality

Chapter 8 <16> Digital Design and Computer Architecture: ARM® Edition © 2015

• Hit: data found in that level of memory hierarchy

• Miss: data not found (must go to next level)

Hit Rate = # hits / # memory accesses

= 1 – Miss Rate

Miss Rate = # misses / # memory accesses

= 1 – Hit Rate

• Average memory access time (AMAT): average time
for processor to access data

AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Memory Performance

Chapter 8 <17> Digital Design and Computer Architecture: ARM® Edition © 2015

• A program has 2,000 loads and stores

• 1,250 of these data values in cache

• Rest supplied by other levels of memory
hierarchy

• What are the hit and miss rates for the
cache?

Memory Performance

Example 1

Chapter 8 <18> Digital Design and Computer Architecture: ARM® Edition © 2015

• A program has 2,000 loads and stores

• 1,250 of these data values in cache

• Rest supplied by other levels of memory
hierarchy

• What are the hit and miss rates for the
cache?

Hit Rate = 1250/2000 = 0.625

Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Memory Performance

Example 1

Chapter 8 <19> Digital Design and Computer Architecture: ARM® Edition © 2015

• Suppose processor has 2 levels of
hierarchy: cache and main memory

• tcache = 1 cycle, tMM = 100 cycles

• What is the AMAT of the program from
Example 1?

Memory Performance

Example 2

Chapter 8 <20> Digital Design and Computer Architecture: ARM® Edition © 2015

• Suppose processor has 2 levels of
hierarchy: cache and main memory

• tcache = 1 cycle, tMM = 100 cycles

• What is the AMAT of the program from
Example 1?

AMAT = tcache + MRcache(tMM)

= [1 + 0.375(100)] cycles

= 38.5 cycles

Memory Performance

Example 2

+
Memory

◼ The use of three levels exploits the fact that semiconductor
memory comes in a variety of types which differ in speed
and cost

◼ Data are stored more permanently on external mass storage
devices

◼ External, nonvolatile memory is also referred to as
secondary memory or auxiliary memory

◼ Disk cache

◼ A portion of main memory can be used as a buffer to hold data
temporarily that is to be read out to disk

◼ A few large transfers of data can be used instead of many small
transfers of data

◼ Data can be retrieved rapidly from the software cache rather than
slowly from the disk

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

CPU

Word Transfer

Fast

Fastest Fast
Less
fast

Slow

Slow

Block Transfer

Cache Main Memory

Figure 4.3 Cache and Main Memory

(a) Single cache

(b) Three-level cache organization

CPU
Level 1

(L1) cache

Level 2

(L2) cache

Level 3

(L3) cache

Main

Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory

address

0

1

2

0

1

2

C – 1

3

2n – 1

Word

Length

Block Length

(K Words)

Block 0

(K words)

Block M – 1

Line

Number Tag Block

(b) Main memory

(a) Cache

Figure 4.4 Cache/Main-Memory Structure

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Receive address

RA from CPU

Is block

containing RA

in cache?

Fetch RA word

and deliver

to CPU

DONE

Access main

memory for block

containing RA

Allocate cache

line for main

memory block

Deliver RA word

to CPU

Load main

memory block

into cache line

Figure 4.5 Cache Read Operation

START

No

Yes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Cache

Address

Address

buffer

Data

buffer

Control

Data

Figure 4.6 Typical Cache Organization

Control

S
y
st

em
 B

u
s

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 4.2

Elements of Cache Design

Cache Addresses

 Logical

 Physical

Cache Size
Mapping Function

 Direct

 Associative

 Set Associative

Replacement Algorithm

 Least recently used (LRU)

 First in first out (FIFO)
 Least frequently used (LFU)

 Random

Write Policy

 Write through

 Write back

Line Size
Number of caches

 Single or two level

 Unified or split

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache Addresses

◼ Virtual memory

◼ Facility that allows programs to address memory from a logical

point of view, without regard to the amount of main memory

physically available

◼ When used, the address fields of machine instructions contain

virtual addresses

◼ For reads to and writes from main memory, a hardware memory

management unit (MMU) translates each virtual address into a

physical address in main memory

Virtual Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Main

memoryCache

Logical address Physical address

Data

MMU

(a) Logical Cache

Processor Main

memoryCache

Logical address Physical address

Data

MMU

(b) Physical Cache

Figure 4.7 Logical and Physical Caches

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 4.3

Cache Sizes of

Some

Processors

a Two values separated by

a slash refer to instruction

and data caches.

b Both caches are

instruction only; no data

caches.

(Table can be found on

page 134 in the textbook.)

Processor Type
Year of

Introduction
L1 Cachea L2 cache L3 Cache

IBM 360/85 Mainframe 1968 16 to 32 kB — —

PDP-11/70 Minicomputer 1975 1 kB — —

VAX 11/780 Minicomputer 1978 16 kB — —

IBM 3033 Mainframe 1978 64 kB — —

IBM 3090 Mainframe 1985 128 to 256 kB — —

Intel 80486 PC 1989 8 kB — —

Pentium PC 1993 8 kB/8 kB 256 to 512 KB —

PowerPC 601 PC 1993 32 kB — —

PowerPC 620 PC 1996 32 kB/32 kB — —

PowerPC G4 PC/server 1999 32 kB/32 kB 256 KB to 1 MB 2 MB

IBM S/390 G6 Mainframe 1999 256 kB 8 MB —

Pentium 4 PC/server 2000 8 kB/8 kB 256 KB —

IBM SP
High-end

server/

supercomputer

2000 64 kB/32 kB 8 MB —

CRAY MTAb Supercomputer 2000 8 kB 2 MB —

Itanium PC/server 2001 16 kB/16 kB 96 KB 4 MB

Itanium 2 PC/server 2002 32 kB 256 KB 6 MB

IBM
POWER5

High-end
server

2003 64 kB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1MB —

IBM
POWER6

PC/server 2007 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24-48 MB

Intel Core i7
EE 990

Workstaton/

server
2011 6 ´ 32 kB/32 kB 1.5 MB 12 MB

IBM
zEnterprise

196

Mainframe/

Server
2011

24 ´ 64 kB/

128 kB
24 ´ 1.5 MB

24 MB L3

192 MB

L4

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mapping Function

◼ Because there are fewer cache lines than main memory

blocks, an algorithm is needed for mapping main memory

blocks into cache lines

◼ Three techniques can be used:

Direct

• The simplest technique

• Maps each block of main
memory into only one
possible cache line

Associative

• Permits each main
memory block to be
loaded into any line of the
cache

• The cache control logic
interprets a memory
address simply as a Tag
and a Word field

• To determine whether a
block is in the cache, the
cache control logic must
simultaneously examine
every line’s Tag for a
match

Set Associative

• A compromise that
exhibits the strengths of
both the direct and
associative approaches
while reducing their
disadvantages

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Replacement Algorithms

◼ Once the cache has been filled, when a new block is brought

into the cache, one of the existing blocks must be replaced

◼ For direct mapping there is only one possible line for any

particular block and no choice is possible

◼ For the associative and set-associative techniques a

replacement algorithm is needed

◼ To achieve high speed, an algorithm must be implemented in

hardware

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ The most common replacement

algorithms are:

◼ Least recently used (LRU)

◼ Most effective

◼ Replace that block in the set that has been in the cache longest with
no reference to it

◼ Because of its simplicity of implementation, LRU is the most popular
replacement algorithm

◼ First-in-first-out (FIFO)

◼ Replace that block in the set that has been in the cache longest

◼ Easily implemented as a round-robin or circular buffer technique

◼ Least frequently used (LFU)

◼ Replace that block in the set that has experienced the fewest
references

◼ Could be implemented by associating a counter with each line

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

When a block that is resident in
the cache is to be replaced

there are two cases to consider:

If the old block in the cache has not been
altered then it may be overwritten with a
new block without first writing out the old

block

If at least one write operation has been
performed on a word in that line of the

cache then main memory must be
updated by writing the line of cache out
to the block of memory before bringing

in the new block

There are two problems to
contend with:

More than one device may have access to
main memory

A more complex problem occurs when
multiple processors are attached to the

same bus and each processor has its own
local cache - if a word is altered in one
cache it could conceivably invalidate a

word in other caches

Write Policy

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Write Through

and Write Back

◼ Write through

◼ Simplest technique

◼ All write operations are made to main memory as well as to the cache

◼ The main disadvantage of this technique is that it generates substantial
memory traffic and may create a bottleneck

◼ Write back

◼ Minimizes memory writes

◼ With write back, updates are made only in the cache. When an update
occurs, a dirty bit, or use bit, associated with the line is set. Then, when a
block is replaced, it is written back to main memory if and only if the dirty
bit is set.

◼ Portions of main memory are invalid and hence accesses by I/O modules
can be allowed only through the cache

◼ This makes for complex circuitry and a potential bottleneck

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Line Size
When a block of
data is retrieved
and placed in the
cache not only the
desired word but

also some number
of adjacent words

are retrieved

As the block size
increases the hit
ratio will at first

increase because
of the principle of

locality

As the block size
increases more
useful data are

brought into the
cache

The hit ratio will
begin to decrease

as the block
becomes bigger

and the
probability of

using the newly
fetched

information
becomes less than
the probability of

reusing the
information that

has to be replaced

Two specific effects
come into play:

• Larger blocks reduce the
number of blocks that fit
into a cache

• As a block becomes larger
each additional word is
farther from the requested
word

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Multilevel Caches

◼ As logic density has increased it has become possible to have a cache
on the same chip as the processor

◼ The on-chip cache reduces the processor’s external bus activity and
speeds up execution time and increases overall system performance

◼ When the requested instruction or data is found in the on-chip cache, the bus
access is eliminated

◼ On-chip cache accesses will complete appreciably faster than would even
zero-wait state bus cycles

◼ During this period the bus is free to support other transfers

◼ Two-level cache:

◼ Internal cache designated as level 1 (L1)

◼ External cache designated as level 2 (L2)

◼ Potential savings due to the use of an L2 cache depends on the hit rates
in both the L1 and L2 caches

◼ The use of multilevel caches complicates all of the design issues related
to caches, including size, replacement algorithm, and write policy

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1k 2k 4k 8k 16k 32k

L1 = 16k

64k 128k 256k 512k 1M 2M

H
it

 r
a

ti
o

L2 Cache size (bytes)

L1 = 8k

Figure 4.17 Total Hit Ratio (L1 and L2) for 8 Kbyte and 16 Kbyte L1
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The figure assumes that

both caches have the same

line size and shows the total

hit ratio. That is, a hit is

counted if the desired data

appears in either the L1 or

the L2 cache. The figure

shows the impact of L2 on

total hits with respect to L1

size. L2 has little effect on

the total number of cache

hits until it is at least double

the L1 cache size

+
Unified Versus Split Caches

◼ Has become common to split cache:

◼ One dedicated to instructions

◼ One dedicated to data

◼ Both exist at the same level, typically as two L1 caches

◼ Advantages of unified cache:

◼ Higher hit rate

◼ Balances load of instruction and data fetches automatically

◼ Only one cache needs to be designed and implemented

◼ Trend is toward split caches at the L1 and unified caches for
higher levels

◼ Advantages of split cache:

◼ Eliminates cache contention between instruction fetch/decode unit
and execution unit

◼ Important in pipelining

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Problem Solution

Processor on which

Feature First

Appears

External memory slower than the system

bus.

Add external cache using

faster memory

technology.

386

Increased processor speed results in

external bus becoming a bottleneck for

cache access.

Move external cache on-

chip, operating at the

same speed as the

processor.

486

Internal cache is rather small, due to

limited space on chip

Add external L2 cache

using faster technology

than main memory

486

Contention occurs when both the

Instruction Prefetcher and the Execution

Unit simultaneously require access to the

cache. In that case, the Prefetcher is stalled

while the Execution Unit’s data access
takes place.

Create separate data and

instruction caches.

Pentium

Create separate back-side

bus that runs at higher

speed than the main
(front-side) external bus.

The BSB is dedicated to

the L2 cache.

Pentium Pro

Increased processor speed results in

external bus becoming a bottleneck for L2

cache access.

Move L2 cache on to the

processor chip.

Pentium II

Add external L3 cache. Pentium III

Some applications deal with massive

databases and must have rapid access to
large amounts of data. The on-chip caches

are too small.
Move L3 cache on-chip. Pentium 4

Table 4.4

Intel

Cache

Evolution

(Table is on page

150 in the

textbook.)
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.18 Pentium 4 Block Diagram

Load

address

unit

Integer register file

L1 data cache (16 KB)

FP register file

Store

address

unit

Simple

integer

ALU

Instruction

fetch/decode

unit

Out-of-order

execution

logic

L2 cache

(512 KB)

L3 cache

(1 MB)

L1 instruction

cache (12K mops)

Simple

integer

ALU

Complex

integer

ALU

FP/

MMX

unit

FP

move

unit

System Bus

64

bits

256

bits

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A simplified view of the Pentium 4 organization, highlighting the placement of the three

caches

Table 4.5 Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The L1 data cache is controlled by two bits in one of the control registers, labeled the CD

(cache disable) and NW (not write-through) bits (Table 4.5). There are also two Pentium 4

instructions that can be used to control the data cache: INVD invalidates (flushes) the internal

cache memory and signals the external cache (if any) to invalidate. WBINVD writes back and

invalidates internal cache and then writes back and invalidates external cache.

+ Summary

◼ Computer memory

system overview

◼ Characteristics of

Memory Systems

◼ Memory Hierarchy

◼ Cache memory

principles

◼ Pentium 4 cache

organization

◼ Elements of cache

design

◼ Cache addresses

◼ Cache size

◼ Mapping function

◼ Replacement algorithms

◼ Write policy

◼ Line size

◼ Number of caches

Chapter 4

Cache

Memory

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

