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Table 4.1    

Key Characteristics of Computer Memory Systems 

Location 

 Internal (e.g. processor registers, cache, 

main memory) 

 External (e.g. optical disks, magnetic disks, 
tapes) 

Capacity 

 Number of words 

 Number of bytes 

Unit of Transfer 

 Word 

 Block 
Access Method 

 Sequential 

 Direct 

 Random 

 Associative 

Performance 

 Access time 

 Cycle time 

 Transfer rate 
Physical Type 

 Semiconductor 

 Magnetic 

 Optical 

 Magneto-optical 

Physical Characteristics 

 Volatile/nonvolatile 
 Erasable/nonerasable 

Organization 

 Memory modules 
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Characteristics of Memory 

Systems

◼ Location

◼ Refers to whether memory is internal and external to the computer

◼ Internal memory is often equated with main memory

◼ Processor requires its own local memory, in the form of registers

◼ Cache is another form of internal memory

◼ External memory consists of peripheral storage devices that are 
accessible to the processor via I/O controllers

◼ Capacity

◼ Memory is typically expressed in terms of bytes

◼ Unit of transfer

◼ For internal memory the unit of transfer is equal to the number of 
electrical lines into and out of the memory module
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Method of Accessing Units of Data

Sequential 
access

Memory is organized into 
units of data called 

records

Access must be made in 
a specific linear 

sequence

Access time is variable

Direct 
access

Involves a shared read-
write mechanism

Individual blocks or 
records have a unique 

address based on 
physical location

Access time is variable

Random 
access

Each addressable 
location in memory has a 
unique, physically wired-
in addressing mechanism

The time to access a 
given location is 

independent of the 
sequence of prior 

accesses and is constant

Any location can be 
selected at random and 
directly addressed and 

accessed

Main memory and some 
cache systems are 

random access

Associative

A word is retrieved 
based on a portion of its 
contents rather than its 

address

Each location has its own 
addressing mechanism 

and retrieval time is 
constant independent of 
location or prior access 

patterns

Cache memories may 
employ associative 

access
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+ Memory
◼ The most common forms are: 

◼ Semiconductor memory

◼ Magnetic surface memory 

◼ Optical

◼ Magneto-optical

◼ Several physical characteristics of data storage are important:

◼ Volatile memory 

◼ Information decays naturally or is lost when electrical power is switched off

◼ Nonvolatile memory 

◼ Once recorded, information remains without deterioration until deliberately changed

◼ No electrical power is needed to retain information

◼ Magnetic-surface memories 

◼ Are nonvolatile

◼ Semiconductor memory 

◼ May be either volatile or nonvolatile

◼ Nonerasable memory

◼ Cannot be altered, except by destroying the storage unit

◼ Semiconductor memory of this type is known as read-only memory (ROM)

◼ For random-access memory the organization is a key design issue

◼ Organization refers to the physical arrangement of bits to form words
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Capacity and Performance:

The two most important characteristics of 
memory

Three performance parameters are used:

Access time (latency)

•For random-access memory it is the 
time it takes to perform a read or 
write operation

•For non-random-access memory it 
is the time it takes to position the 
read-write mechanism at the 
desired location

Memory cycle time

•Access time plus any additional 
time required before second 
access can commence

•Additional time may be required 
for transients to die out on signal 
lines or to regenerate data if they 
are read destructively

•Concerned with the system bus, 
not the processor

Transfer rate

•The rate at which data can be 
transferred into or out of a memory 
unit

•For random-access memory it is 
equal to 1/(cycle time)
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Processor Memory
Address

MemWrite

WriteData

ReadData

WE

CLKCLK

Computer performance depends on:
– Processor performance

– Memory system performance

Memory Interface

Introduction
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In prior chapters, assumed memory access takes 1 clock 
cycle – but hasn’t been true since the 1980’s

Processor-Memory Gap
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• Make memory system appear as fast as 
processor

• Use hierarchy of memories

• Ideal memory:
– Fast

– Cheap (inexpensive)

– Large (capacity)

But can only choose two!

Memory System Challenge
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Memory Hierarchy

◼ Design constraints on a computer’s memory can be summed 

up by three questions:

◼ How much, how fast, how expensive

◼ There is a trade-off among capacity, access time, and cost

◼ Faster access time, greater cost per bit

◼ Greater capacity, smaller cost per bit

◼ Greater capacity, slower access time

◼ The way out of the memory dilemma is not to rely on a single 

memory component or technology, but to employ a memory 

hierarchy
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Figure 4.1   The Memory Hierarchy
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A typical hierarchy is illustrated in

Figure 4.1. As one goes down the 

hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access 

of the memory by the processor

Thus, smaller, more expensive, 

faster memories are supplemented 

by larger, cheaper, slower 

memories. 
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Memory Hierarchy

Technology Price / GB
Access

Time (ns)

Bandwidth

(GB/s)

Cache

Main Memory

Virtual Memory

Capacity
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SSD $1 100,000
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Chapter 8 <14> Digital Design and Computer Architecture: ARM® Edition © 2015
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Exploit locality to make memory accesses fast

◼ Temporal Locality:

◼Locality in time

◼ If data used recently, likely to use it again soon

◼How to exploit: keep recently accessed data in 

higher levels of memory hierarchy
◼ Spatial Locality:

◼Locality in space

◼ If data used recently, likely to use nearby data 

soon

◼How to exploit: when access data, bring nearby 

data into higher levels of memory hierarchy too

Principle of Locality
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• Hit: data found in that level of memory hierarchy

• Miss: data not found (must go to next level)

Hit Rate = # hits / # memory accesses

= 1 – Miss Rate

Miss Rate = # misses / # memory accesses

= 1 – Hit Rate

• Average memory access time (AMAT): average time 
for processor to access data

AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Memory Performance
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• A program has 2,000 loads and stores

• 1,250 of these data values in cache

• Rest supplied by other levels of memory 
hierarchy

• What are the hit and miss rates for the 
cache?

Memory Performance 

Example 1
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• A program has 2,000 loads and stores

• 1,250 of these data values in cache

• Rest supplied by other levels of memory 
hierarchy

• What are the hit and miss rates for the 
cache?

Hit Rate = 1250/2000 = 0.625

Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Memory Performance 

Example 1
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• Suppose processor has 2 levels of 
hierarchy: cache and main memory

• tcache = 1 cycle, tMM = 100 cycles

• What is the AMAT of the program from 
Example 1?

Memory Performance 

Example 2
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• Suppose processor has 2 levels of 
hierarchy: cache and main memory

• tcache = 1 cycle, tMM = 100 cycles

• What is the AMAT of the program from 
Example 1?

AMAT = tcache + MRcache(tMM)

= [1 + 0.375(100)] cycles

= 38.5 cycles

Memory Performance 

Example 2
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Memory 

◼ The use of three levels exploits the fact that semiconductor 
memory comes in a variety of types which differ in speed 
and cost

◼ Data are stored more permanently on external mass storage 
devices

◼ External, nonvolatile memory is also referred to as 
secondary memory or auxiliary memory

◼ Disk cache

◼ A portion of main memory can be used as a buffer to hold data 
temporarily that is to be read out to disk

◼ A few large transfers of data can be used instead of many small 
transfers of data

◼ Data can be retrieved rapidly from the software cache rather than 
slowly from the disk
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Table 4.2    

Elements of Cache Design 

Cache Addresses 

 Logical 

 Physical 

Cache Size 
Mapping Function 

 Direct 

 Associative 

 Set Associative 

Replacement Algorithm 

 Least recently used (LRU) 

 First in first out (FIFO) 
 Least frequently used (LFU) 

 Random 

Write Policy 

 Write through 

 Write back 

Line Size 
Number of caches 

 Single or two level 

 Unified or split 
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Cache Addresses

◼ Virtual memory

◼ Facility that allows programs to address memory from a logical 

point of view, without regard to the amount of main memory 

physically available

◼ When used, the address fields of machine instructions contain 

virtual addresses

◼ For reads to and writes from main memory, a hardware memory 

management unit (MMU) translates each virtual address into a 

physical address in main memory

Virtual Memory
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Figure 4.7   Logical and Physical Caches
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Table 4.3    

Cache Sizes of 

Some 

Processors

a Two values separated by 

a slash refer to instruction 

and data caches.

b Both caches are 

instruction only; no data 

caches.

(Table can be found on 

page 134 in the textbook.)

Processor Type 
Year of 

Introduction 
L1 Cachea L2 cache L3 Cache 

IBM 360/85 Mainframe 1968 16 to 32 kB — — 

PDP-11/70 Minicomputer 1975 1 kB — — 

VAX 11/780 Minicomputer 1978 16 kB — — 

IBM 3033 Mainframe 1978 64 kB — — 

IBM 3090 Mainframe 1985 128 to 256 kB — — 

Intel 80486 PC 1989 8 kB — — 

Pentium PC 1993 8 kB/8 kB 256 to 512 KB — 

PowerPC 601 PC 1993 32 kB — — 

PowerPC 620 PC 1996 32 kB/32 kB — — 

PowerPC G4 PC/server 1999 32 kB/32 kB 256 KB to 1 MB 2 MB 

IBM S/390 G6 Mainframe 1999 256 kB 8 MB — 

Pentium 4 PC/server 2000 8 kB/8 kB 256 KB — 

IBM SP 
High-end 

server/ 

supercomputer 

2000 64 kB/32 kB 8 MB — 

CRAY MTAb Supercomputer 2000 8 kB 2 MB — 

Itanium PC/server 2001 16 kB/16 kB 96 KB 4 MB 

Itanium 2 PC/server 2002 32 kB 256 KB 6 MB 

IBM 
POWER5 

High-end 
server 

2003 64 kB 1.9 MB 36 MB 

CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1MB — 

IBM 
POWER6 

PC/server 2007 64 kB/64 kB 4 MB 32 MB 

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24-48 MB 

Intel Core i7 
EE 990 

Workstaton/ 

server 
2011  6 ´ 32 kB/32 kB 1.5 MB 12 MB 

IBM 
zEnterprise 

196 

Mainframe/ 

Server 
2011 

24 ´ 64 kB/ 

128 kB 
24 ´ 1.5 MB 

24 MB L3 

192 MB 

L4 

 
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Mapping Function

◼ Because there are fewer cache lines than main memory 

blocks, an algorithm is needed for mapping main memory 

blocks into cache lines

◼ Three techniques can be used:

Direct

• The simplest technique

• Maps each block of main 
memory into only one 
possible cache line

Associative

• Permits each main 
memory block to be 
loaded into any line of the 
cache

• The cache control logic 
interprets a memory 
address simply as a Tag 
and a Word field

• To determine whether a 
block is in the cache, the 
cache control logic must 
simultaneously examine 
every line’s Tag for a 
match 

Set Associative

• A compromise that 
exhibits the strengths of 
both the direct and 
associative approaches 
while reducing their 
disadvantages

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Replacement Algorithms

◼ Once the cache has been filled, when a new block is brought 

into the cache, one of the existing blocks must be replaced

◼ For direct mapping there is only one possible line for any 

particular block and no choice is possible

◼ For the associative and set-associative techniques a 

replacement algorithm is needed

◼ To achieve high speed, an algorithm must be implemented in 

hardware

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



+ The most common replacement 

algorithms are:

◼ Least recently used (LRU)

◼ Most effective

◼ Replace that block in the set that has been in the cache longest with 
no reference to it

◼ Because of its simplicity of implementation, LRU is the most popular 
replacement algorithm

◼ First-in-first-out (FIFO)

◼ Replace that block in the set that has been in the cache longest

◼ Easily implemented as a round-robin or circular buffer technique

◼ Least frequently used (LFU)

◼ Replace that block in the set that has experienced the fewest 
references

◼ Could be implemented by associating a counter with each line

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



When a block that is resident in 
the cache is to be replaced 

there are two cases to consider:

If the old block in the cache has not been 
altered then it may be overwritten with a 
new block without first writing out the old 

block

If at least one write operation has been 
performed on a word in that line of the 

cache then main memory must be 
updated by writing the line of cache out 
to the block of memory before bringing 

in the new block

There are two problems to 
contend with:

More than one device may have access to 
main memory

A more complex problem occurs when 
multiple processors are attached to the 

same bus and each processor has its own 
local cache - if a word is altered in one 
cache it could conceivably invalidate a 

word in other caches

Write Policy
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Write Through

and Write Back

◼ Write through

◼ Simplest technique

◼ All write operations are made to main memory as well as to the cache

◼ The main disadvantage of this technique is that it generates substantial 
memory traffic and may create a bottleneck

◼ Write back

◼ Minimizes memory writes

◼ With write back, updates are made only in the cache. When an update 
occurs, a dirty bit, or use bit, associated with the line is set. Then, when a 
block is replaced, it is written back to main memory if and only if the dirty 
bit is set. 

◼ Portions of main memory are invalid and hence accesses by I/O modules 
can be allowed only through the cache

◼ This makes for complex circuitry and a potential bottleneck

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Line Size
When a block of 
data is retrieved 
and placed in the 
cache not only the 
desired word but 

also some number 
of adjacent words 

are retrieved

As the block size 
increases the hit 
ratio will at first 

increase because 
of the principle of 

locality

As the block size 
increases more 
useful data are 

brought into the 
cache

The hit ratio will 
begin to decrease 

as the block 
becomes bigger 

and the 
probability of 

using the newly 
fetched 

information 
becomes less than 
the probability of 

reusing the 
information that 

has to be replaced

Two specific effects 
come into play:

• Larger blocks reduce the 
number of blocks that fit 
into a cache

• As a block becomes larger 
each additional word is 
farther from the requested 
word

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.
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Multilevel Caches

◼ As logic density has increased it has become possible to have a cache 
on the same chip as the processor

◼ The on-chip cache reduces the processor’s external bus activity and 
speeds up execution time and increases overall system performance

◼ When the requested instruction or data is found in the on-chip cache, the bus 
access is eliminated

◼ On-chip cache accesses will complete appreciably faster than would even 
zero-wait state bus cycles

◼ During this period the bus is free to support other transfers

◼ Two-level cache:

◼ Internal cache designated as level 1 (L1)

◼ External cache designated as level 2 (L2)

◼ Potential savings due to the use of an L2 cache depends on the hit rates 
in both the L1 and L2 caches

◼ The use of multilevel caches complicates all of the design issues related 
to caches, including size, replacement algorithm, and write policy
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The figure assumes that 

both caches have the same 

line size and shows the total 

hit ratio. That is, a hit is 

counted if the desired data 

appears in either the L1 or 

the L2 cache. The figure 

shows the impact of L2 on 

total hits with respect to L1 

size. L2 has little effect on 

the total number of cache 

hits until it is at least double 

the L1 cache size
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Unified Versus Split Caches

◼ Has become common to split cache:

◼ One dedicated to instructions

◼ One dedicated to data

◼ Both exist at the same level, typically as two L1 caches

◼ Advantages of unified cache:

◼ Higher hit rate

◼ Balances load of instruction and data fetches automatically

◼ Only one cache needs to be designed and implemented

◼ Trend is toward split caches at the L1 and unified caches for 
higher levels

◼ Advantages of split cache:

◼ Eliminates cache contention between instruction fetch/decode unit 
and execution unit

◼ Important in pipelining
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Problem Solution 

Processor on which 

Feature First 

Appears 

External memory slower than the system 

bus. 

Add external cache using 

faster memory 

technology. 

386 

Increased processor speed results in 

external bus becoming a bottleneck for 

cache access. 

Move external cache on-

chip, operating at the 

same speed as the 

processor. 

486 

Internal cache is rather small, due to 

limited space on chip 

Add external L2 cache 

using faster technology 

than main memory 

486 

Contention occurs when both the 

Instruction Prefetcher and the Execution 

Unit simultaneously require access to the 

cache. In that case, the Prefetcher is stalled 

while the Execution Unit’s data access 
takes place. 

Create separate data and 

instruction caches. 

Pentium 

Create separate back-side 

bus that runs at higher 

speed than the main 
(front-side) external bus. 

The BSB is dedicated to 

the L2 cache. 

Pentium Pro 

Increased processor speed results in 

external bus becoming a bottleneck for L2 

cache access. 

Move L2 cache on to the 

processor chip. 

Pentium II 

Add external L3 cache. Pentium III 

 

Some applications deal with massive 

databases and must have rapid access to 
large amounts of data. The on-chip caches 

are too small. 
Move L3 cache on-chip. Pentium 4 

 

Table 4.4    

Intel 

Cache 

Evolution 

(Table is on page 

150 in the 

textbook.)
© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Figure 4.18  Pentium 4 Block Diagram
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A simplified view of the Pentium 4 organization, highlighting the placement of the three 

caches



Table 4.5  Pentium 4 Cache Operating Modes   
   

Control Bits Operating Mode 

CD NW Cache Fills Write Throughs Invalidates 

0 0 Enabled Enabled Enabled 

1 0 Disabled Enabled Enabled 

1 1 Disabled Disabled Disabled 

 

Note: CD = 0; NW = 1 is an invalid combination. 
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The L1 data cache is controlled by two bits in one of the control registers, labeled the CD 

(cache disable) and NW (not write-through) bits (Table 4.5). There are also two Pentium 4 

instructions that can be used to control the data cache: INVD invalidates (flushes) the internal 

cache memory and signals the external cache (if any) to invalidate. WBINVD writes back and 

invalidates internal cache and then writes back and invalidates external cache.
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◼ Computer memory 

system overview
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Memory Systems
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◼ Cache memory 
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