Chapter 7 Single-Dimensional Arrays
Opening Problem

Read one hundred numbers, compute their average, and find out how many numbers are above the average.
Objectives

- To describe why arrays are necessary in programming (§7.1).
- To declare array reference variables and create arrays (§§7.2.1–7.2.2).
- To obtain array size using `arrayRefVar.length` and know default values in an array (§7.2.3).
- To access array elements using indexes (§7.2.4).
- To declare, create, and initialize an array using an array initializer (§7.2.5).
- To program common array operations (displaying arrays, summing all elements, finding the minimum and maximum elements, random shuffling, and shifting elements) (§7.2.6).
- To simplify programming using the `foreach` loops (§7.2.7).
- To apply arrays in application development (AnalyzeNumbers, DeckOfCards) (§§7.3–7.4).
- To copy contents from one array to another (§7.5).
- To develop and invoke methods with array arguments and return values (§§7.6–7.8).
- To define a method with a variable-length argument list (§7.9).
- To search elements using the linear (§7.10.1) or binary (§7.10.2) search algorithm.
- To sort an array using the selection sort approach (§7.11).
- To use the methods in the java.util.Arrays class (§7.12).
- To pass arguments to the main method from the command line (§7.13).
Introducing Arrays

Array is a data structure that represents a collection of the same types of data.

```java
double[] myList = new double[10];
```
Declaring Array Variables

- `datatype[] arrayRefVar;`

 Example:

 `double[] myList;`

- `datatype arrayRefVar[]; // This style is allowed, but not preferred`

 Example:

 `double myList[];`
Creating Arrays

arrayRefVar = new datatype[arraySize];

Example:
myList = new double[10];

myList[0] references the first element in the array.
myList[9] references the last element in the array.
Declaring and Creating in One Step

- datatype[] arrayRefVar = new datatype[arraySize];
 double[] myList = new double[10];

- datatype arrayRefVar[] = new datatype[arraySize];
 double myList[] = new double[10];
The Length of an Array

Once an array is created, its size is fixed. It cannot be changed. You can find its size using

arrayRefVar.length

For example,

myList.length returns 10
Default Values

When an array is created, its elements are assigned the default value of

0 for the numeric primitive data types, \texttt{\textbackslash u0000} for char types, and false for boolean types.
Indexed Variables

The array elements are accessed through the index. The array indices are 0-based, i.e., it starts from 0 to arrayRefVar.length-1. In the example in Figure 6.1, myList holds ten double values and the indices are from 0 to 9.

Each element in the array is represented using the following syntax, known as an indexed variable:

```
arrayRefVar[index];
```
Using Indexed Variables

After an array is created, an indexed variable can be used in the same way as a regular variable. For example, the following code adds the value in myList[0] and myList[1] to myList[2].

\[
\text{myList}[2] = \text{myList}[0] + \text{myList}[1];
\]
Array Initializers

- Declaring, creating, initializing in one step:

  ```java
double[] myList = {1.9, 2.9, 3.4, 3.5};
  ```

 This shorthand syntax must be in one statement.
Declaring, creating, initializing
Using the Shorthand Notation

double[] myList = {1.9, 2.9, 3.4, 3.5};

This shorthand notation is equivalent to the following statements:

double[] myList = new double[4];
myList[0] = 1.9;
myList[1] = 2.9;
myList[2] = 3.4;
myList[3] = 3.5;
CAUTION

Using the shorthand notation, you have to declare, create, and initialize the array all in one statement. Splitting it would cause a syntax error. For example, the following is wrong:

```java
double[] myList;
myList = {1.9, 2.9, 3.4, 3.5};
```
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}

After this line is executed, value[1] is 1

After the first iteration:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}

i (= 2) is less than 5

After the first iteration:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i - 1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i - 1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
Trace Program with Arrays

public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}

After i++, i becomes 5

After the fourth iteration

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i-1];
 }
 values[0] = values[1] + values[4];
 }
}
public class Test {
 public static void main(String[] args) {
 int[] values = new int[5];
 for (int i = 1; i < 5; i++) {
 values[i] = i + values[i - 1];
 }
 values[0] = values[1] + values[4];
 }
}
Processing Arrays

See the examples in the text.

1. (Initializing arrays with input values)
2. (Initializing arrays with random values)
3. (Printing arrays)
4. (Summing all elements)
5. (Finding the largest element)
6. (Finding the smallest index of the largest element)
7. (Random shuffling)
8. (Shifting elements)
Initializing arrays with input values

```java
java.util.Scanner input = new java.util.Scanner(System.in);
System.out.print("Enter " + myList.length + " values: ");
for (int i = 0; i < myList.length; i++)
    myList[i] = input.nextDouble();
```
Initializing arrays with random values

```java
for (int i = 0; i < myList.length; i++) {
    myList[i] = Math.random() * 100;
}
```
Printing arrays

```java
for (int i = 0; i < myList.length; i++) {
    System.out.print(myList[i] + " ");
}
```
Summing all elements

double total = 0;
for (int i = 0; i < myList.length; i++) {
 total += myList[i];
}

Finding the largest element

double max = myList[0];
for (int i = 1; i < myList.length; i++) {
 if (myList[i] > max) max = myList[i];
}

for (int i = 0; i < myList.length - 1; i++) {
 // Generate an index j randomly
 int j = (int)(Math.random() * myList.length);

 // Swap myList[i] with myList[j]
 double temp = myList[i];
 myList[i] = myList[j];
 myList[j] = temp;
}
Shifting Elements

double temp = myList[0]; // Retain the first element

// Shift elements left
for (int i = 1; i < myList.length; i++) {
 myList[i - 1] = myList[i];
}

// Move the first element to fill in the last position
myList[myList.length - 1] = temp;
Enhanced **for** Loop (for-each loop)

JDK 1.5 introduced a new for loop that enables you to traverse the complete array sequentially without using an index variable. For example, the following code displays all elements in the array `myList`:

```java
for (double value: myList)
    System.out.println(value);
```

In general, the syntax is

```java
for (elementType value: arrayRefVar) {
    // Process the value
}
```

You still have to use an index variable if you wish to traverse the array in a different order or change the elements in the array.
Analyze Numbers

Read one hundred numbers, compute their average, and find out how many numbers are above the average.
Problem: Deck of Cards

The problem is to write a program that picks four cards randomly from a deck of 52 cards. All the cards can be represented using an array named deck, filled with initial values 0 to 51, as follows:

```java
int[] deck = new int[52];
// Initialize cards
for (int i = 0; i < deck.length; i++)
    deck[i] = i;
```
Problem: Deck of Cards, cont.

- Card number 6 is the 7 (6 % 13 = 6) of Spades (7 / 13 is 0)
- Card number 48 is the 10 (48 % 13 = 9) of Clubs (48 / 13 is 3)
- Card number 11 is the Queen (11 % 13 = 11) of Spades (11 / 13 is 0)
- Card number 24 is the Queen (24 % 13 = 11) of Hearts (24 / 13 is 1)
Problem: Deck of Cards, cont.

\[
\text{cardNumber} / 13 = \begin{cases}
0 & \rightarrow \text{Spades} \\
1 & \rightarrow \text{Hearts} \\
2 & \rightarrow \text{Diamonds} \\
3 & \rightarrow \text{Clubs}
\end{cases}
\]

\[
\text{cardNumber} \mod 13 = \begin{cases}
0 & \rightarrow \text{Ace} \\
1 & \rightarrow \text{2} \\
. & \rightarrow . \\
10 & \rightarrow \text{Jack} \\
11 & \rightarrow \text{Queen} \\
12 & \rightarrow \text{King}
\end{cases}
\]
Problem: Deck of Cards

This problem builds a foundation for future more interesting and realistic applications:

See Exercise 20.15.

https://liveexample.pearsoncmg.com/dsanimation/24Point.html
Copying Arrays

Often, in a program, you need to duplicate an array or a part of an array. In such cases you could attempt to use the assignment statement (=), as follows:

\[
\text{list2} = \text{list1};
\]
Copying Arrays

Using a loop:

```java
int[] sourceArray = {2, 3, 1, 5, 10};
int[] targetArray = new int[sourceArray.length];
for (int i = 0; i < sourceArray.length; i++)
    targetArray[i] = sourceArray[i];
```
The `arraycopy` Utility

```java
arraycopy(sourceArray, src_pos, targetArray, tar_pos, length);
```

Example:

```java
System.arraycopy(sourceArray, 0, targetArray, 0, sourceArray.length);
```
Passing Arrays to Methods

```java
public static void printArray(int[] array) {
    for (int i = 0; i < array.length; i++) {
        System.out.print(array[i] + " ");
    }
}
```

Invoke the method

```java
int[] list = {3, 1, 2, 6, 4, 2};
printArray(list);
```

Invoke the method

```java
printArray(new int[]{3, 1, 2, 6, 4, 2});
```

Anonymous array
Anonymous Array

The statement

```java
printArray(new int[]{3, 1, 2, 6, 4, 2});
```

creates an array using the following syntax:

```java
new dataType[]{literal0, literal1, ..., literalk};
```

There is no explicit reference variable for the array. Such array is called an anonymous array.
Pass By Value

Java uses *pass by value* to pass arguments to a method. There are important differences between passing a value of variables of primitive data types and passing arrays.

- For a parameter of a primitive type value, the actual value is passed. Changing the value of the local parameter inside the method does not affect the value of the variable outside the method.

- For a parameter of an array type, the value of the parameter contains a reference to an array; this reference is passed to the method. Any changes to the array that occur inside the method body will affect the original array that was passed as the argument.
public class Test {
 public static void main(String[] args) {
 int x = 1; // x represents an int value
 int[] y = new int[10]; // y represents an array of int values

 m(x, y); // Invoke m with arguments x and y

 System.out.println("x is " + x);
 System.out.println("y[0] is " + y[0]);
 }

 public static void m(int number, int[] numbers) {
 number = 1001; // Assign a new value to number
 numbers[0] = 5555; // Assign a new value to numbers[0]
 }
}

Simple Example
When invoking \(m(x, y) \), the values of \(x \) and \(y \) are passed to \(\text{number} \) and \(\text{numbers} \). Since \(y \) contains the reference value to the array, \(\text{numbers} \) now contains the same reference value to the same array.
When invoking \(m(x, y) \), the values of \(x \) and \(y \) are passed to \(\text{number} \) and \(\text{numbers} \). Since \(y \) contains the reference value to the array, \(\text{numbers} \) now contains the same reference value to the same array.
Heap

The JVM stores the array in an area of memory, called *heap*, which is used for dynamic memory allocation where blocks of memory are allocated and freed in an arbitrary order.
Passing Arrays as Arguments

- Objective: Demonstrate differences of passing primitive data type variables and array variables.
Example, cont.

Invoke swap(int n1, int n2). The primitive type values in a[0] and a[1] are passed to the swap method.

The arrays are stored in a heap.

Invoke swapFirstTwoInArray(int[] array). The reference value in a is passed to the swapFirstTwoInArray method.
public static int[] reverse(int[] list) {
 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1;
 i < list.length; i++, j--)
 {
 result[j] = list[i];
 }

 return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
Trace the reverse Method

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--)
        result[j] = list[i];
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

Declare result and create array

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
public static int[] reverse(int[] list) {
 int[] result = new int[list.length];
 for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
 result[j] = list[i];
 }
 return result;
}
public static int[] reverse(int[] list) {
 int[] result = new int[list.length];
 for (int i = 0, j = result.length - 1; i < list.length; i++, j--)
 result[j] = list[i];
 return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

After this, i becomes 1 and j becomes 4

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--){
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>

| result | 0 | 0 | 0 | 0 | 0 | 1 |

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```
Trace the reverse Method, cont.

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

public static int[] reverse(int[] list) {
 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
 result[j] = list[i];
 }

 return result;
}

i = 1 and j = 4
Assign list[1] to result[4]
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j-- ) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

After this, i becomes 2 and j becomes 3

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```
list  result
1 2 3 4 5 6
0 0 0 0 2 1
```

$i (=2)$ is still less than 6
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

After this, i becomes 3 and j becomes 2

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];

    for (int i = 0, j = result.length - 1; i < list.length; i++, j--)
    {
        result[j] = list[i];
    }

    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>

| result | 0 | 0 | 0 | 3 | 2 | 1 |
Trace the reverse Method, cont.

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

public static int[] reverse(int[] list) {
    int[] result = new int[list.length];

    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }

    return result;
}
```

i = 3 and j = 2
Assign list[i] to result[j]
Trace the reverse Method, cont.

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

public static int[] reverse(int[] list) {
 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
 result[j] = list[i];
 }

 return result;
}

After this, i becomes 4 and j becomes 1

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

```
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

public static int[] reverse(int[] list) {
    int[] result = new int[list.length];

    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }

    return result;
}
```

```
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

list       1 2 3 4 5 6
result     0 0 4 3 2 1
```

i (≠4) is still less than 6
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

List 1: 1 2 3 4 5 6
Result: 0 5 4 3 2 1

- i = 4 and j = 1
- Assign list[i] to result[j]
public static int[] reverse(int[] list) {
 int[] result = new int[list.length];
 for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
 result[j] = list[i];
 }
 return result;
}

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

After this, i becomes 5 and j becomes 0
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

```
<table>
<thead>
<tr>
<th>list</th>
<th>1 2 3 4 5 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>0 5 4 3 2 1</td>
</tr>
</tbody>
</table>
```

i (=5) is still less than 6
public static int[] reverse(int[] list) {
 int[] result = new int[list.length];
 for (int i = 0, j = result.length - 1; i < list.length; i++, j--)
 result[j] = list[i];
 return result;
}
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```java
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

After this, i becomes 6 and j becomes -1.
Trace the reverse Method, cont.

int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);

public static int[] reverse(int[] list) {
 int[] result = new int[list.length];

 for (int i = 0, j = result.length - 1;
 i < list.length; i++, j--)
 result[j] = list[i];

 return result;
}

i (=6) < 6 is false. So exit the loop.

<table>
<thead>
<tr>
<th>list</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>result</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Trace the reverse Method, cont.

```java
public static int[] reverse(int[] list) {
    int[] result = new int[list.length];
    for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
        result[j] = list[i];
    }
    return result;
}
```

```
int[] list1 = {1, 2, 3, 4, 5, 6};
int[] list2 = reverse(list1);
```

Return result
Problem: Counting Occurrence of Each Letter

- Generate 100 lowercase letters randomly and assign to an array of characters.
- Count the occurrence of each letter in the array.
Variable-Length Arguments

You can pass a variable number of arguments of the same type to a method.
Searching Arrays

Searching is the process of looking for a specific element in an array; for example, discovering whether a certain score is included in a list of scores. Searching is a common task in computer programming. There are many algorithms and data structures devoted to searching. In this section, two commonly used approaches are discussed, linear search and binary search.

```java
class LinearSearch {
    /** The method for finding a key in the list */
    public static int linearSearch(int[] list, int key) {
        for (int i = 0; i < list.length; i++)
            if (key == list[i])
                return i;
        return -1;
    }
}
```

public class LinearSearch {
 /** The method for finding a key in the list */
 public static int linearSearch(int[] list, int key) {
 for (int i = 0; i < list.length; i++)
 if (key == list[i])
 return i;
 return -1;
 }
}**

Searching is the process of looking for a specific element in an array; for example, discovering whether a certain score is included in a list of scores. Searching is a common task in computer programming. There are many algorithms and data structures devoted to searching. In this section, two commonly used approaches are discussed, linear search and binary search.

```java
class LinearSearch {
    /** The method for finding a key in the list */
    public static int linearSearch(int[] list, int key) {
        for (int i = 0; i < list.length; i++)
            if (key == list[i])
                return i;
        return -1;
    }
}
```

Searching Arrays

Searching is the process of looking for a specific element in an array; for example, discovering whether a certain score is included in a list of scores. Searching is a common task in computer programming. There are many algorithms and data structures devoted to searching. In this section, two commonly used approaches are discussed, linear search and binary search.

```java
class LinearSearch {
    /** The method for finding a key in the list */
    public static int linearSearch(int[] list, int key) {
        for (int i = 0; i < list.length; i++)
            if (key == list[i])
                return i;
        return -1;
    }
}
```
Linear Search

The linear search approach compares the key element, `key`, *sequentially* with each element in the array `list`. The method continues to do so until the key matches an element in the list or the list is exhausted without a match being found. If a match is made, the linear search returns the index of the element in the array that matches the key. If no match is found, the search returns `-1`.
Linear Search Animation

<table>
<thead>
<tr>
<th>Key</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
<tr>
<td>3</td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
<tr>
<td>3</td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
<tr>
<td>3</td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
<tr>
<td>3</td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
<tr>
<td>3</td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
<tr>
<td></td>
<td>6 4 1 9 7 3 2 8</td>
</tr>
</tbody>
</table>
Linear Search Animation

https://liveexample.pearsoncmg.com/dsanimation/LinearSearchBook.html
From Idea to Solution

/** The method for finding a key in the list */
public static int linearSearch(int[] list, int key) {
 for (int i = 0; i < list.length; i++)
 if (key == list[i])
 return i;
 return -1;
}

Trace the method

int[] list = {1, 4, 4, 2, 5, -3, 6, 2};
int i = linearSearch(list, 4); // returns 1
int j = linearSearch(list, -4); // returns -1
int k = linearSearch(list, -3); // returns 5
Binary Search

For binary search to work, the elements in the array must already be ordered. Without loss of generality, assume that the array is in ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

The binary search first compares the key with the element in the middle of the array.
Binary Search, cont.

Consider the following three cases:

- If the key is less than the middle element, you only need to search the key in the first half of the array.
- If the key is equal to the middle element, the search ends with a match.
- If the key is greater than the middle element, you only need to search the key in the second half of the array.
Binary Search

<table>
<thead>
<tr>
<th>Key</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 2 3 4 6 7 8 9</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 6 7 8 9</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 6 7 8 9</td>
</tr>
</tbody>
</table>
Binary Search Animation

https://liveexample.pearsoncmg.com/dsanimation/BinarySearchBook.html
Binary Search, cont.

key is 11

key < 50

key > 7

key == 11
Binary Search, cont.

key is 54

key > 50

key < 66

key < 59
Binary Search, cont.

The binarySearch method returns the index of the element in the list that matches the search key if it is contained in the list. Otherwise, it returns

- insertion point - 1.

The insertion point is the point at which the key would be inserted into the list.
/** Use binary search to find the key in the list */
public static int binarySearch(int[] list, int key) {
 int low = 0;
 int high = list.length - 1;

 while (high >= low) {
 int mid = (low + high) / 2;
 if (key < list[mid])
 high = mid - 1;
 else if (key == list[mid])
 return mid;
 else
 low = mid + 1;
 }

 return -1 - low;
}
The Arrays.binarySearch Method

Since binary search is frequently used in programming, Java provides several overloaded binarySearch methods for searching a key in an array of int, double, char, short, long, and float in the java.util.Arrays class. For example, the following code searches the keys in an array of numbers and an array of characters.

```java
int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 69, 70, 79};
System.out.println("Index is "+
    java.util.Arrays.binarySearch(list, 11));         Return is 4

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'};
System.out.println("Index is "+
    java.util.Arrays.binarySearch(chars, 't'));         Return is –4 (insertion point is 3, so return is -3-1)
```

For the binarySearch method to work, the array must be pre-sorted in increasing order.
Sorting Arrays

Sorting, like searching, is also a common task in computer programming. Many different algorithms have been developed for sorting. This section introduces a simple, intuitive sorting algorithms: selection sort.
Selection Sort

Selection sort finds the smallest number in the list and places it first. It then finds the smallest number remaining and places it second, and so on until the list contains only a single number.

![Diagram of selection sort process]

1. Select 1 (the smallest) and swap it with 2 (the first) in the list.
2. The number 1 is now in the correct position and thus no longer needs to be considered.
3. Select 2 (the smallest) and swap it with 9 (the first) in the remaining list.
4. The number 2 is now in the correct position and thus no longer needs to be considered.
5. Select 4 (the smallest) and swap it with 5 (the first) in the remaining list.
6. The number 4 is now in the correct position and thus no longer needs to be considered.
7. Select 6 (the smallest) and swap it with 8 (the first) in the remaining list.
8. The number 5 is now in the correct position and thus no longer needs to be considered.
9. Select 8 (the smallest) and swap it with 9 (the first) in the remaining list.
10. The number 6 is now in the correct position and thus no longer needs to be considered.
11. Since there is only one element remaining in the list, the sort is completed.
Selection Sort Animation

https://liveexample.pearsoncmg.com/dsanimation/SelectionSortNew.html
From Idea to Solution

for (int i = 0; i < list.length; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i+1..listSize-1]
}

list[0] list[2] list[3] ... list[10]
...
for (int i = 0; i < listSize; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i..listSize-1]
}

double currentMin = list[i];
for (int j = i+1; j < list.length; j++) {
 if (currentMin > list[j]) {
 currentMin = list[j];
 }
}

Expand
for (int i = 0; i < listSize; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i..listSize-1]
}

Expand

double currentMin = list[i];
int currentMinIndex = i;
for (int j = i; j < list.length; j++) {
 if (currentMin > list[j]) {
 currentMin = list[j];
 currentMinIndex = j;
 }
}

All rights reserved.
for (int i = 0; i < listSize; i++) {
 select the smallest element in list[i..listSize-1];
 swap the smallest with list[i], if necessary;
 // list[i] is in its correct position.
 // The next iteration apply on list[i..listSize-1]
}

if (currentMinIndex != i) {
 list[currentMinIndex] = list[i];
 list[i] = currentMin;
/** The method for sorting the numbers */

public static void selectionSort(double[] list) {
 for (int i = 0; i < list.length; i++) {
 // Find the minimum in the list[i..list.length-1]
 double currentMin = list[i];
 int currentMinIndex = i;
 for (int j = i + 1; j < list.length; j++) {
 if (currentMin > list[j]) {
 currentMin = list[j];
 currentMinIndex = j;
 }
 }
 // Swap list[i] with list[currentMinIndex] if necessary;
 if (currentMinIndex != i) {
 list[currentMinIndex] = list[i];
 list[i] = currentMin;
 }
 }
}

Invoke it

selectionSort(yourList)
The Arrays.sort Method

Since sorting is frequently used in programming, Java provides several overloaded sort methods for sorting an array of int, double, char, short, long, and float in the java.util.Arrays class. For example, the following code sorts an array of numbers and an array of characters.

```java
double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5};
java.util.Arrays.sort(numbers);

cchar[] chars = {'a', 'A', '4', 'F', 'D', 'P'};
java.util.Arrays.sort(chars);
```

Java 8 now provides Arrays.parallelSort(list) that utilizes the multicore for fast sorting.
The Arrays.toString(list) Method

The Arrays.toString(list) method can be used to return a string representation for the list.
Pass Arguments to Invoke the Main Method
Main Method Is Just a Regular Method

You can call a regular method by passing actual parameters. Can you pass arguments to `main`? Of course, yes. For example, the main method in class `B` is invoked by a method in `A`, as shown below:

```java
public class A {
    public static void main(String[] args) {
        String[] strings = {"New York", "Boston", "Atlanta");
        B.main(strings);
    }
}
```

```java
class B {
    public static void main(String[] args) {
        for (int i = 0; i < args.length; i++)
            System.out.println(args[i]);
    }
}
```
Command-Line Parameters

class TestMain {
 public static void main(String[] args) {
 ...
 }
}

java TestMain arg0 arg1 arg2 ... argn
Processing Command-Line Parameters

In the main method, get the arguments from args[0], args[1], ..., args[n], which corresponds to arg0, arg1, ..., argn in the command line.
Problem: Calculator

Objective: Write a program that will perform binary operations on integers. The program receives three parameters: an operator and two integers.

java Calculator 2 + 3
java Calculator 2 - 3
java Calculator 2 / 3
java Calculator 2 . 3