
Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
1

Chapter 19 Generics

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
2

Objectives
❑ To know the benefits of generics (§19.1).

❑ To use generic classes and interfaces (§19.2).

❑ To declare generic classes and interfaces (§19.3).

❑ To understand why generic types can improve reliability and readability
(§19.3).

❑ To declare and use generic methods and bounded generic types (§19.4).

❑ To use raw types for backward compatibility (§19.5).

❑ To know wildcard types and understand why they are necessary (§19.6).

❑ To convert legacy code using JDK 1.5 generics (§19.7).

❑ To understand that generic type information is erased by the compiler and
all instances of a generic class share the same runtime class file (§19.8).

❑ To know certain restrictions on generic types caused by type erasure
(§19.8).

❑ To design and implement generic matrix classes (§19.9).

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
3

Why Do You Get a Warning?

public class ShowUncheckedWarning {

public static void main(String[] args) {

java.util.ArrayList list =

new java.util.ArrayList();

list.add("Java Programming");

}

}

To understand the compile

warning on this line, you need to

learn JDK 1.6 generics.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
4

Fix the Warning

public class ShowUncheckedWarning {

public static void main(String[] args) {

java.util.ArrayList<String> list =

new java.util.ArrayList<String>();

list.add("Java Programming");

}

}

No compile warning on this line.

`

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
5

What is Generics?

▪ Generics is the capability to parameterize types.

▪ With this capability, you can define a class or a
method with generic types that can be substituted
using concrete types by the compiler.

▪ For example, you may define a generic stack
class that stores the elements of a generic type.

▪ From this generic class, you may create a stack object
for holding strings and a stack object for holding
numbers.

▪ Here, strings and numbers are concrete types that
replace the generic type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
6

Why Generics?

▪ One of the key benefit of generics is to enable

errors to be detected at compile time rather than

at runtime.

▪ A generic class or method permits you to specify

allowable types of objects that the class or

method may work with.

▪ If you attempt to use the class or method with an

incompatible object, a compile error occurs.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
7

Generic Type

package java.lang;

public interface Comparable {

 public int compareTo(Object o)

}

package java.lang;

public interface Comparable<T> {

 public int compareTo(T o)

}

 (a) Prior to JDK 1.5 (b) JDK 1.5

Generic InstantiationRuntime error

Compile error

Comparable c = new Date();

System.out.println(c.compareTo("red"));

(a) Prior to JDK 1.5

Comparable<Date> c = new Date();

System.out.println(c.compareTo("red"));

(b) JDK 1.5

Improves reliability

Here, <T> represents a formal generic type, which can be replaced later with an actual concrete

type. Replacing a generic type is called a generic instantiation. By convention, a single capital

letter such as E or T is used to denote a formal generic type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
8

Generic ArrayList in JDK 1.5

ArrayList was introduced in Section 11.11, The ArrayList Class. This class has been

a generic class since JDK 1.5. Figure 19.3 shows the class diagram for ArrayList before and

since JDK 1.5, respectively.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
9

No Casting Needed
▪ Casting is not needed to retrieve a value from a list with a

specified element type because the compiler already knows the

element type.

▪ If the elements are of wrapper types, such as Integer, Double,

and Character, you can directly assign an element to a

primitive-type variable. This is called autounboxing, as

introduced in Section 10.8. For example, see the following

code:
ArrayList<Double> list = new ArrayList<>();

list.add(5.5); // 5.5 is automatically converted to new Double(5.5)

list.add(3.0); // 3.0 is automatically converted to new Double(3.0)

Double doubleObject = list.get(0); // No casting is needed

double d = list.get(1); // Automatically converted to double

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
10

Declaring Generic Classes and Interfaces

GenericStack

▪ A generic type can be defined for a class or interface.

▪ A concrete type must be specified when using the class to create

an object or using the class or interface to declare a reference

variable.

https://liveexample.pearsoncmg.com/html/GenericStack.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
11

Generic Methods

• You can also use generic types to define generic methods.

▪ To declare a generic method, you place the generic type <E>

immediately after the keyword static in the method header.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
12

Bounded Generic Type

public static void main(String[] args) {

Rectangle rectangle = new Rectangle(2, 2);

Circle circle = new Circle (2);

System.out.println("Same area? " + equalArea(rectangle, circle));

}

public static <E extends GeometricObject> boolean

equalArea(E object1, E object2) {

return object1.getArea() == object2.getArea();

}

▪ A generic type can be specified as a subtype of another type.

Such a generic type is called bounded.

▪ Thebounded generic type <E extends GeometricObject>

specifies that E is a generic subtype of GeometricObject.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
13

Raw Type and Backward

Compatibility

// For example, the following statement creates a list for strings.
// You can now add only strings into the list.

ArrayList<String> list = new ArrayList<>();

// Raw type : You can use a generic class without specifying a concrete type
ArrayList list = new ArrayList();

// This is roughly equivalent to
ArrayList<Object> list = new ArrayList<Object>();

▪ A generic class or interface used without specifying a concrete

type, called a raw type, enables backward compatibility with

earlier versions of Java.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
14

Raw Type is Unsafe
// Max.java: Find a maximum object

public class Max {

/** Return the maximum between two objects */

public static Comparable max(Comparable o1, Comparable o2) {

if (o1.compareTo(o2) > 0)

return o1;

else

return o2;

}

}

Comparable o1 and Comparable o2 are raw type declarations. Be careful: raw types are

unsafe. For example, you might invoke the max method using

Max.max("Welcome", 23); // 23 is autoboxed into new Integer(23)

This would cause a runtime error because you cannot compare a string with an

integer object.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
15

Make it Safe
// Max1.java: Find a maximum object

public class Max1 {

/** Return the maximum between two objects */

public static <E extends Comparable<E>> E max(E o1, E o2) {

if (o1.compareTo(o2) > 0)

return o1;

else

return o2;

}

▪ If you invoke the max method using

MaxUsingGenericType.max("Welcome", 23); // 23 is autoboxed into new Integer(23)

▪ A compile error will be displayed because the two arguments of the max method

in MaxUsingGenericType must have the same type (e.g., two strings or two integer

objects).

• Furthermore, the type E must be a subtype of Comparable<E>.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
16

Avoiding Unsafe Raw Types

Use

new ArrayList<ConcreteType>()

Instead of

new ArrayList();

RunTestArrayListNew

https://liveexample.pearsoncmg.com/html/TestArrayListNew.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.

Java Generics Wildcards

▪ Question mark (?) is the wildcard in generics and represent an unknown type.

The wildcard can be used as the type of a parameter, field, or local variable

and sometimes as a return type.

▪ The first form, ?, called an unbounded wildcard, is the same as ? extends

Object. We can provide GenericStack <String> or GenericStack <Integer> or

any other type of Object list argument to the print method

▪ The second form, ? extends T, called a bounded wildcard, represents T or a

subtype of T.

▪ The third form, ? super T, called a lower bound wildcard, denotes T or a

supertype of T.

17

Methods with wildcards:

- public static void print(GenericStack<?> stack)

- public static <T> void add(GenericStack<? extends T> stack1, GenericStack<T> stack2)

- public static <T> void add(GenericStack<T> stack1, GenericStack<? super T> stack2)

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
18

Wildcards
Why wildcards are necessary? See this example.

WildCardNeedDemo

AnyWildCardDemo

public static double max(GenericStack<Number> stack)

▪ The main method creates a stack of integer objects, adds three integers to

the stack, and invokes the max method to find the maximum number in the

stack.

▪ The program in Listing 19.7 has a compile error in line 8 because intStack is

not an instance of GenericStack<Number>. Thus, you cannot invoke

max(intStack). The fact is Integer is a subtype of Number, but

GenericStack<Integer> is not a subtype of GenericStack<Number>.

▪ To circumvent this problem, use wildcard generic types.

▪ You can fix the error by replacing line 12 as of one of follows:

public static void print(GenericStack<?> stack)

public static double max(GenericStack<? extends Number> stack)

https://liveexample.pearsoncmg.com/html/WildCardNeedDemo.html
https://liveexample.pearsoncmg.com/html/AnyWildCardDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
19

Wildcards

? unbounded wildcard

? extends T bounded wildcard

? super T lower bound wildcard

SuperWildCardDemo

Lower bound wildcard example:
public static <T> void add(GenericStack<T> stack1, GenericStack<? super T> stack2)

https://liveexample.pearsoncmg.com/html/SuperWildCardDemo.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
20

Generic Types and Wildcard Types
▪ The inheritance relationship involving generic types and wildcard types

is summarized in Figure 19.6.

▪ In this figure, A and B represent classes or interfaces, and E is a generic-

type parameter.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
21

Erasure and Restrictions on Generics

▪ Generics are implemented using an approach called
type erasure. The compiler uses the generic type
information to compile the code, but erases it
afterwards.

▪ So the generic information is not available at run
time. This approach enables the generic code to be
backward-compatible with the legacy code that uses
raw types.

▪ The generics are present at compile time. Once the
compiler confirms that a generic type is used safely,
it converts the generic type to a raw type.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
22

Compile Time Checking

For example, the compiler checks whether generics

is used correctly for the following code in (a) and

translates it into the equivalent code in (b) for

runtime use. The code in (b) uses the raw type.

ArrayList<String> list = new ArrayList<>();

list.add("Oklahoma");

String state = list.get(0);

(a) (b)

ArrayList list = new ArrayList();

list.add("Oklahoma");

String state = (String)(list.get(0));

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
23

Important Facts

It is important to note that a generic class is
shared by all its instances regardless of its
actual generic type.

GenericStack<String> stack1 = new GenericStack<>();

GenericStack<Integer> stack2 = new GenericStack<>();

Although GenericStack<String> and
GenericStack<Integer> are two types, but there is
only one class GenericStack loaded into the JVM.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
24

Restrictions on Generics

❑ Restriction 1: Cannot Create an Instance of a Generic
Type. (i.e., E object = new E()).

❑ Restriction 2: Generic Array Creation is Not Allowed.
(i.e., E[] elements = new E[100]).

❑ Restriction 3: A Generic Type Parameter of a Class Is
Not Allowed in a Static Context.

❑ Restriction 4: Exception Classes Cannot be Generic.

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
25

Designing Generic Matrix Classes

Objective: This example gives a generic class for

matrix arithmetic. This class implements matrix

addition and multiplication common for all types of

matrices.

GenericMatrix

https://liveexample.pearsoncmg.com/html/GenericMatrix.html

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
26

UML Diagram

Liang, Introduction to Java Programming, Eleventh Edition, (c) 2018 Pearson Education, Ltd.

All rights reserved.
27

Objective: This example gives two programs that

utilize the GenericMatrix class for integer matrix

arithmetic and rational matrix arithmetic.

Source Code

RunTestIntegerMatrixIntegerMatrix

RunTestRationalMatrixRationalMatrix

https://liveexample.pearsoncmg.com/html/TestIntegerMatrix.html
https://liveexample.pearsoncmg.com/html/IntegerMatrix.html
https://liveexample.pearsoncmg.com/html/TestRationalMatrix.html
https://liveexample.pearsoncmg.com/html/RationalMatrix.html

