
COE 4213564
Introduction to Artificial Intelligence

SOLVING PROBLEMS BY SEARCHING

Chapter 3

Spring 2022

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CIS 521, CS 221.

Problem solving agents and uninformed search methods

▪ A simple reflex agent is one that selects an action based only
on the current percept. It ignores the rest of the percept
history.

▪ A problem-solving agent must plan ahead.
▪ Agents that Plan Ahead: When the correct action to take is not

immediately obvious, an agent may need to plan ahead: to
consider a sequence of actions that form a path to a goal
state. Such an agent is called a problem-solving agent, and the
computational process it undertakes is called search.

▪ In this chapter, we consider only the simplest environments:
episodic, single agent, fully observable, deterministic, static,
discrete, and known.

▪ Search Problems: We distinguish between
▪ informed algorithms, in which the agent can estimate how far it is

from the goal, and
▪ uninformed algorithms, where no such estimate is available

▪ Uninformed Search Methods
▪ Breadth-first search
▪ Uniform-cost search
▪ Depth-first search
▪ Depth-limited search
▪ Iterative deepening search

Search Problems

Example search problem: Holiday in Romania

▪ Imagine an agent enjoying a touring vacation in Romania

Problem-Solving Agent follow four-phase problem-solving process

▪ Goal formulation: The agent adopts the goal of reaching Bucharest. Goals organize
behavior by limiting the objectives and hence the actions to be considered.

▪ Problem formulation: The agent devises a description of the states and actions
necessary to reach the goal—an abstract model of the relevant part of the world.
For our agent, one good model is to consider the actions of traveling from one city
to an adjacent city, and therefore the only fact about the state of the world that will
change due to an action is the current city.

▪ Search: Before taking any action in the real world, the agent simulates sequences of
actions in its model, searching until it finds a sequence of actions that reaches the
goal. Such a sequence is called a solution.

▪ The agent might have to simulate multiple sequences that do not reach the goal,
but eventually it will find a solution (such as going from Arad to Sibiu to Fagaras to
Bucharest), or it will find that no solution is possible.

▪ Execution: The agent can now execute the actions in the solution, one at a time.

Search problems and solutions

• Reflex-based models in machine learning (e.g., linear

predictors and neural networks) that output either a or (for

binary classification) or a real number (for regression).

• While reflex-based models were appropriate for some

applications such as sentiment classification or spam filtering,

the applications we will look at today, such as solving puzzles,

demand more.

• To tackle these new problems, we will introduce search

problems, our first instance of a state-based model.

• In a search problem, in a sense, we are still building a

predictor which takes an input , but will now return an entire

action sequence, not just a single action.

• Of course you should object: can't I just apply a reflex model

iteratively to generate a sequence? While that is true, the

search problems that we're trying to solve importantly require

reasoning about the consequences of the entire action

sequence, and cannot be tackled by myopically predicting

one action at a time.

• Of course, saying "cannot" is a bit strong, since sometimes a

search problem can be solved by a reflex-based model. You

could have a massive lookup table that told you what the best

action was for any given situation.

Search problems and solutions

▪ A search problem can be defined formally as follows:
▪ A set of possible states that the environment can be in. We call this the state space.
▪ A set of one or more goal states. Sometimes there is one goal state (e.g., Bucharest), Goal states sometimes there is a small set of

alternative goal states, and sometimes the goal is defined by a property that applies to many states.
▪ The actions available to the agent. Given a state s, ACTIONS(s) returns a finite set of Action actions that can be executed in s. We say

that each of these actions is applicable in s. An example:
ACTIONS(Arad) = {ToSibiu,ToTimisoara,ToZerind}.

▪ A transition model, which describes what each action does. RESULT(s, a) returns the Transition model state that results from doing
action a in state s. For example,

RESULT(Arad, ToZerind) = Zerind

▪ An action cost function, denoted by ACTION-COST(s,a,s’) when we are programming or c(s,a,s’) when we are doing math, that gives the
numeric cost of applying action a in state s to reach state s’. . A problem-solving agent should use a cost function that reflects its own
performance measure; for example, for route-finding agents, the cost of an action might be the length in miles (as seen in Figure 3.1),
or it might be the time it takes to complete the action.

▪ A sequence of actions forms a path, and a solution is a path from the initial state to a goal state. We assume that
action costs are additive; that is, the total cost of a path is the sum of the individual action costs.

▪ An optimal solution has the lowest path cost among all solutions.
▪ The state space can be represented as a graph in which the vertices are states and the directed edges between

them are actions.

Formal Definition

Abstraction: Formulating problems

▪ Our formulation of the problem of getting to Bucharest is a model—an abstract
mathematical description—and not the real thing. Compare the simple atomic state
description Arad to an actual cross-country trip, where the state of the world
includes so many things: the traveling companions, the current radio program, the
scenery out of the window, the proximity of law enforcement officers, the distance
to the next rest stop, the condition of the road, the weather, the traffic, and so on.

▪ All these considerations are left out of our model because they are irrelevant to the
problem of finding a route to Bucharest.

▪ The process of removing detail from a representation is called abstraction.
▪ The abstraction is valid if we can elaborate any abstract solution into a solution in

the more detailed world. The choice of a good abstraction thus involves removing
as much detail as possible while retaining validity and ensuring that the abstract
actions are easy to carry out.

Art: Formulating a Search Problem

▪ Decide:

Which properties matter & how to represent

• Initial State, Goal State, Possible Intermediate States

Which actions are possible & how to represent

• Operator Set: Actions and Transition Model

Which action is next

• Path Cost Function

▪ Formulation greatly affects combinatorics of search space and therefore speed of search

▪ Hard subtask: Selecting a state space

Real world is absurdly complex

State space must be abstracted for problem solving

(abstract) State = set (equivalence class) of real-world states

(abstract) Action = equivalence class of combinations of real-world action

• e.g. Arad → Zerind represents a complex set of possible routes, detours, rest stops, etc

• The abstraction is valid if the path between two states is reflected in the real world

▪ Each abstract action should be “easier” than the real problem

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent

city with cost =
distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

Example: Pac-Man Game

▪ A search problem consists of:

▪ A state space

▪ A successor function
(with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Pac-Man is

an action[7] maze

chase video game; the

player controls the

eponymous

character through an

enclosed maze. The

objective of the game

is to eat all of the dots

placed in the maze

while avoiding four

colored ghosts —

Blinky (red), Pinky

(pink), Inky (cyan), and

Clyde (orange)

https://en.wikipedia.org/wiki/Action_game
https://en.wikipedia.org/wiki/Pac-Man#cite_note-Maynard-8
https://en.wikipedia.org/wiki/List_of_maze_chase_games
https://en.wikipedia.org/wiki/Pac-Man_(character)

Another example: vacuum world

• States: integer dirt and robot locations (ignore dirt amounts etc.)

• Actions: Left, Right, Suck, NoOp

• Goal test: no dirt

• Path cost: 1 per action (0 for NoOp)

States: A state of the world

says which objects are in

which cells.

In a simple two cell version,

• the agent can be in one cell

at a time

• each cell can have dirt or not

2 positions for agent * 22

possibilities for dirt = 8 states.

With n cells, there are n*2n

states.

Example search problem: 8-puzzle

Other search problems

▪ Route-finding problem is defined in terms of specified locations
▪ and transitions along edges between them.
▪ Touring problems describe a set of locations that must be visited, rather than a single goal

destination.
▪ A VLSI layout problem requires positioning millions of components and connections on a chip

to minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield.

▪ Robot navigation is a generalization of the route-finding problem described earlier. Rather than
following distinct paths (such as the roads in Romania), a robot can roam around, in effect
making its own paths.

▪ Automatic assembly sequencing of complex objects (such as electric motors) by a robot has
been standard industry practice since the 1970s. Algorithms first find a feasible assembly
sequence and then work to optimize the process. Minimizing the amount of manual human
labor on the assembly line can produce significant savings in time and cost.

Search Problems Are (Absract) Models

What’s in a State Space?

▪ Problem: Pathing
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location
only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

120x(230)x(122)x4

▪ States for pathing?

120

▪ States for eat-all-dots?

120x(230)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a search graph, each state occurs only once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

State Space Graphs vs. Search Trees

▪ It is important to understand the distinction between the state
space and the search tree.

▪ The state space describes the (possibly infinite) set of states in
the world, and the actions that allow transitions from one state
to another.

▪ The search tree describes paths between these states, reaching
towards the goal. The search tree may have multiple paths to
(and thus multiple nodes for) any given state, but each node in
the tree has a unique path back to the root (as in all trees).

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

Tree Search

Search Example: Romania

Three partial search trees for finding a route from Arad to
Bucharest

▪ Nodes that have been expanded
are lavender with bold letters;

▪ nodes on the frontier that have
been generated but not yet
expanded are in green;

▪ the set of states corresponding
to these two types of nodes are
said to have been reached.
Nodes that could be generated
next are shown in faint dashed
lines.

▪ Notice in the bottom tree there
is a cycle from Arad to Sibiu to
Arad; That can’t be an optimal
path, so search should not
continue from there.

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe (frontier) of partial plans under
consideration

▪ Try to expand as few tree nodes as possible

• We can expand the node, by
considering the available
ACTIONS for that state, using the
RESULT function to see where
those actions lead to, and
generating a new node (called
a child node or successor
node) for each of the
resulting states.

• Each child node has Arad as
its parent node.

States vs. Nodes

▪ Vertices in state space graphs are problem states
▪ Represent an abstracted state of the world

▪ Have successors, can be goal / non-goal, have multiple predecessors

▪ Vertices in search trees (“Nodes”) are plans
▪ Contain a problem state and one parent, a path length, a depth, and a cost

▪ Represent a plan (sequence of actions) which results in the node’s state

▪ The same problem state may be achieved by multiple search tree nodes

30

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Search Strategies

▪ A strategy is defined by picking the order of node expansion

▪ Strategies are evaluated along the following dimensions:
▪ completeness: does it always find a solution if one exists?

▪ time complexity: number of nodes generated/expanded

▪ space complexity: maximum number of nodes in memory

▪ optimality: does it always find a least-cost solution?

▪ Time and space complexity are measured in terms of
▪ b: maximum branching factor of the search tree

▪ d: depth of the least-cost solution

▪ m: maximum depth of the state space (may be ∞)

32

Best-first search

▪ How do we decide which node
from the frontier to expand next?

▪ A very general approach is called
best-first search, in which we
choose a node, n, with minimum
value of some evaluation function,
f(n).

▪ On each iteration we choose a
node on the frontier with
minimum f (n) value, return it if its
state is a goal state, and otherwise
apply EXPAND to generate child
nodes.

▪ Each child node is added to the
frontier if it has not been reached
before, or is re-added if it is now
being reached with a path that has
a lower path cost than any
previous path.

Search data structures

▪ Search algorithms require a data structure to keep track of the search tree. A node in the tree is represented by a data
structure with four components:
▪ node.STATE: the state to which the node corresponds;

▪ node.PARENT: the node in the tree that generated this node;

▪ node.ACTION: the action that was applied to the parent’s state to generate this node;

▪ node.PATH-COST: the total cost of the path from the initial state to this node. In mathematical formulas, we use g(node) as a synonym for PATH-COST.

▪ We need a data structure to store the frontier. The appropriate choice is a queue of some kind, because the operations
on a frontier are:
▪ IS-EMPTY(frontier) returns true only if there are no nodes in the frontier.

▪ POP(frontier) removes the top node from the frontier and returns it.

▪ TOP(frontier) returns (but does not remove) the top node of the frontier.

▪ ADD(node, frontier) inserts node into its proper place in the queue.

▪ Three kinds of queues are used in search algorithms:
▪ A priority queue first pops the node with the minimum cost according to some evaluation function, f . It is used in best-first search.

▪ A FIFO queue or first-in-first-out queue first pops the node that was added to the queue first; we shall see it is used in breadth-first search.

▪ A LIFO queue or last-in-first-out queue (also known as a stack) pops first the most Stack recently added node; we shall see it is used in depth-first
search.

▪ The reached states can be stored as a lookup table (e.g. a hash table) where each key is a state and each value is the node
for that state.

Uninformed Search Strategies

▪ Uninformed strategies use only the information available in the
problem definition

▪ Breadth-first search

▪ Depth-first search

▪ Uniform-cost search

▪ Depth-limited search

▪ Iterative deepening search

35

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Breadth-First Search

▪ When all actions have
the same cost, an
appropriate strategy
is breadth-first
search,

▪ in which the root
node is expanded
first, then all the
successors of the root
node are expanded
next, then their
successors, and so
on.

Breadth-first search on a simple binary tree

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ keeps every node in memory

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Exponential time and space

Breadth-first search algorithm

Depth-First Search

• Depth-first search always

expands the deepest node in

the frontier first.
• The algorithm starts at the root

(top) node of a tree and goes as
far as it can down a given branch
(path), then backtracks until it
finds an unexplored path, and
then explores it.

Depth-first search on a binary tree

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-first search implementation

▪ Depth-first search could be
implemented as a call to
BEST-FIRST-SEARCH where
the evaluation function f is
the negative of the depth.

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.
▪ Could process the whole tree!
▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ No.
▪ m could be infinite, so only if we prevent

cycles (more later). fails in infinite-depth
spaces, spaces with loops

▪ Is it optimal?
▪ No, it finds the “leftmost” solution, regardless

of depth or cost

Quiz: DFS vs BFS

Quiz: DFS vs BFS

▪ When will BFS outperform DFS?

▪ When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

• Use depth-first if
• Space is restricted

• There are many possible solutions with long paths and wrong
paths are usually terminated quickly

• Search can be fine-tuned quickly

• Use breadth-first if
• Possible infinite paths

• Some solutions have short paths

• Can quickly discard unlikely paths
48

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Combining BFS and DFS?

▪ DFS is efficient in space complexity

▪ BFS is better in time complexity

▪ How can we combine strength of both in a method?

54

Depth-limited search

▪ To keep depth-first search from wandering down an infinite path, we can use
depth-limited search, a version of depth-first search in which we supply a
depth limit, l, and treat all nodes at depth l as if they had no successors.

▪ The time complexity is O(bl) and the space complexity is O(bl).
▪ Unfortunately, if we make a poor choice for l the algorithm will fail to reach

the solution, making it incomplete again.
▪ Sometimes a good depth limit can be chosen based on knowledge of the

problem. For example, on the map of Romania there are 20 cities. Therefore,
l =19 is a valid limit. But if we studied the map carefully, we would discover
that any city can be reached from any other city in at most 9 actions.

▪ This number, known as the diameter of the state-space graph, gives us a
better depth limit, which leads to a more efficient depth-limited search.

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s time /
shallow-solution advantages

▪ Iterative deepening search solves the problem of
picking a good value for ` by trying all values: first
0, then 1, then 2, and so on—until either a solution
is found, or the depth-limited search returns the
failure value rather than the cutoff value.
▪ Run a DFS with depth limit 1. If no solution…
▪ Run a DFS with depth limit 2. If no solution…
▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest level

searched, so not so bad!

Four iterations of iterative deepening search for goal M on a binary tree

▪ Figure 3.13 Four
iterations of
iterative
deepening
search for goal
M on a binary
tree, with the
depth limit
varying from 0
to 3.

▪ Note the
interior nodes
form a single
path.

▪ The triangle
marks the node
to expand next;
green nodes
with dark
outlines are on
the frontier; the
very faint nodes
provably can’t
be part of a
solution with
this depth limit.

Iterative deepening and depth-limited tree-like search

Properties of iterative deepening search

▪ Complete:
▪ Yes

▪ Time:
▪ (d+1)b0 +db1 +(d−1)b2 +...+bd =O(bd)

▪ or more precisely O(bd(1 – 1/b)-2)

▪ Space:
▪ O(bd)

▪ Optimal:
▪ Yes, if step cost = 1

▪ Can be modified to explore uniform-cost tree

59

Properties of iterative deepening search (cont.)

▪ Numerical comparison for b = 10 and d = 5, solution at far right
leaf:

N(IDS) = 6+50+400+3,000+20,000+100,000=123,456

N(BFS) = 10+100+1,000+10,000+100,000+999,990=1,111,100

▪ IDS does better because other nodes at depth d are not
expanded

▪ BFS can be modified to apply goal test when a node is generated

60

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search (Dijkstra's algorithm)

• When actions have

different costs, an obvious

choice is to use best-first

search where the

evaluation function is the

cost of the path from the

root to the current node.

• This is called Dijkstra’s

algorithm by the

theoretical computer

science community, and

uniform-cost search by

the AI community.

Part of the Romania state space, selected to illustrate uniform-cost search.

• The problem is to get from Sibiu to Bucharest.

• The successors of Sibiu are Rimnicu Vilcea and Fagaras, with

costs 80 and 99, respectively.

• The least cost node, Rimnicu Vilcea, is expanded next, adding

Pitesti with cost 80+97=177.

• The least-cost node is now Fagaras, so it is expanded, adding

Bucharest with cost 99+211=310.

• Bucharest is the goal, but the algorithm tests for goals only

when it expands a node, not when it generates a node, so it

has not yet detected that this is a path to the goal.

• The algorithm continues on, choosing Pitesti for expansion

next and adding a second path to Bucharest with cost

80+97+101=278.

• It has a lower cost, so it replaces the previous path in reached

and is added to the frontier.

• Note that if we had checked for a goal upon generating a node

rather than when expanding the lowest-cost node, then we

would have returned a higher-cost path (the one through

Fagaras).

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

Uniform-cost search implementation

▪ The idea is that while breadth-first search spreads out in waves of
uniform depth—first depth 1, then depth 2, and so on

▪ uniform-cost search spreads out in waves of uniform path-cost.
The algorithm can be implemented as a call to BEST-FIRST-SEARCH
with PATH-COST as the evaluation function,

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

▪ Remember: UCS explores increasing cost
contours

▪ The good: UCS is complete and optimal!
because the first solution it finds will have a
cost that is at least as low as the cost of any
other node in the frontier. Uniformcost
search considers all paths systematically in
order of increasing cost, never getting
caught going down a single infinite path.

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Bidirectional search

▪ The algorithms we
have covered so far
start at an initial
state and can reach
any one of multiple
possible goal states.

▪ An alternative
approach called
bidirectional search
simultaneously
searches forward
from the initial state
and backwards from
the goal state(s),
hoping that the two
searches will meet.

Comparing uninformed search algorithms

Repeated states

▪ Failure to detect repeated states can turn a linear problem into
an exponential one!

74

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation
that takes a variable queuing object

Search and Models

▪ Search operates over
models of the world

▪ The agent doesn’t
actually try all the plans
out in the real world!

▪ Planning is all “in
simulation”

▪ Your search is only as
good as your models…

Search Gone Wrong?

