
COE 4213564
Introduction to Artificial Intelligence

Informed Search

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CIS 521, CS 221, CS182, CS4420.

Outline

▪ Informed Search

▪ Heuristics

▪ Greedy Search

▪ A* Search

▪ Graph Search

Recap: Search

Recap: Search

▪ Search problem:
▪ States (configurations of the world)

▪ Actions and costs

▪ Successor function (world dynamics)

▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states

▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree

▪ Chooses an ordering of the fringe (unexplored nodes)

▪ Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

• Pancake Sorting Problem:

We are given a stack of n

pancakes, each of different

size. Our goal is to sort this

stack from smallest to

largest (largest being on

the bottom of the stack).

• The only thing we are

allowed to do is to insert

the spatula in between two

pancakes (or between the

bottom pancake and the

plate), and flip over all the

pancakes that are on top of

the spatula.

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3

4

3

4

2

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation
that takes a variable queuing object

Uninformed Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first from

the root:

Fringe is a priority queue

(priority: cumulative cost)

S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

Uniform Cost Search

▪ Strategy: expand lowest path cost cost of the
path from the root to the current node

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

Start Goal

…

c 3

c 2

c 1

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Informed Search Strategies

▪ Uninformed search strategies look for solutions by systematically
generating new states and checking each of them against the goal

▪ This approach is very inefficient in most cases

▪ Most successor states are “obviously” a bad choice

▪ Such strategies do not know that because they have minimal
problem-specific knowledge

▪ Informed search strategies exploit problem-specific knowledge as
much as possible to drive the search

▪ They are almost always more efficient than uninformed searches and
often also optimal

UNINFORMED VS. INFORMED

Informed Search Strategies

▪ Use the knowledge of the problem domain to build an evaluation
function h

▪ For every node n in the search space, h(n) quantifies the desirability
of expanding n in order to reach the goal

▪ Then use the desirability value of the nodes in the fringe to decide
which node to expand next

▪ The evaluation function h is typically an imperfect measure of the
goodness of the node

▪ i.e., the right choice of nodes is not always the one suggested by h

▪ The evaluation function is usually called heuristic function.

Heuristic

▪ Merriam-Webster's Online Dictionary
▪ Heuristic (pron. \hyu-ʼris-tik\): adj. [from Greek heuriskein to discover.] involving or

serving as an aid to learning, discovery, or problemsolving by experimental and
especially trial-and-error methods

▪ The Free On-line Dictionary of Computing
▪ heuristic 1. A rule of thumb, simplification or educated guess that reduces or limits

the search for solutions in domains that are difficult and poorly understood. Unlike
algorithms, heuristics do not guarantee feasible solutions and are often used with
no theoretical guarantee. 2. approximation algorithm.

▪ From WordNet (r) 1.6
▪ heuristic adj 1: (computer science) relating to or using a heuristic rule 2: of or

relating to a general formulation that serves to guide investigation [ant: algorithmic]
n : a commonsense rule (or set of rules) intended to increase the probability of
solving some problem [syn: heuristic rule, heuristic program]

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

Example: Heuristic Function

h(x)
h(n) = estimated cost of the cheapest path from the state

at node n to a goal state.

• in route-finding

problems, we can

estimate the

distance from the

current state to a

goal by computing

the straight-line

distance on the

map between the

two points.

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Heuristics for 8-puzzle

Misplaced

Tiles

Heuristic

• Three tiles are misplaced (the 3, 8, and 1)

so heuristic function evaluates to 3

• Heuristic says that it thinks a solution may

be available in 3 or more moves

• Very rough estimate, but easy to calculate

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal

State

Current

State

h = 3

(not including

the blank)

3 2 8

4 5 6

7 1

3 tiles are not

where they

need to be

Heuristics for 8-puzzle

Manhattan

Distance

Heuristic

• The 3, 8, and 1 tiles misplaced by 2, 3, and

3 steps, so heuristic function evaluates to 8

• Heuristic says that it thinks a solution may

be available in 8 or more moves

• More accurate than the misplaced heuristic,

but slightly more expensive to compute

3 2 8

4 5 6

7 1

1 2 3

4 5 6

7 8

Goal

State

Current

State

3 3

8

8

1

1

2 steps

3 steps

3 steps

h = 8

(not including

the blank)

Best-First Search

▪ Idea: use an evaluation function estimating the desirability of
each node

▪ Strategy: Always expand the most desirable unexpanded node

▪ Implementation: the fringe is a priority queue sorted in
decreasing order of desirability

▪ Special cases:

▪ Greedy search

▪ A* search

Best-first Search Strategies

▪ Best-first is a family of search strategies, each with a different
evaluation function

▪ Typically, strategies use estimates of the cost of reaching the goal
and try to minimize it

▪ Uniform Search also tries to minimize a cost measure. Is it then a
best-first search strategy?

▪ Not in spirit, because the evaluation function should incorporate a cost
estimate of going from the current state to the closest goal state

Greedy Search

Greedy best-first search

▪ Greedy best-first search is a form of best-first search that
expands first the node with the lowest h(n) value—the
node that appears to be closest to the goal—on the
grounds that this is likely to lead to a solution quickly.

▪ So the evaluation function f (n) = h(n).

▪ Implementation: Order the nodes in fringe in decreasing
order of desirability

Example: Heuristic Function

hSLD(n)

• Evaluation (heuristics)

function h(n) = estimate

cost of cheapest path from

node n to closest goal.

• We use the straight-line

distance heuristic here.

• E.g., hSLD (n) = straight-line

distance from n to

Bucharest

• Greedy search

expands the

node that

appears to be
closest to goal

Route-finding in Romania

Greedy Search

▪ Expand the node that seems closest…

▪ What can go wrong?
▪ For this particular problem, greedy best-first search using hSLD finds a solution

without ever expanding a node that is not on the solution path; hence, its search
cost is minimal.

▪ It is not optimal, however.
▪ The path via Sibiu and Fagaras to Bucharest is 32 kilometers longer than the path

through Rimnicu Vilcea and Pitesti.

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

Properties of Greedy Best-First Search

▪ A good heuristic can nonetheless produce dramatic time/space
improvements in practice.

A* Search

A* search

▪ The most common informed search algorithm is A* search (pronounced “A-star
search”),

▪ A best-first search strategy that uses the evaluation function

f (n) = g(n)+h(n)
▪ where

▪ g(n) is the path cost from the initial state to node n, and

▪ h(n) is the estimated cost of the shortest path from node n to a goal state,

▪ so we have

f (n) = estimated cost of the best path that continues from n to a goal.

Combining UCS and Greedy

A* — A Better Best-First Strategy by combining UCS and Greedy

A* Search (turtle & rabbit analogy)

UCS Greedy

A*

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

Is A* Optimal?

▪ What went wrong?

▪ Actual bad goal cost < estimated good goal cost

▪ We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

5+0

_

==

.)-

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

A* Search

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

A* Search: Why an Admissible Heuristic

Admissible Heuristics

48

Optimality of A* Tree Search

Proof : Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h is admissible

Claim:

▪ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…

Properties of A*

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

Properties of A*

A* Applications

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Beyond A*

Creating Heuristics

Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

▪ Inadmissible heuristics are often useful too

15

366

Devising Heuristic Functions

Relaxed Problems: Example

Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) =

▪ This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Heuristic: Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

▪ How about using the actual cost as a heuristic?

▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node

▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what

does this give us?)

▪ Top of lattice is the exact heuristic

Effectiveness of Heuristic Functions

Note: If h1 dominates h2, then EFB(h2) ≤ EFB(h1)

Dominance and EFB: The 8-puzzle

Devising Heuristic Functions Automatically

▪ Relaxation of formally described problems:
▪ A problem with fewer restrictions on the actions is called a relaxed problem. The cost of an

optimal solution to a relaxed problem is an admissible heuristic for the original problem.

▪ Pattern databases:
▪ Admissible heuristics can also be derived from the solution cost of a subproblem of a given

problem. The idea behind pattern databases is to store these exact solution costs for every
possible Pattern database subproblem instance. Then we compute an admissible heuristic
hDB for each state encountered during a search simply by looking up the corresponding
subproblem configuration in the database.

▪ Learning :
▪ An alternative is to learn from experience. “Experience” here means solving lots of 8-

puzzles, for instance. Each optimal solution to an 8-puzzle problem provides an example
(goal, path) pair. From these examples, a learning algorithm can be used to construct a
function h that can (with luck) approximate the true path cost for other states that arise
during search.

Graph Search

▪ Failure to detect repeated states can cause exponentially more work.
▪ We call a search algorithm a graph search if it checks for redundant paths and a tree-like search if it does not check.
▪ The BEST-FIRST-SEARCH algorithm in Figure 3.7 is a graph search algorithm; if we remove all references to reached

we get a treelike search that uses less memory but will examine redundant paths to the same state, and thus will
run slower.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Tree Search Pseudo-Code

Graph Search Pseudo-Code

Optimality of A* Graph Search

Optimality of A* Graph Search

▪ Sketch: consider what A* does with a
consistent heuristic:

▪ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f 3

f 2

f 1

Consistent (or Monotonicity) Heuristics

c(n,a,n’): the cost of applying action a in state n to arrive at state n’.

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

▪ http://qiao.github.io/PathFinding.js/visual/

