
COE 4213564
Introduction to Artificial Intelligence

Constraint Satisfaction Problems

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

Constraint Satisfaction Problems

Chapter 5

2

© 2022 Pearson Education Ltd.

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

What is Search For?

▪ Assumptions about the world: a single agent, deterministic
actions, fully observed state, discrete state space

▪ Planning: sequences of actions
▪ The path to the goal is the important thing

▪ Paths have various costs, depths

▪ Heuristics give problem-specific guidance

▪ Identification: assignments to variables
▪ The goal itself is important, not the path

▪ All paths at the same depth (for some formulations)

▪ CSPs are a specialized class of identification problems where we assign
values to variables while respecting certain constraints

Constraint Satisfaction Problems

Constraint Satisfaction Problems

▪ Constraint satisfaction problems (CSPs) are mathematical questions defined as a set
of objects whose state must satisfy a number of constraints or limitations.

Defining Constraint Satisfaction Problems

Chapter 5 6

A constraint satisfaction problem (CSP) consists of three components, X, D, and
C:
• X is a set of variables, {X1 ….. Xn}.
• D is a set of domains, {D1, …. , Dn}, one for each variable
• C is a set of constraints that specify allowable combination of values

CSPs deal with assignments of values to variables.
• A complete assignment is one in which every variable is assigned a value, and a

solution to a CSP is a consistent, complete assignment.
• A partial assignment is one that leaves some variables unassigned.
• Partial solution is a partial assignment that is consistent

© 2022 Pearson Education Ltd.

Constraint satisfaction problems (CSPs)

Chapter 5 7

Standard search problem:
state is a “black box”—any old data structure that

supports goal test, eval, successor

CSP:
state is defined by variables X i with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

© 2022 Pearson Education Ltd.

Constraint satisfaction problems (CSPs)

From: UBC CS 322 – CSP

Possible Worlds

Varieties of CSPs and Constraints

Varieties of CSPs

▪ Discrete Variables
▪ Finite domains

▪ Size d means O(dn) complete assignments

▪ E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

▪ Infinite domains (integers, strings, etc.)

▪ E.g., job scheduling, variables are start/end times for each job

▪ Linear constraints solvable, nonlinear undecidable

▪ Continuous variables
▪ E.g., start/end times for Hubble Telescope observations

▪ Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

Varieties of Constraints

▪ Varieties of Constraints
▪ Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

▪ Binary constraints involve pairs of variables, e.g.:

▪ Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

▪ Preferences (soft constraints):
▪ E.g., red is better than green
▪ Often representable by a cost for each variable assignment
▪ Gives constrained optimization problems
▪ (We’ll ignore these until we get to Bayes’ nets)

Constraints

From: UBC CS 322 – CSP

Constraints

From: UBC CS 322 – CSP

Scope of a constraint

From: UBC CS 322 – CSP

Solving Constraint Satisfaction Problems

CSP Examples

Example: Map Coloring

▪ Variables:

▪ Domains:

▪ Constraints: adjacent regions must have different
colors

▪ Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

Example: N-Queens

▪ Formulation 1:

▪ Variables:

▪ Domains:

▪ Constraints

Example: N-Queens

▪ Formulation 2:

▪ Variables:

▪ Domains:

▪ Constraints:

Implicit:

Explicit:

Constraint Graphs

Constraint Graphs

▪ Binary CSP: each constraint relates (at most) two
variables

▪ Binary constraint graph: nodes are variables, arcs
show constraints

▪ General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

▪ Variables:

▪ Domains:

▪ Constraints:

Example: Sudoku

▪ Variables:

▪ Each (open) square

▪ Domains:

▪ {1,2,…,9}

▪ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Example: The Waltz Algorithm

▪ The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

▪ An early example of an AI computation
posed as a CSP

▪ Approach:

▪ Each intersection is a variable
▪ Adjacent intersections impose constraints

on each other
▪ Solutions are physically realizable 3D

interpretations

?

Legal Junctions

▪ Only certain junctions are
physically possible

▪ How can we formulate a CSP to
label an image?

▪ Variables: vertices
▪ Domains: junction labels
▪ Constraints: both ends of a line

should have the same label

28

x

y

(x,y) in

, , …

Real-World CSPs

▪ Scheduling problems: e.g., when can we all meet?

▪ Timetabling problems: e.g., which class is offered when and where?

▪ Assignment problems: e.g., who teaches what class

▪ Hardware configuration

▪ Transportation scheduling

▪ Factory scheduling

▪ Circuit layout

▪ Fault diagnosis

▪ … lots more!

▪ Many real-world problems involve real-valued variables…

Solving CSPs

Solving Constraint Satisfaction Problems (CSPs)

▪ A CSP can be solved using generate-and-test paradigm (GT) that
systematically generates each possible value assignment and then it
tests to see if it satisfies all the constraints.

▪ A more efficient method uses the backtracking paradigm (BT) that is
the most common algorithm for performing systematic search.
Backtracking incrementally attempts to extend a partial solution
toward a complete solution, by repeatedly choosing a value for
another variable.

▪ Two methods:
▪ Generate & Test
▪ Graph search with backtracking paradigm (BT)

Generate and Test (GT) Algorithms

From: UBC CS 322 – CSP

CSP as a Search Problem: one formulation

From: UBC CS 322 – CSP

CSP as Graph Searching

CSP as Graph Searching

Standard Search Formulation

▪ Standard search formulation of CSPs

▪ States defined by the values assigned
so far (partial assignments)
▪ Initial state: the empty assignment, {}
▪ Successor function: assign a value to an

unassigned variable
▪ Goal test: the current assignment is

complete and satisfies all constraints

▪ We’ll start with the straightforward,
naïve approach, then improve it

Search Methods

▪ What would BFS do?

▪ What would DFS do?

▪ What problems does naïve search have?
▪ For a CSP with n variables of domain size d we would end up with a search tree where all

the complete assignments (and thus all the solutions) are leaf nodes at depth n.
▪ The number of leaves is dn

[Demo: coloring -- dfs]

Video of Demo Coloring – DFS
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

Backtracking Search

▪ Backtracking search is the basic uninformed algorithm for solving CSPs

▪ Idea 1: One variable at a time
▪ Variable assignments are commutative, so fix ordering
▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
▪ Only need to consider assignments to a single variable at each step

▪ Idea 2: Check constraints as you go
▪ I.e. consider only values which do not conflict with previous assignments
▪ Might have to do some computation to check the constraints
▪ “Incremental goal test”

▪ Depth-first search with these two improvements
is called backtracking search (not the best name)

▪ Can solve n-queens for n  25

Backtracking Search

CSP as Graph Searching

Video of Demo Coloring – Backtracking
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Example

Backtracking Search

▪ Backtracking = DFS + variable-ordering + fail-on-violation

[Demo: coloring -- backtracking]

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

Improving Backtracking

▪ General-purpose ideas give huge gains in speed

▪ Ordering:

▪ Which variable should be assigned next?

▪ In what order should its values be tried?

▪ Filtering: Can we detect inevitable failure early?

▪ Structure: Can we exploit the problem structure?

Filtering

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking
https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Filtering: Constraint Propagation

▪ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

▪ NT and SA cannot both be blue!
▪ Why didn’t we detect this yet?
▪ Constraint propagation: reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

© 2022 Pearson Education Ltd.

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

© 2022 Pearson Education Ltd.

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff

for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

© 2022 Pearson Education Ltd.

Arc Consistency of an Entire CSP

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Important: If X loses a value, neighbors of X need to be rechecked!
▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment
▪ What’s the downside of enforcing arc consistency?

Remember:
Delete from

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

▪ Runtime: O(n2d3), can be reduced to O(n2d2)
▪ … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

▪ After enforcing arc
consistency:

▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and
not know it)

▪ Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]

Ordering

Ordering: Minimum Remaining Values

▪ Variable Ordering: Minimum remaining values (MRV):

▪ Choose the variable with the fewest legal left values in its domain

▪ Why min rather than max?

▪ Also called “most constrained variable”

▪ “Fail-fast” ordering

Ordering: Least Constraining Value

▪ Value Ordering: Least Constraining Value
▪ Given a choice of variable, choose the least

constraining value

▪ I.e., the one that rules out the fewest values in
the remaining variables

▪ Note that it may take some computation to
determine this! (E.g., rerunning filtering)

▪ Why least rather than most?

▪ Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]

Demo: Backtracking + AC + Ordering

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

K-Consistency

K-Consistency

▪ Stronger forms of propagation can be defined with the notion of k-
consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a value
which meets that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1 can be
extended to the kth node.

▪ Higher k --> more expensive to compute
▪ In practice, determining the appropriate level of consistency

checking is mostly an empirical science. Computing 2-consistency
is common, and 3-consistency less common.

▪ (You need to know the k=2 case: arc consistency)

Strong K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

▪ Extreme case: independent subproblems
▪ Example: Tasmania and mainland do not interact

▪ Independent subproblems are identifiable as
connected components of constraint graph

▪ Suppose a graph of n variables can be broken into
subproblems of only c variables:
▪ Worst-case solution cost is O((n/c)(dc)), linear in n
▪ E.g., n = 80, d = 2, c =20
▪ 280 = 4 billion years at 10 million nodes/sec
▪ (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

▪ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
where n is the number of tree nodes and d is the size of the largest domain.
▪ Compare to general CSPs, where worst-case time is O(dn)

▪ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

▪ Algorithm for tree-structured CSPs:
▪ Order: Choose a root variable, order variables so that parents precede children

▪ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
▪ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

▪ Runtime: O(n d2) (why?)

Tree-Structured CSPs

▪ Claim 1: After backward pass, all root-to-leaf arcs are consistent
▪ Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

▪ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
▪ Proof: Induction on position

▪ Why doesn’t this algorithm work with cycles in the constraint graph?

▪ Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

▪ Conditioning: instantiate a variable, prune its neighbors' domains

▪ Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

▪ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

▪ Find the smallest cutset for the graph below.

Tree Decomposition*

▪ Idea: create a tree-structured graph of mega-variables

▪ Each mega-variable encodes part of the original CSP

▪ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),

(WA=b,SA=r,NT=g),

…}

{(NT=r,SA=g,Q=b),

(NT=b,SA=g,Q=r),

…}

Agree: (M1,M2) 

{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

NT

SA


WA

 

Q

SA


NT

 

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

NS

W

SA


Q

 

A
g
re

e
 o

n
 s

h
a
re

d
 v

a
rs

V

SA


NS

W

 

Iterative Improvement

Iterative Algorithms for CSPs

▪ Local search methods typically work with “complete” states, i.e., all variables assigned.
▪ Local search algorithms turn out to be very effective in solving many CSPs. They use a complete-state

formulation (as introduced in Section 4.1.1) where each state assigns a value to every variable, and the
search changes the value of one variable at a time.

▪ To apply to CSPs:
▪ Take an assignment with unsatisfied constraints
▪ Operators reassign variable values
▪ No fringe! Live on the edge.

▪ We then randomly choose a conflicted variable, we’d like to change the value to something that brings
us closer to a solution; the most obvious approach is to select the value that results in the minimum
number of conflicts with other variables—the min-conflicts heuristic.

▪ Algorithm: While not solved,
▪ Variable selection: randomly select any conflicted variable
▪ Value selection: min-conflicts heuristic:

▪ Choose a value that violates the fewest constraints
▪ I.e., hill climb with h(n) = total number of violated constraints

▪ Min-conflicts is surprisingly effective for many CSPs, amazingly, on the n-queens
problem.

8-queens problem

Example: 4-Queens

▪ States: 4 queens in 4 columns (44 = 256 states)
▪ Operators: move queen in column
▪ Goal test: no attacks
▪ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring

Performance of Min-Conflicts

▪ Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens problem, if you don’t count the initial
placement of queens, the run time of min-conflicts is roughly independent of problem size.

▪ Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n =
10,000,000)!

▪ It solves even the million-queens problem in an average of 50 steps (after the initial assignment).
▪ Min-conflicts also works well for hard problems.
▪ For example, it has been used to schedule observations for the Hubble Space Telescope, reducing the time taken to

schedule a week of observations from three weeks (!) to around 10 minutes.
▪ The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio.

Summary: CSPs

▪ CSPs are a special kind of search problem:
▪ States are partial assignments
▪ Goal test defined by constraints

▪ Basic solution: backtracking search

▪ Speed-ups:
▪ Ordering
▪ Filtering
▪ Structure

▪ Iterative min-conflicts is often effective in practice

CSPLib: A problem library for constraints:

https://www.csplib.org/

https://www.csplib.org/

