COE 4213564

Introduction to Artificial Intelligence
Constraint Satisfaction Problems

Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

i=s) =

n Unit | | Chapter 5

Constraint Satisfaction Problems

Rusgf" N Artlflclal Ir"ﬁelllgence’
Norvig A Modern Approach
‘ - Fourth Edition

@ Pearson © 2022 Pearson Education Ltd.

What is Search For?

Assumptions about the world: a single agent, deterministic
actions, fully observed state, discrete state space

Planning: sequences of actions

= The path to the goal is the important thing
= Paths have various costs, depths

= Heuristics give problem-specific guidance

Identification: assignments to variables
= The goal itself is important, not the path

= All paths at the same depth (for some formulations)

= (CSPs are a specialized class of identification problems where we assign
values to variables while respecting certain constraints

Constraint Satisfaction Problems

Constraint Satisfaction Problems

= Constraint satisfaction problems (CSPs) are mathematical questions defined as a set
of objects whose state must satisfy a number of constraints or limitations.

CSPs © Al search problems

The space of all search

problems

— states and actions are
atomic

— goals are arbitrary sets of
states

The space of all CSPs

— states are defined in
terms of variables

— goals are defined in terms
of constraints

A CSP is defined by:
1. a set of variables and their associated domains.

2. a set of constraints that must be satisfied.

Defining Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of three components, X, D, and
C:

* Xis a set of variables, {X; X }.
* Dis a set of domains, {D,,, D,}, one for each variable
* Cis a set of constraints that specify allowable combination of values

csps deal with assignments of values to variables.

* A complete assignment is one in which every variable is assigned a value, and a
solution to a CSP is a consistent, complete assignment.

* A partial assignment is one that leaves some variables unassigned.

 Partial solution is a partial assignment that is consistent

@ Pearson Chapter 5 6

© 2022 Pearson Education Ltd.

Constraint satisfaction problems (CSPs)

Standard search problem:

state is a “black box”—any old data structure that
supports goal test, eval, successor

CSP:
state is defined by variables X; with values from domain D;

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

@ Pearson Chapter 5 7

© 2022 Pearson Education Ltd.

Constraint satisfaction problems (CSPs)

Definition:

A constraint satisfaction problem (CSP) consists of:
e a set of variables V
« a domain dom(V) for each variable v €V
e a set of constraints C

Simple example: Another example:
- V=LV,} - V=LV, Vo)
— dom(V,) ={1,2,3,4} — dom(V;,) ={1,2,3}
- C={C,C,}> — dom(V,) = {1,2}
— C]_Z Vl = 2 ® C = {C11C2!C3}
— C5:V; =1 — CiiV, =2

Definition:

A constraint satisfaction problem (CSP) consists of:
e a set of variables V
- a domain dom(V) for each variable V &€V
 a set of constraints C

Definition:
A Mmodel of a CSP is an assignment of values to all of
its variables that satisfies all of its constraints.

Simple example:

- V=LV, All models for this CSP:
— dom(V,) ={1,2,3,4} iV, = 3}

- C — {lecz} {Vl —_ 4}
— Cii V=2

Possible Worlds

Definition:
A possible world of a CSP is an assignment of
values to all of its variables.

Definition:
A Mmodel of a CSP is an assignment of values to all of
its variables that satisfies all of its constraints.

l.e. a model is a possible world that satisfies all constraints

Another example:

® Vo= {levz}
dom(V,;) = {1.,2,3}

dom(V,) = {1,2}
® C = {C11C2:C3}

CZ: Vl + VZ
C3: Vi = VZ

< 5

Possible worlds for this CSP:

V=1,
V=1,
V=2,
V=2,
Vi=3,

{V1=3r

Vo=1}
Vo=2}%
Vo=1} (a model)
V2:2}
Vo=1} (a model)

V=21

Varieties of CSPs and Constraints

Varieties of CSPs

" Discrete Variables
= Finite domains
= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP- —
complete) — e
= |nfinite domains (integers, strings, etc.) e e

= E.g., job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

Varieties of Constraints

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA #* green
= Binary constraints involve pairs of variables, e.g.:

SA #£= WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., redis better than green
= Often representable by a cost for each variable assignment
= @Gives constrained optimization problems
= (We'llignore these until we get to Bayes’ nets)

Constraints

Constraints are restrictions on the values that one or more
variables can take

— Unary constraint: restriction involving a single variable
- Eg:V, =2
— k-ary constraint: restriction involving k different variables
- E.g. binary (k=2): V; +V, <5
- E.g. 3-ary: V; +V,+V, <5
- We will mostly deal with binary constraints
— Constraints can be specified by

1. listing all combinations of valid domain values for the variables
participating in the constraint

Vi Vo
— E.g. for constraint v, >V, > 1
and dom(V;) = {1,2,3} and = g
dom(V,) = {1,2}:
3 2

2. giving a function (predicate) that returns true if given values
for each variable which satisfy the constraint else false: V; = V5

From: UBC CS 322 — CSP

Constraints

— Constraints can be specified by

1. listing all combinations of valid domain values for the variables
participating in the constraint

Vy V>
— E.g. for constraint v, > Vv, > 4
and dom(V,) = {1,2,3} and
dom(V.,) = {1,2}: 3 1
3 2

2. giving a function that returns true when given values
for each variable which satisfy the constraint: V, = V.,

A possible world satisfies a set of constraints

— If the values for the variables involved in each constraint are
consistent with that constraint

1. They are elements of the list of valid domain values
2. Function returns true for those values

— Examples

- {V;=1, V,=1} (does not satisfy above constraint)
- {V;=3, V,=1} (satisfies above constraint)

From: UBC CS 322 — CSP

Scope of a constraint

Definition:
The scope of a constraint is the set of variables that
are involved in the constraint

« Examples:
— V5, = 2 has scope {V,}
— V; >V, has scope {V4,V5}
- V;+V,+V, <5 has scope {V,,V,,V,}

« How many variables are in the scope of a k-ary constraint ?
K variables

Solving Constraint Satisfaction Problems

Even the simplest problem of determining whether or not a

model exists in a general CSP with finite domains is NP-
hard

There is no known algorithm with worst case polynomial runtime.
We can't hope to find an algorithm that is polynomial for all CSPs.

However, we can try to:

find efficient (polynomial) consistency algorithms that reduce the
size of the search space

identify special cases for which algorithms are efficient

work on approximation algorithms that can find good solutions
quickly, even though they may offer no theoretical guarantees

find algorithms that are fast on typical (not worst case) cases

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

I
Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red, green), (red, blue), ...}

———N

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Example: I}I-Queens

© 1 % 3

= Formulation 1: >
" Variables: X;;
= Domains: {0,1} —F
= Constraints

1)
ik (X Xir) € {(0,0),(0,1), (1,0)}
Vi, j,k (X5, Xp;) € {(0,0), (0,1),(1,0)} S Xy =
\V/iajak) (XZ]aXz—Fk,j—I—k) S {(070)7 (07 1)7 (170)} 2%

Vi, g, k (XZ]aXz+k,j—k) S {(07 0)7 (Oa 1)7 (17 O)}

Example: N-Queens

= Formulation 2:

Q1
» Variables: Qj Q>
Q3
= Domains: {1,2,3,...N} Qa

= Constraints:

Implicit: V4,5 non-threatening(Q;, @;)

Explicit: (Q1,Q2) € {(1,3),(1,4),...}

Constraint Graphs

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables e
@]~

" Binary constraint graph: nodes are variables, arcs
show constraints

" General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

= Variables:

FTUWROX1X2X3
. D&malns
{0,1,2,3,4,5,6,7,8,9}
= Constraints:
alldiff(F, T, U, W, R, O)

O+O=R—|—10-@
T 4

]

Example: Sudoku

= Variables:

= Each (open) square
o e 8 | = Domains:
8|4 il |31 1 = {1,2,...,9}

= Constraints:

9-way alldiff for each column

| |Of-
w

9-way alldiff for each row

9-way alldiff for each region

()
NN |0 W

/ (or can have a bunch of
7 pairwise inequality
2 3 constraints)

Example: The Waltz Algorithm

= The Waltz algorithm is for interpreting

line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

= Approach:
= Each intersection is a variable

= Adjacent intersections impose constraints
on each other

= Solutions are physically realizable 3D
interpretations

Legal Junctions

Only certain junctions are
physically possible

How can we formulate a CSP to

label an image?
Variables: vertices
Domains: junction labels

Constraints: both ends of a line
should have the same label

A 1T
=

Y& N
N AN K R

¥
R S
Ml

(x,y) in <

-

.

A

£,

\

A
¥

28

Real-World CSPs

Scheduling problems: e.g., when can we all meet?

Timetabling problems: e.g., which class is offered when and where?
Assignment problems: e.g., who teaches what class

Hardware configuration

Transportation scheduling Mmoo | W

Factory scheduling

Circuit layout

Fault diagnosis o A o\~

... lots more! |

Many real-world problems involve real-valued variables...

Solving CSPs

Solving Constraint Satisfaction Problems (CSPs)

= A CSP can be solved using generate-and-test paradigm (GT) that
systematically generates each possible value assignment and then it
tests to see if it satisfies all the constraints.

= A more efficient method uses the backtracking paradigm (BT) that is
the most common algorithm for performing systematic search.
Backtracking incrementally attempts to extend a partial solution
toward a complete solution, by repeatedly choosing a value for
another variable.

" Two methods:
" Generate & Test
* Graph search with backtracking paradigm (BT)

Generate and Test (GT) Algorithms

Systematically check all possible worlds

— Possible worlds: cross product of domains
dom((WV,) <~ dom((WV5) =< --- < dom((WV_,)

Generate and Test:
— Generate possible worlds one at a time
— Test constraints for each one.

Example: 3 variables A, B,C

For a in dom(A)
For b in dom(B)
Forcin dom{C)
if {A=a, B=b, C=c} satisfies all constraints
return {A=a, B=b, C=c}
fail

If there are K variables, each with domain size d, and
there are c constraints, the complexity of Generate &
Test is

O(Cckd) O(ck?) O(cdk) O (dek)

- There are dk possible worlds
- For each one need to check ¢ constraints

From: UBC CS 322 — CSP

CSP as a Search Problem: one formulation

« States: partial assignment of values to variables
« Start state: empty assignment

* Successor function: states with the next variable assigned
— E.g., follow a total order of the variables V., ..., V,

— A state assigns values to the first k variables:
* Vi=vq, Vi = Vi }

« Goal state: complete assignments of values to variables
that satisfy all constraints
— That is, models

e Solution: assignment (the path doesn’t matter)

CSP as Graph Searching

CSP as Graph Searching

« 3 Variables: A,B,C. All with domains = {1,2,3,4}
 Constraints: A<B, B<C

Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
® |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Search Methods

= \What would BFS do? @

= \What would DFS do? “

= What problems does naive search have?

= For a CSP with n variables of domain size d we would end up with a search tree where all
the complete assignments (and thus all the solutions) are leaf nodes at depth n.

= The number of leaves is d"

[Demo: coloring -- dfs]

Video of Demo Coloring — DFS
https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA=redthen NT =green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |.e. consider only values which do not conflict with previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Search

Explore search space via DFS but evaluate each
constraint as soon as all its variables are bound.

Any partial assignment that doesn’t satisfy the
constraint can be pruned.

Example:
— 3 variables A, B, C each with domain {1,2,3,4}

— {A=1, B = 1} is inconsistent with constraint A = B
regardless of the value of the other variables
= Fail! Prune!

CSP as Graph Searching
Check unary constraints on V, o

If not satisfied = PRUNE

Check constraints on V,
and V, If not satisfied =

PRUNE 9

Problem?

Performance heavily depends
on the order in which
variables are considered.

E.g. only 2 constraints:
V11:V11—1 and Vu# Vll—l

Video of Demo Coloring — Backtracking
https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Example

S

—]

o ¢ ¢
—
=S

oS

oo

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result < RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {wvar = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation

https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html

[Demo: coloring -- backtracking]

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

function BACKTRACKING-SEARCH(cs?) returns a solution or failuere
return BACKTRACK(csp. { })

function BACKTRACKI({csp, assigrirmernr) returns a solution or failuere
if assigrnrmernr is complete then return assigrirmmernr
var «— SELECT-UNASSIGNED-VARIABLE(CSPD ., (AsSsSIgRmerr)
for each value in ORDER-DOMAIN-VALUES(csp. var., assigrnmernr) do
if valiwe 1s consistent with assigrnirmernr then
add {var = value } to assigrnmenr
innferernces «+— INFERENCE(CS, Var ., assigrnmerr)
if inferences = failure then
add infererices to csp
resulr «— BACKTRACK(CSI., GQSSESFIIIErir)
if reswulr = failuwre then return resulr
remove irnferennces from csp
remove {var = value } from assigrnrenr

return failure

Figure 5.5 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm i1is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-WALUES implement the general-
purpose heuristics discussed in Section 5.3.1. The INFERENCE function can optionally im-
pose arc-, path-, or A-consistency., as desired. If a walue choice leads to failure (noticed
either by INFERENCE or by BACKTRACK)., then value assignments (including those made by

INFERENCE) are retracted and a new wvalue is tried.

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?
" |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| qQ
SA [Nsw
v

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking
https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Filtering: Constraint Propagation

" Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW V SA
NT i I I ICE ICECIrErirerl
‘ A Frsws B PE[ErEErE[EeE] in]
A — I I I O I |

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
» Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW \ SA
Q

3 T I T IT I I

NSW

A

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

SSEA SSEA Se

@ Pearson

WA

NT

Q

NSW \Y, SA

T

[xw]

~—

© 2022 Pearson Education Ltd.

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

SSEA SSEA Se

WA NT Q SA T

NSW V
| m] M _o_al 1 AL

~

If X loses a value, neighbors of X need to be rechecked

Ty ;
@ Pearson © 2022 Pearson Education Ltd.

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed y

SSEA SSEA Se

maw]| u] IINSWZIZVII)_(CIRL 1
— = S

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assighment

Ty ;
@ Pearson © 2022 Pearson Education Ltd.

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

SA

NT [i g WA NT Q NSW Vv
A w T 11 [H E[EEE]

v 1\ VVV

= |mportant: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

= Can be run as a preprocessor or after each assignment

= What’s the downside of enforcing arc consistency?

Remember:
Delete from
the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while gueue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;. X;) then
for each X in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X)) returns true iff succeeds
removed «— false
for each r in DoMAIN[X}] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X}]; removed — true
return removed

= Runtime: O(n%d3), can be reduced to O(n?d?)
= .. but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can
= Can
= Can

nave one solution left

nave multiple solutions left

have no solutions left (and

not know it)

= Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

Ordering

Ordering: Minimum Remaining Values

Variable Ordering: Minimum remaining values (MRV):
= Choose the variable with the fewest legal left values in its domain

=

Why min rather than max?
Also called “most constrained variable”
“Fail-fast” ordering

Ordering: Least Constraining Value

" Value Ordering: Least Constraining Value
= @Given a choice of variable, choose the least “_L,;«

constraining value
= |.e., the one that rules out the fewest values in “ ' : *

the remaining variables

= Note that it may take some computation to ‘ ’:

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring — backtracking + AC + ordering]

Demo: Backtracking + AC + Ordering

https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

K-Consistency

K-Consistency

= Stronger forms of propagation can be defined with the notion of k-
consistency

" |ncreasing degrees of consistency

= 1-Consistency (Node Consistency): Each single node’s domain has a value
which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment t\(g (one can be exteyr%ded to thepother Y Q = Q

= K-Consistency: For each k nodes, any consistent assignment to k-1 can be ~
extended to the k" node. Q

= Higher k --> more expensive to compute

" |n practice, determining the appropriate level of consistency Q
checking is mostly an empirical science. Computing 2-consistency T
is common, and 3-consistency less common.

* (You need to know the k=2 case: arc consistency) m

Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
= Choose any assignment to any variable
= Choose a new variable
= By 2-consistency, there is a choice consistent with the first
= Choose a new variable
= By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d¢)), linear in n

= Fg,n=80,d=2,c=20

= 280 =4 billion years at 10 million nodes/sec

= (4)(22°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

A E)
(8)—D.
O F)

» Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
where n is the number of tree nodes and d is the size of the largest domain.
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

[|
= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X,),X:)
= Assign forward: Fori=1: n, assign X, consistently with Parent(X)

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

— @‘:""@ f\: . °@
G G
O, Q,

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O((d¢) (n-c) d?), very fast for small c

Cutset Conditioning

—
c W%
()
Instantiate the cutset
(vr)

[J
[(all possible ways)] @‘@""’ @]
[J
[J

Choose a cutset

d

b

T~

9‘@‘9
.- I%:

& g
O

l l

.

4

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Cutset Quiz

" Find the smallest cutset for the graph below.

Tree Decomposition™

= |dea: create a tree-structured graph of mega-variables
= Each mega-variable encodes part of the original CSP
= Subproblems overlap to ensure consistent solutions @

SJeA paleys | uo saiby
SleA paleys | uo salby
SleA paleys | uo salby

{(WA=r,SA=g,NT=b), {(NT=r,SA=g,Q=D), Agree: (M1,M2) €
(V\gA:b,SAzr,NT:g), (N}T:b,SA:g,Q:r), {((wA=g,5A=g,NT=g), (NT=g,5A=g,Q=0)), ...}

Iterative Improvement

Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned.

Local search algorithms turn out to be veq effective in solving many CSPs. They use a complete-state
formulation (as introduced in Section 4.1.1) where each state assigns a value to every variable, and the
search changes the value of one variable at a time.

To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.

0 00

We then randomly choose a conflicted variable, we’d like to change the value to something that brings
us closer to a solution; the most obvious approach is to select the value that results in the minimum
number of conflicts with other variables—the min-conflicts heuristic.

Algorithm: While not solved,
= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:
= Choose a value that violates the fewest constraints
= |.e., hill climb with h(n) = total number of violated constraints
I\/Iinlslconflicts is surprisingly effective for many CSPs, amazingly, on the n-queens
problem.

8-queens problem

R

Figure S. 8 A two-step solution using min-conflicts for an 8-guwueens problem. Ad each stape.,
a gqueen is chosen for reassignment in its column. The number of conflicts (in this case., the
number of attacking gqueens) is shown in each sguarse. The algcrrf,thrn mowves the gueen o the

min-conflicts sguares. breaking ties randormmly.

function RMRMIN-CONFLCTS(OoS, ar__see?s) returns a solution or failoers
imput=s: s, a constraint satisfaction problerm
rmaxr_sfreps, the number of steps allowed befors oivingo up
Crerreryt +— an initial complete assignment for csp
for i = 1 to ey _seeres oo
if crerrernyr is a solution for cspe then returm e rerms
ey +— a randomly chosen conflicted variable from cspr. VAaRIARBRLES
wvezlee «+— the value v for vaer that minimizes COoONFLICTSOOST, Vear, V., el rerne b
st verr — wveaadles IN CrerTeEres
meturme i fiere
Figcure 5.9 The MIN-COMNFLICTS local search algorithhmm for C5P=. The initial state may be

chosen randomly or by a greedy assignment prooess that chooses a minimal-conflict valus
im turm. The CONFLICTS function counts the mnumber of constraimnts violatsd

for each variable
by a particular value., given the rest of the current assignmnimant.

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= (QOperators: move queen in column

" Goal test: no attacks

= Evaluation: ¢(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]

Video of Demo lterative Improvement — n Queens

Video of Demo lterative Improvement — Coloring

Performance of Min-Conflicts

Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens %roblem, if you don’t count the initial
placement of queens, the run time of min-conflicts is roughly independent of problem size.

(15(i)v880r%r(1)%<))|m initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n =
It solves even the million-queens problem in an average of 50 steps (after the initial assignment).
Min-conflicts also works well for hard problems.

For example, it has been used to schedule observations for the Hubble Space Telescope, reducing the time taken to
schedule a week of observations from three weeks (!) to around 10 minutes.

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio.

number of constraints
number of variables

R —

CPU
time

L

|
critical
ratio

Summary: CSPs

CSPs are a special kind of search problem:
= States are partial assighments
" Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:

09 O.L —

\

= Ordering

= Filtering
= Structure

lterative min-conflicts is often effective in practice

CSPLib: A problem library for constraints:
https://www.csplib.org/

https://www.csplib.org/

